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Background: A head and neck cancer organoid (HNCO) and peripheral blood T

cell co-culture model was established to investigate whether HNCOs can induce

the differentiation of peripheral blood T cells into tumor-reactive T cells.

Additionally, this study seeks to explore the cytotoxicity of these T cells against

autologous tumor organoids, providing theoretical and experimental evidence

for the feasibility of this model as a platform for adoptive cell immunotherapy in

head and neck cancer (HNC).

Methods: HNCO single cells were co-cultured with peripheral blood

lymphocytes (PBLs) collected and isolated from patients with HNC. The culture

supernatant was collected and assayed for interferon-gamma (IFN-g) and tumor

necrosis factor-a (TNF- a). The expression of T cell activation markers cluster of

differentiation (CD)137 and CD107a was measured by flow cytometry to confirm

tumor specificity and cytotoxicity. Additionally, the optimal effector-to-target (E/

T) ratio was determined using the Cell Counting Kit-8 assay, and HNCO killing

was quantified by fluorescent labeling.

Results: Of the 27 successfully established HNCO-T cell co-culture systems,

81.48% induced the in vitro differentiation and tumor-reactive CD8+ T cell

expansion capable of mediating the killing of mature HNCOs.

Conclusion: The patient-derived HNCO-T cell co-culture model effectively

induced PBL differentiation into tumor-reactive CD8+ T cells with enhanced

tumor-killing activities. This model serves as a novel in vitro preclinical tool for

advancing personalized adoptive immunotherapy in HNC.
KEYWORDS

adoptive cell therapy, peripheral blood T cells, head and neck cancer, organoid,
co-culture
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1 Introduction

According to the Global Cancer Database, HNC is highly

prevalent among men in developing countries, particularly in

Central and South Asia, with its mortality ranking third among

all cancers (1, 2). HNC is a heterogeneous disease affecting multiple

sites in the head and neck region. Surgery, chemoradiotherapy, and

other combination treatments have substantially halted disease

progression and prolonged patient survival; nonetheless, they are

often associated with adverse effects that worsen the patient’s

quality of life (3). This necessitates safe and effective novel

treatments for the clinical diagnosis and treatment of HNC.

Immunotherapy has emerged as a promising treatment

modality for cancer. Adoptive T-cell therapy (ACT) is a highly

personalized form of tumor immunotherapy that involves culturing

the patient’s autologous T cells in the laboratory and reinfusing

them into the patient to mediate immune responses (4–6). T-cell

cytotoxicity is critical for effective immunotherapy. During in vitro

culture, T cells can be specifically stimulated to differentiate into

cytotoxic cluster of differentiation (CD)8+ T lymphocytes (CTLs),

which mediate the recognition and killing of tumor cells. A higher

proportion of CD8+ T cells is associated with a more robust

response to tumor cells.

Three major modalities of ACT exist: tumor-infiltrating

lymphocytes (TILs), chimeric antigen receptor T cells (CAR-T), and

T cell receptor-engineered T cell (TCR-T) therapies. TIL therapy

involves expanding heterogeneous populations of endogenous T cells

from tumor tissues (7), whereas CAR-T and TCR-T therapies focus on

expanding genetically engineered T cells that target specific antigens

(8). ACT has demonstrated impressive clinical responses in

hematologic malignancies; nonetheless, its application in solid

tumors is under investigation (9, 10). However, HNCs are highly

immunosuppressive because of the low number of T cells in the tumor

microenvironment and inflammatory infiltrates that render existing

TILs ineffective. This makes it difficult to obtain adequate tumor-

reactive TILs from patients with HNC for ACT (11–13). Therefore,

generating immune cells that can specifically recognize and kill tumor

cells in vitro, as well as enhancing their anti-tumor responses, are key

areas of intensive research. Upon reaching a sufficient quantity, these

in vitro-cultured immune cells can be reinfused into the patient, where

they mediate therapeutic effects as a cellular drug. Immune cell

reinfusion exerts less impact on healthy tissues, compared with

chemotherapy and other agents that directly kill cancer cells.

To obtain specific tumor-reactive immune cells in vitro,

autologous peripheral blood lymphocytes (PBLs) were isolated

from patients and used as the source of T cells. These cells were

co-cultured with primary HNCOs in a three-dimensional culture.

HNCOs effectively simulate the tumor microenvironment

and accurately recapitulate tumor characteristics observed in

patients, thereby supporting in-depth research on HNC and

providing data for the development of personalized treatment

regimens (14–16). The use of HNCOs helps to advance the

understanding of tumor-immune interactions, which is crucial for

tumor immunotherapy research and the clinical translation of

personalized immunotherapy.
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This study seeks to investigate the antitumor response of T cells

derived from the organoid co-culture system by measuring cytokine

secretion and the expression of cytotoxic markers.
2 Materials and methods

2.1 Sample source

Patients with HNC were recruited from the Xuzhou Central

Hospital. The study protocol was reviewed and approved by the

Biomedical Research Ethics Committee of Xuzhou Central

Hospital. Informed consent was obtained from all patients and

their families before specimen collection. The pathological type of

the HNC samples was confirmed by the Pathology Department of

Xuzhou Central Hospital before further processing.
2.2 Materials

Human fibroblast growth factor 10, recombinant human R-

spodin-1 protein, recombinant human noggin protein, recombinant

human Wnt-3A protein, N-acetylcysteine, A83-01, gastrin I, and

nivolumab were purchased from MedChemExpress (Monmouth

Junction, USA). Advance Dulbecco’s Modified Eagle’s Medium/F12

basal medium, Roswell Park Memorial Institute-1640 medium, N-2-

hydroxyethylpiperazine-N’-2-ethanesulfonic acid buffer, GlutaMAX™,

B27 supplement, and N2 supplement were purchased from

ThermoFisher (Waltham, MA USA). Nicotinamide, protablin E 2,

and butylhydroxyanisole were purchased from Sigma. Rock Inhibitor

(Y-27632) was purchased from Selleck Chemicals (Houston, USA).

Human epidermal growth factor and recombinant human

interleukin-2 were purchased from Peprotech (New Jersey, USA).

Penicillin/streptomycin/amphotericin solution was purchased from

Beyotime Biotech Inc. (Shanghai, China).
2.3 Establishing the HNCO model

Fresh HNC tissues—obtained by biopsy or surgical resection—

were transported to the laboratory for organoid culture. Tumor

tissue was minced and digested into a single-cell suspension.

Specifically, epithelial-origin tumors were digested with

collagenase I, whereas salivary gland tumors were digested with

collagenase II. Single-cell suspensions were cultured in Matrigel to

form organoids resembling the original tumors. The culture

medium was changed twice weekly, and the organoids were

passaged approximately every 2 weeks (17, 18).
2.4 Histology

Mature HNCOs were collected, centrifuged, and resuspended in

liquid agarose. Once solidified, the organoids were dehydrated,

cleared, embedded in paraffin, sectioned, and stained with
frontiersin.org
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hematoxylin and eosin (H&E). They were processed for

immunohistochemistry (IHC) and mounted. The organoids were

compared with the original tumor sections.
2.5 PBL isolation and T cell expansion

Fresh whole blood samples were collected and transported to

the laboratory. The peripheral blood samples and tumor specimens

used for co-culture model establishment were obtained from the

same patients. PBLs were isolated using density gradient

centrifugation with a lymphocyte separation solution under sterile

conditions. After cell counting and viability assessment, PBLs were

cultured in a T cell expansion medium at 37°C with 5%

CO2 overnight.
2.6 Co-culture of T cells with HNCO single
cells

HNCO single cells were collected, counted, and stimulated with

interferon-gamma (IFN-g) for 24 h before co-culture. Coated U-

bottom 96-well plates with 5 mg/mL CD28 antibody.Isolated T cells

were counted, mixed with HNCO single cells at a predefined

effector-to-target (E/T) ratio, and seeded into 96-well U-shaped

culture plates for co-culture, cultured in presence of 150 U/mL IL-2

and 20 mg/mL Nivolumab. T cells co-cultured with HNCO for 14

days were labeled as “CT,” whereas those at day 0 of co-culture were

labeled as “UT.”
2.7 Enzyme-linked immunosorbent assay

Cytokine release from in vitro-activated T cells was quantified

using the Human TNF-a and Human IFN-g enzyme-linked

immunosorbent assay (ELISA) kit (19, 20). Co-culture

supernatants were collected, and mean IFN-g and TNF-a
concentrations were calculated from OD450 values measured by a

microplate reader using a standard curve.
2.8 Flow cytometry

T-cell markers CD137 and CD107a were quantified using flow

cytometry (21–24). Briefly, T cells were re-stimulated with single

cells for 5 h, stained with anti-CD3-PerCP-Cy5.5, anti-CD4-FITC,

anti-CD8-BV421, anti-CD137-APC, CD107a-PE, and near-

infrared viability dye, and analyzed using a flow cytometer. Data

were processed using FlowJo software (25).
2.9 Cell counting kit-8 assay

To determine the optimal E/T ratio, T cells were collected,

counted, resuspended in a culture medium, and adjusted to a
Frontiers in Immunology 03
predefined density relative to HNCO (per single cell count). They

were seeded into 96-well plates. After 24 h, diluted Cell Counting

Kit-8 (CCK8) reagent was added, and the cells were incubated at 37°

C for 2 h. OD450 was measured using a microplate reader to

quantify viable tumor cells in each well.
2.10 Fluorescent labeling

Cells were stained using the Calcein-acetoxymethyl ester (AM)/

propidium iodide (PI) kit, labeling live cells with Calcein-AM and

dead cells with PI. Fluorescence was observed under an inverted

fluorescence microscope, and fluorescence intensity was quantified

using ImageJ.
2.11 Data analysis

Statistical analysis was conducted using GraphPad Prism.

Independent t-tests were used to compare between two groups,

whereas one-way analysis of variance was used to compare among

multiple groups. A P-value <0.05 indicated statistical significance.
3 Results

3.1 Establishment and morphological
validation of the HNCO model

A total of 27 patient-derived HNCO models were developed.

Table 1 summarizes the clinical pathology data and passage of

HNCOs, all enrolled patients were diagnosed with primary head

and neck carcinoma and had not received any prior anti-tumor

therapies (including radiotherapy, chemotherapy, immunotherapy

or biological therapy) for their current tumors. Additionally, none

of the patients presented with hematological disorders. HNCOs

formed 100 to 150 µm spherical structures after 3 to 5 days of

culture and were stably expanded for over four generations without

morphological changes (Figures 1A, B).

The morphological and histological characteristics of HNCOs

were compared with their parental tumors using H&E staining and

IHC analysis. HNCOs closely resembled the parental tumor tissues,

particularly in nuclear atypia. Furthermore, IHC analysis indicated

canonical tumor markers, including the high expression of pan-

cytokeratin, tumor protein p53, and Antigen Kiel 67, confirming the

successful establishment of histopathologically consistent HNCOs

(Figures 2A, B).
3.2 Increase in IFN-g and TNFa after co-
culture

Effector cytokines IFN-g and TNFa are central to the activation,

differentiation, and tumor-killing activity of CTLs. To assess

whether HNCOs could induce T cell-mediated anti-tumor
frontiersin.org
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TABLE 1 Patient information.

ID Gender Age Primary site Clinical TNM stage Histopathological
subtype

Passage

T N M

HNCO1 Male 66 Tongue 4 0 0 OSCC 5

HNCO2 Female 81 Tongue 2 0 0 OSCC 6

HNCO3 Female 66 Gingiva 2 0 0 OSCC 7

HNCO4 Female 33 Parotid gland 3 0 0 DC 5

HNCO5 Female 56 Sublingual gland 3 0 0 MEC 5

HNCO6 Female 85 Parotid gland 3 2 0 ACC 6

HNCO7 Female 80 Gingiva 2 0 0 OSCC 8

HNCO8 Female 46 Tongue 2 0 0 OSCC 7

HNCO9 Female 81 Cheek mucosa 3 1 0 OSCC 5

HNCO10 Male 82 Gingiva 2 0 0 OSCC 6

HNCO11 Female 93 Cheek mucosa 3 0 0 OSCC 5

HNCO12 Female 57 Tongue 4 1 0 OSCC 5

HNCO13 Male 76 Tongue 3 0 0 OSCC 5

HNCO14 Male 52 Cheek mucosa 2 2b 0 OSCC 7

HNCO15 Male 65 Mouth floor 2 0 0 OSCC 6

HNCO16 Male 71 Maxilla 3 1 0 OSCC 5

HNCO17 Male 66 Gingiva 4b 0 0 OSCC 5

HNCO18 Male 70 Tongue 3 0 0 OSCC 5

HNCO19 Female 61 Tongue 4a 0 0 OSCC 5

HNCO20 Male 77 Maxilla 2 0 0 OSCC 6

HNCO21 Male 51 Gingiva 3 1 0 OSCC 6

HNCO22 Male 72 Gingiva 4a 1 1 OSCC 7

HNCO23 Female 84 Tongue 4 0 0 OSCC 6

HNCO24 Female 77 Tongue 2 1 0 OSCC 6

HNCO25 Female 68 Mouth floor 3 0 0 OSCC 5

HNCO26 Female 67 Mandible 2 0 0 OSCC 6

HNCO27 Female 67 Tongue 3 1 0 OSCC 8

N1 Male 72 Tongue 2 0 0 OSCC –

N2 Male 74 Tongue 3 1 0 OSCC –

N3 Female 87 Tongue 2 0 0 OSCC –

N4 Male 69 Palate 2 0 0 MEC –

N5 Male 61 Tongue 3 0 0 OSCC –

N6 Male 51 Tongue 3 1 0 OSCC –

N7 Female 74 Mouth floor 4 0 0 OSCC –

N8 Female 69 Parotid gland 2 1 0 ACC –
F
rontiers in Immunol
ogy
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OSCC, Oral Squamous Cell Carcinoma; DC, Ductal Carcinoma; MEC, Muccepidermcid Carcinoma; ACC, Adenoid Cystic Carcinoma.
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response, single cells from the 27 HNCOs were co-cultured with

autologous PBL-derived T cells (Figure 3). Before co-culture,

HNCO single cells were pre-treated with IFN-g and nivolumab

(anti-PD-1 antibody) to enhance antigen presentation and

counteract PD-L1-induced inhibition of T cell activation (26).
Frontiers in Immunology 05
Supernatant samples were collected on day 0 and day 14 to

quantify IFN-g and TNF- a concentrations using ELISA kits. After

14 days of co-culture, IFN-g and TNF-a levels significantly

increased in 23 co-culture systems, whereas remained unchanged

in the remaining 4 systems (Figure 4).
FIGURE 2

(A) H&E and IHC images of HNCO1 vs. parental tumor tissues (50 um). (B) H&E and IHC images of HNCO7 vs. parental tumor tissues (50 um).
HNCO, head and neck cancer organoid; IHC, immunohistochemistry; and H&E, hematoxylin and eosin.
FIGURE 1

(A) Course of HNCO1 growth (100 um). (B) Microscopic images of HNCO7 and HNCO13 (100 um, 50 um) HNCO: head and neck cancer organoid.
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FIGURE 3

HNCO2 (A). HNCO6 (B), HNCO10 (C), and HNCO12 (D) single cells in co-culture with autologous PBLs (100 um). HNCO: head and neck cancer
organoid; PBL: peripheral blood lymphocyte.
FIGURE 4

(A) IFN-g production in 27 co-culture models. IFN-g levels before and after co-culture with HNCO3 (B), HNCO14 (C), or HNCO21 (D), ns P>0.05,
**: P<0.0001. (E) TNF-a production in 27 co-culture models. TNF-a before and after co-culture with HNCO3 (F), HNCO14 (G), or HNCO21 (H), ns:
P>0.05, **P<0.0001. HNCO, head and neck cancer organoid; IN-g, interferon-gamma; and TNF-a, tumor necrosis factor alpha.
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3.3 T cell activation and tumor reactivity

Activated and differentiated CD8+ T cells express specific

markers, such as CD107a and CD137. Therefore, flow cytometry

was used to assess the degranulation and cytotoxicity of CD107a
Frontiers in Immunology 07
and CD137 expression on CD8+ T cells after co-culture with

HCNOs (Figure 5A).

Consistent with the ELISA results, CD107a and CD137 expression

was upregulated in CD8+ T cells after co-culture with 22 patient-

derived HCNOs, except for HNCO21, where no significant increase in
FIGURE 5

(A) Flow cytometry plots of CD107a and CD137 expression on CD8+ T cells. (B) Percentage of CD107a-positive cells after co-culture with 27
HCNOs. (C) Percentage of CD107a-positive cells after co-culture with HNCO3, HCNO14, and HCNO21. (D) Percentage of CD137-positive cells after
co-culture with 27 HCNOs. (E) Percentage of CD137-positive cells after co-culture with HNCO3, HCNO14, and HCNO21. HNCO, head and neck
cancer organoid; CD, cluster of differentiation.
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CD107a expression was observed. Furthermore, CD107a and CD137

expression in CD8+T cells remained unchanged after co-culture with

the remaining four HCNOs (Figures 5B–E).

In some patient samples, CD8+ T cells demonstrated enhanced

tumor reactivity and cytotoxicity after 2 weeks of co-culture. For

instance, in HNCO6, the mean IFN-g concentration increased from

17.48 pg/mL before to 206.6 pg/mL (approximately 12 times) after

14 days of co-culture (Figure 6A). Similarly, the mean TNF-a
concentration increased from 1.403 pg/mL before to 20.09 pg/mL

after co-culture (approximately 14 times) (Figure 6B). Additionally,

the percentages of CD107a+ cells increased from 0.45% before to

10.4% after co-culture and CD137+ CD8+ T cells increased from

0.20% before to 6.03% after co-culture (Figures 6C, D).

Thus, some HNCOs effectively promote antigen-specific

recognition and T-cell activation during co-culture.
3.4 Mature HNCOs are killed by induced
CD8+ T cells

To determine the cytotoxicity of induced CD8+ T cells against

autologous mature HNCOs, these cells were co-cultured for 24 h

and tumor cell viability was assessed.
Frontiers in Immunology 08
The association between CD8+ T cell cytotoxicity and the E/T

ratio was assessed by measuring tumor cell viability after 24 h of

co-culture at E/T ratios of 1:1, 2:1, 5:1, 10:1, and 20:1. Inverted

microscopy indicated pronounced tumor cell lysis with

increased E/T ratio (Figure 7A). Furthermore, the CCK-8 assay

demonstrated that CD8+ T cells mediated tumor cell killing at all

E/T ratios, with the tumor-killing effect increasing with the

ratio (Figure 7B).

Tumor killing activity of CD8+ T cells was further

investigated in the HNCO6 and HNCO14 co-culture models

at a 20:1 E/T ratio. Controls comprised media without T cells

(NT) and T cells without prior induction (UT). The co-culture of

CD8+ T cells (CT) with mature HNCOs resulted in 23.5% cell

death for HNCO6 (Figure 7C) and 5.07% for HNCO14

(Figure 7D), significantly surpassing the control groups. Thus,

induced CD8+ T cells mediate the specific ki l l ing of

mature HNCOs.
4 Discussion

Immunotherapy—particularly immune checkpoint inhibitors—

has emerged as a mainstay treatment for cancer. Anti-PD-1
FIGURE 6

IFN-g (A), TNF-a (B), CD107a (C), and CD137 (D) expression before and after co-culture with HNCO6, ****P<0.0001. HNCO, head and neck cancer
organoid; CD, cluster of differentiation; IFN-y, interferon-gamma; and TNF-a, tumor necrosis factor alpha.
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inhibitors are the first-line treatment for HNC, despite low response

rates (20%) (4, 27). ACT using tumor-reactive T cells holds

promise; however, research is still in the preclinical stages for HNC.

HNC is highly immunosuppressive, characterized by limited

TILs. Patients with HNC often lack sufficient tumor-reactive T
Frontiers in Immunology 09
cells required for ACT (5, 6). Consequently, the in vitro culture

and expansion of tumor-reactive T cells from PBLs represent a

crucial strategy for advancing ACT in HNC because of their

accessibility and availability. Moreover, they remain unaffected

by the tumor type or volume (28). This study elucidates the
FIGURE 7

(A) HNCO-CD8+ T cell co-culture at various E/T ratios. (B) Percentage of HNCO kiling by CD8+ T cels after co-culture at diferent E/ratios
measured using the CCK8 assay. (C) HNCO6-CD8+ T cell co-culture and celviability. (D) HNCO14-CD8+ T cell co-culture andcell viability. HNCO,
head and neck cancer organoid; CD, cluster of diferentiation; E/T, effector-to-target; and CCK8, Cell Counting kit-8.
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feasibility of using HNCOs as a co-culture system for expanding

tumor-reactive T cells in vitro and evaluating their cytotoxicity.

HNC displays high inter-individual variability, with T

cell-mediated tumor killing influenced by various factors,

highlighting the potential of personalized cancer treatment (15).

Organoids preserve the heterogeneity of the parental tumors

and replicate the tumor microenvironment, making them

valuable models for personalized therapy. In this study,

personalized HNCO-T cell co-culture models were established

by pairing organoids with autologous peripheral blood T cells.

HNCOs provide a personalized in vitro model for studying

tumor-T cell interactions and assessing patient sensitivity to

immunotherapy (29).

Of the 27 HNCO-T cell co-culture models established, T cells

from 22 patients were successfully activated by autologous HNCO

single cells, as evidenced by increased cytokine production and

upregulated cytotoxicity-associated markers. In vitro validation

using two HNCO co-culture models confirmed enhanced T cell-

mediated cytotoxicity. However, the antitumor response of tumor-

reactive T cells obtained using this model may exhibit variability,

and the overall success rate remains uncertain. Additionally, the

potential for tumor immunosuppression during this cell therapy

warrants further investigation.

This study presents a novel approach and experimental

foundation for expanding effector cells for ACT in HNC, despite

unclear clinical efficacy. The model entirely recapitulates neither

TILs or the tumor microenvironment nor their impact on T cell

activation and cytotoxicity during ACT, such as immune

checkpoint inhibition, which may generate different clinical

outcomes. Additionally, the use of non-humanized materials,

such as Matrigel—a murine-derived complex of the extracellular

membrane with batch-to-batch variation—may affect experimental

repeatability and stability, lowering the predictive accuracy of

immunotherapy sensitivity assay in clinical settings (30).

Whereas this study elucidates the cytotoxicity of T cells

in vitro, it remains elusive whether these cytotoxic T cells can

be successfully enriched in HNC lesions and directly kill

tumor cells after reinfusion. Moreover, the cell preparation

process did not adhere to Good Clinical Practice standards

for clinical application, warranting further research using

animal models.

ACT is a key focus in immunotherapy with substantial

implications for cancer treatment. Standardizing the T cell culture

protocol is essential for clinical translation, facilitating the re-

infusion of successfully induced T cells into patients and

providing a novel immunotherapy option for HNC.
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