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Li Shen1, Yu Huang1, Bingjie Wang1* and Fangyou Yu1,3*

1Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji
University, Shanghai, China, 2Department of Clinical Laboratory Medicine, The First Affiliated Hospital
of Ningbo University, Ningbo, Zhejiang, China, 3Department of Respiratory Medicine, The First
Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
Staphylococcus aureus (S. aureus) bloodstream infection is often life-

threatening, and increasing in incidence. We identified 63 differentially

expressed genes (DEGs) in the GSE33341 S. aureus infection samples.

Subsequently, intersecting the 63 DEGs with 950 genes from the blue module

through weighted gene co-expression network analysis (WGCNA) yielded 38

genes. We leveraged Boruta and least absolute shrinkage and selection operator

(LASSO) algorithms and identified5 diagnostic genes (DRAM1, UPP1, IL18RAP,

CLEC4A, and PGLYRP1). Comparative analysis revealed that Extreme Gradient

Boosting (XGBoost) surpassed SVM-RFE and Random Forest models,

demonstrating superior diagnostic performance for S. aureus bloodstream

infection (mean AUC for XGBoost =0.954; mean AUC for SVM-RFE =0.93275;

mean AUC for Random Forest =0.94625). The XGBoost Diagnostic Score

correlated with multiple immune cells to varying degrees, manifesting

significant negative associations with CD8 T cells and CD4 naive T cells in both

human and mouse samples. The diagnostic power of the Diagnostic Score was

further validated by RT-qPCR results obtained from both mouse and patient

samples, as well as RNA-Seq analysis conducted on mouse samples. XGBoost

Diagnostic Score, consisting of DRAM1, UPP1, IL18RAP, CLEC4A, and PGLYRP1,

may serve as a Diagnostic tool for S. aureus bloodstream infection.
KEYWORDS
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Introduction

Staphylococcus aureus (S. aureus) was a common pathogen causing both community

and hospital infections (1, 2). S. aureus can lead to acute and chronic infections in various

parts of the body, including the bloodstream, respiratory tract, bone marrow, and other

parts of the body (3–5). Among these, bloodstream infection was particularly harmful and

had a higher incidence rate (6–8). Clinically, S. aureus bloodstream infection is defined
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clinically by positive S. aureus blood cultures from patients

exhibiting signs and symptoms of systemic infection (9).

Once S. aureus entered the bloodstream, it triggered the

recruitment of circulating neutrophils and the production of

inflammatory cytokines (10, 11). CD4 naive T cells proliferated

strongly in response to superantigens such as staphylococcal

enterotoxin B (SEB) (12). Superantigens are bacterial virulence

factors that induce a state of immune hyperactivation by forming

a bridge between certain subsets of T cell receptor (TCR) b chains

on T lymphocytes, and class II major histocompatibility complex

(MHC-II) molecules (13, 14). Zhang et al. found that in the face of

superantigens induced immune hyperactivation, an intact

bacterium-specific CD4+ T cell response can be mounted (15).

Cytotoxic CD8+ T cells eliminated target cells by recognizing

homologous epitopes presented by MHC class I (MHC-I)

molecules, playing a role in clearing intracellular bacteria in

murine models of bacterial infection (16–18). Alexeev confirmed

that cytotoxic CD8+ T cells recognized S. aureus-infected Recessive

dystrophic epidermolysis bullosa keratinocytes and responded by

producing interleukin-2 (IL-2) and IFNg and degranulating and

cytotoxically killing infected cells (19). Yi et al. discovered that the

potential T-cell antigens of S. aureus, EsxA and EsxB, can play a

critical role in stimulating T helper 1 immunity by activating IgG2a

and CD8(+) T cells (20). S. aureus can exhibit a high bacterial

burden during endovascular infection through foci formation that

adhere to vessel walls (3). Therefore, the internalization and the

persistence of S. aureus within host cells allowed the bacteria to

evade these responses.

Methods for identifying disease-associated modules and genes

were increasingly being developed, which can be effective in

searching for diagnostic markers in clinical practice (21, 22).

Diagnostic biomarkers are defined as indicators that can detect or

confirm the presence of a disease or condition, or identify

individuals with specific disease subtypes (23). These biomarkers

serve not only to diagnose patients but also to refine the

classification and understanding of diseases. Recent research into

diagnostic biomarkers has increasingly emphasized the usage of

advanced methodologies to boost predictive accuracy and improve

patient outcomes. For instance, weighted gene co-expression

network analysis (WGCNA) was widely recognized as a robust

method for uncovering relationships between genes and clinical

features (24–26). On top of that, Extreme Gradient Boosting

(XGBoost) was efficient, flexible, and lightweight, and has been

widely used in data mining, recommender systems, and other fields

(27). Among various machine learning algorithms, XGBoost has

demonstrated superior performance in medical applications. Recent

studies have indicated that the XGBoost algorithm exhibits

enhanced predictive power compared to alternative algorithms.

For instance, Shen et al. developed an XGBoost-based machine

learning model that showed superior performance compared with

the other three machine learning algorithms in predicting lobar

pneumonia in children with Community-acquired pneumonia (28).

In addition, among the seven machine learning predictive models

incorporating non-high-density lipoprotein cholesterol to high-

density lipoprotein cholesterol ratio, the XGBoost algorithm
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exhibited the highest predictive performance, with an area under

the curve (AUC) of 0.828 (29).

In conclusion, this study comprehensively investigated the

predictive diagnosis of S. aureus bloodstream infection deploying

an ensemble machine-learning approach. The Diagnostic Score,

constructed by combining the biomarkers DRAM1, UPP1,

IL18RAP, CLEC4A, and PGLYRP1 harnessing the XGBoost

algorithm, demonstrated superior diagnostic performance.

Bioinformatic analysis combined with experimental validation

provided a solid foundation for predicting S. aureus bloodstream

infection. These findings were anticipated to offer new approaches

for the diagnosis and treatment of S. aureus bloodstream infection.
Methods

Public gene expression datasets

Access to the Gene Expression Omnibus (GEO) database

(https://www.ncbi.nlm.nih.gov/geo/), a public repository of high-

throughput gene expression data, chips, and microarrays, was

adopted for data collection. We queried the GEO database with

the keywords “Staphylococcus aureus” [MeSH Terms] and

“Bloodstream infection” [All Fields]. None of the included

samples were concerned with any other diseases. The sample size

of both the pediatric sepsis group and the normal group was greater

than 10. Ultimately, GSE33341-human was selected as the training

dataset, and GSE33341-mice served as the test dataset (30). Datasets

GSE65088 (31) and GSE16129 (32) were employed for validation.
Weighted correlation network analysis

WGCNA is a genomics research method that facilitates the

identification of gene clusters with high relatedness (24, 33, 34).

This approach constructs a coexpression network using the

“WGCNA” R package, focusing on the top 7500 genes exhibiting

the highest variance. The network enables systematic gene

screening to identify potential biomarkers or therapeutic targets.

Hierarchical clustering identifies modules of genes according to

their expression patterns, grouping those with similar patterns into

distinct modules. This process categorizes tens of thousands of

genes into multiple modules, adopting correlation and correlation

coefficients as key measures.
Evaluation of functional enrichment

Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathway enrichment analyses were conducted via

the “clusterProfiler” (35) package in R to explore possible biological

features of blue modules. Additionally, Gene set enrichment analysis

(GSEA) (36) was performed via the “clusterProfiler” package in R to

investigate the enrichment pathways.
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Identification of the differentially
expressed genes

The Wilcoxon test was utilized to identify differentially

expressed genes (DEGs) between the S. aureus bloodstream

infection group and the control group in the GSE33341 dataset. A

P-value < 0.05 and |log2FC| > 1 were set as the cutoffs for DEGs.
Construction of diagnostic models for S.
aureus bloodstream infection

Firstly, up-regulated genes in the human and mice S. aureus

infection groups from GSE33341 were intersected to acquire 63

DEGs associated with S. aureus bloodstream infection. Afterward,

these genes intersected with 950 genes from the blue module

identified by WGCNA, resulting in 38 genes. Boruta and least

absolute shrinkage and selection operator (LASSO) logistic

regression were then applied separately to identify biomarkers,

ultimately selecting five genes. Boruta algorithm is a full

correlation analysis screening feature algorithm for identifying

and selecting the set of features that are relevant to the dependent

variable. It can select the essential features from the original feature

set while excluding the features that do not have a significant impact

on the model predictions (37). LASSO logistic regression is a

penalized regression method that forces some coefficients to zero,

effectively reducing variables and improving model achievement

when the number of predictors exceeds the sample size (38).

Diagnostic Score models were constructed by deploying these five

genes through XGBoost, Support Vector Machine-Recursive

Feature Elimination (SVM-RFE), and Random Forest (RF)

algorithms. XGBoost is a decision-tree-based ensemble algorithm

that ameliorates model performance by optimizing the loss function

through gradient boosting and introducing regularization to

improve generalization (39), with the following hyperparameters:

eta = 0.01, max_depth = 2, min_child_weight = 3, subsample = 0.5,

colsample_bytree = 0.6. SVM-RFE is a boundary-based supervised

learning algorithm effective for classification tasks by constructing

hyperplanes in high-dimensional space to maximize the margin

between classes (40). RF is an ensemble learning technique that

improves predictive accomplishment by constructing multiple

decision trees and integrating their outcomes (41). The predictive

power of the Diagnostic Score was evaluated using the receiver

operating characteristic (ROC) curve and calculating the area under

the curve (AUC). After comparing the mean AUC in four datasets,

the XGBoost model (mean AUC for XGBoost =0.954; mean AUC

for SVM-RFE =0.93275; mean AUC for Random Forest =0.94625)

(mean accuracy for XGBoost =0.84; mean accuracy for SVM-RFE

=0.7825; mean accuracy for Random Forest =0.7425), which

demonstrated the best performance, was selected for in-

depth analysis.

We utilized SHAP values to assess the overall feature

importance in the XGBoost model. SHAP, a recent advancement

in making tree-based models more interpretable, employs a game-

theoretic method that aggregates the local contributions of
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scale. This approach is considered superior to other global

approximation methods. The algorithm not only provides a

measure of feature importance across the model but also offers

insights into the role of each feature in specific predictions.

Sensitivity is the proportion of true positives tests out of all

patients with a condition (42). In other words, it is the ability of a

test or instrument to yield a positive result for a subject that has that

disease. The ability to correctly classify a test is essential, and the

equation for sensitivity is the following: Sensitivity=(True Positives

(A))/(True Positives (A)+False Negatives (C)).

Specificity is the percentage of true negatives out of all subjects

who do not have a disease or condition. In other words, it is the

ability of the test or instrument to obtain normal range or negative

results for a person who does not have a disease (43). The formula

to determine specificity is the following: Specificity=(True Negatives

(D))/(True Negatives (D)+False Positives (B)).
Assessment of immune cell infiltration

Immune cell infiltration was assessed by computing the

differential infiltration of 22 immune cells exploiting the

CIBERSORT (44) algorithm in the human samples and 36

immune cells using the ImmuCellAI (45) algorithm in the mouse

samples. These algorithms are computational methods that depend

on gene expression data to estimate the relative abundance of

various cell types within a sample. The correlation between gene

expression and immune cells was evaluated using Pearson’s

correlation coefficients, with correlation plots produced utilizing

the “ggpubr” R package.
Clinical blood samples

Whole blood samples were collected from five patients

diagnosed with S. aureus bloodstream infection and from five

healthy controls at the Shanghai Pulmonary Hospital, School of

Medicine, Tongji University, Shanghai, China, for RNA extraction

and subsequent RT-qPCR analysis. The blood samples used in this

study were by-products of routine care in the department of

clinical laboratory.
Establishment of a mouse model for S
aureus bloodstream infection

The Methicillin-sensitive Staphylococcus aureus (MSSA)

Newman strain was cultured for 16 hours in TSB medium at

37°C. Overnight cultures were centrifuged at 2683g (RCF) for

5 minutes at room temperature and secondarily adjusted to a

concentration of 2 × 109 CFU/mL with the help of phosphate-

buffered saline (PBS). Succeeding this, female Balb/c mice were

injected via the tail vein with 100 mL PBS containing 2 × 108 CFU

bacterial cells suspended. At eight hours post-infection, the mice
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were anesthetized with 2,2,2-tribromoethanol (5 mg/25 g). Surgical

scissors were operated to remove mouse whiskers; thereafter,

tweezers were leveraged to clamp the eyeball and swiftly excise it,

allowing blood to flow from the eye socket into the EP tube. The

collected blood sample was immediately placed in liquid nitrogen

and stored at −80°C until RNA extraction.
RNA extraction and real-time polymerase
chain reaction

Total RNA from patients and mice blood samples were isolated

using the RNA Prep Pure Blood kit (Tiangen Biotech Co.; Ltd.)

following the manufacturer’s protocol. RNA was then reverse

transcribed into cDNA utilizing the PrimeScript RT reagent kit

with gDNA Eraser (Takara). Real-time quantitative PCR (RT-

qPCR) was performed using TB GreenTM Premix Ex TaqTM II

(Takara) on QuantStudioTM 5 Real-Time PCR System (Applied

Biosystems). The expression levels of DRAM1, UPP1, IL18RAP,

CLEC4A, and PGLYRP1 genes normalized to GAPDH were

calculated using the formula 2−DDCt. All primers used in this

study were listed in Supplementary Table S1. Each reaction was

performed thrice.
Statistical analysis

All statistical analyses and graphical representations were

conducted using R version 4.3.1 except for RT-qPCR results

which were analyzed through GraphPad Prism version 9

(GraphPad Software Inc. San Diego, CA, USA). Statistical

significance was determined by a two-tailed test with a P value of

less than 0.05. *P < 0.05, **P < 0.01, ****P < 0.0001.
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Results

Establishment of WGCNA and detection of
key modules

Figure 1 illustrated the research design of this study. PRISMA

methodology was utilized for extensive identification of public

datasets (Supplementary Figure S1). To precisely identify the

central genes connected with the S. aureus infection phenotype, we

constructed a gene co-expression network adopting the WGCNA

algorithm. The results from hierarchical clustering analysis

demonstrated robust clustering among the samples, with no

significant outliers observed (Figure 2A). The trends in Scale

Independence and Mean Connectivity as functions of Soft

Threshold (power) are illustrated in Figure 2B. The construction of

the final scale-free network was depicted in Figure 2C, where the left

panel presented a histogram of network connectivity while the right

panel displayed a log-log plot corresponding to this histogram. A

high R² value of 0.88 indicated an approximate scale-free topology

(Figure 2C). A gene hierarchy clustering dendrogram was generated

following gene correlations, resulting in the identification of eleven

similar gene modules (Figure 2D). Branches of the dendrogram (the

modules) were grouped together based on the correlation of

eigengenes (Figure 2E). Interaction connections among the eleven

modules were analyzed, leading to the creation of a network heatmap

presented in Figure 2F. As portrayed in Figure 2G, there existed a

highest positive correlation between the blue module and S. aureus

infection, implying that this module may foster disease progression

related to S. aureus infection. Furthermore, Figure 2H illustrated that

expression levels of feature vector genes ME showed a strong

correlation with expressions within all genes comprising this

module; thus, expression values for characteristic genes can be

considered representative profiles for their respective modules.
FIGURE 1

Schematic presentation of the analysis process.
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Given that the blue module correlates positively with S. aureus

infection, its constituent genes were selected for subsequent KEGG

and GO analyses GO enrichment analysis revealed that genes within

blue modules were enriched in processes such as proteasome-

mediated Ubiquitin-dependent protein, catabolic process energy

derivation by oxidation of organic compounds, and cellular

respiration (Figure 2I). Likewise, KEGG analysis for genes in blue

modules was associated with Pathways related to neurodegeneration-

multiple diseases, Amyotrophic lateral sclerosis, Alzheimer disease,

Parkinson disease, and Chemical carcinogenesis-reactive oxygen

species (Figure 2J).
The diagnostic score of S. aureus
bloodstream infection constructed by
XGBoost exhibited the most superior
diagnostic capacity

The clinical characteristics of the two sample groups are

detailed in Supplementary Table S2. Human blood samples from

GSE33341 included 31 S. aureus infection samples and 43 control

samples; mouse blood samples from GSE33341 comprised 103 S.
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genes in the human and mice S. aureus infection groups facilitated

the identification of 63 DEGs. An intersection of these DEGs with

the 950 genes identified in the blue module via WGCNA yielded a

total of 38 overlapping genes (Figure 3A). We further employed

Boruta and LASSO algorithms to identify feature genes (Figures 3B,

C). Eventually, both algorithms pinpointed DRAM1, UPP1,

IL18RAP, CLEC4A, and PGLYRP1 as potential diagnostic

markers (Figures 3D, E).

To originate a Diagnostic Score for S. aureus bloodstream

infection utilizing these five identified genes, we applied XGBoost

alongside SVM-RFE and RF algorithms. In Figures 4E-H and

Figure 5, ROC curves derived from four datasets were presented

separately for XGBoost algorithm, SVM-RFE, and RF analyses;

notably, the XGBoost algorithm exhibited the highest mean AUC

values (mean AUC for XGBoost =0.954; mean AUC for SVM-RFE

=0.93275; mean AUC for RF =0.94625). Consequently, we

confirmed that the diagnostic model constructed by XGBoost

demonstrated exceptional diagnostic capability regarding S.

aureus bloodstream infection.

In addition, in the GSE33341 human and mouse groups, the

Diagnostic Score was not only highly expressed in the S. aureus
FIGURE 2

Identification of modules associated with S. aureus bloodstream infection using WGCNA. (a) Dendrogram of sample clustering; (b) Soft threshold
selection in the WGCNA. Scale independence and mean connectivity were used for soft threshold selection in WGCNA; (c) Distribution of nodes
with the degree of connection, (k) Correlation of log (k) and log [P(k)]; (d) Hierarchical cluster trees showing coexpression modules identified by
WGCNA; (e) Interaction relationship analysis of coexpressed genes. Different colors of the horizontal and vertical axes represent different modules.
The brightness line in the middle represents the degree of connectivity of different modules; (f) Hierarchical clustering dendrogram of module
eigengenes with color labels; (g) Module–trait relationships. Each cell contains the corresponding correlation and p-value. The table is color-coded
by correlation according to the color legend; (h) Expression heatmap of the blue module and feature vector gene histogram of the blue module; (i)
GO analysis of the enriched genes in the blue module; (j) The KEGG pathways of the enriched genes in the blue module.
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infection group (Figures 4A, B) but also demonstrated good

diagnostic efficacy between S. aureus and the control group

(Figures 4E, F). Besides, GSE65088 and GSE16129 were acquired

to validate the above findings. A significantly elevated Diagnostic

Score in the S. aureus group was observed (Figures 4C, D),

accompanied by high AUC values (Figures 4G, H), indicating

that the Diagnostic Score possessed considerable predictive power.
Assessment of immune cell infiltration

To evaluate the difference in immune cell infiltration between

the S. aureus infection group and the control group, we availed the

CIBERSORT algorithm to calculate the infiltration of 22 immune

cell types for human samples from GSE33341, while using

ImmuCellAI to analyze the infiltration of 36 immune cells for

mouse samples from GSE33341.

Boxplots were constructed to represent each sample based on

distinct subpopulation infiltrations The boxplots revealed

significant infiltration of monocytes, neutrophils, and M2

macrophages within both human and mouse samples from the S.

aureus group. In contrast, higher infiltration of CD4 naive T cells,

CD8 T cells, and Tregs was noted in both human and mouse control

groups (Figures 6A, D). For human samples from GSE33341, the

analysis implied that activated NK cells exhibited a strong positive

relevance with activated mast cells; nevertheless, CD4 naive T cells

displayed a notable negative association with neutrophils

(Figure 6B). Similarly, relationships among immune cells derived
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from mouse samples highlighted that CD4 T cells showed strong

positive correlations with both CD4 Tm cells as well as CD4 naive T

cells; conversely, macrophages exhibited a marked negative

association with T cell populations (Figure 6E).

By coincidence, we ascertained that the Diagnostic Score was

significantly negatively germane to CD8 T cells and CD4 naive T

cells in human samples from GSE33341 (Figure 6C), which was highly

consistent with the results in mouse samples from GSE33341

(Figure 6F). Meanwhile, the human data manifested a notable

negative correlation between the Diagnostic Score and resting NK

cells as well. In addition, our analysis reflected that the Diagnostic Score

for mouse samples was notably positively correlated with neutrophils,

macrophages, cDC1, granulocytes, andmonocytes. However, there was

a significant negative association between the Diagnostic Score and

various immune cell types including pDCs, Tgd cells, B cells, T cells,

Tregs, as well as both CD8 Tcm and naive CD8 T cells (Figure 6F).

The aforementioned analytical results suggest that the

Diagnostic Score was significantly negatively associated with both

CD8 T cells and CD4 naive T cells across human and mouse

samples. The development of immunological prophylaxis and

therapy targeting S. aureus represents an appealing objective. Our

findings endorsed a pragmatic application of the Diagnostic Score

for identifying potential patients at risk for S. aureus bloodstream

infection who may benefit from immunotherapy. The relationship

between these genes and immune infiltrating cells underscores their

potential role in the pathogenesis of S. aureus bloodstream infection

whi le offer ing new ins ights for ear ly detect ion and

treatment strategies.
FIGURE 3

XGBoost algorithm was employed to generate the Diagnostic Score for S. aureus bloodstream infection. (a) Venn plot of the intersected genes that
were obtained by DEGs in S. aureus bloodstream group and blue module; (b) Based on Boruta to screen biomarkers; (c) Based on LASSO regression
analysis to screen biomarkers; (d) Venn diagram showing the intersection of diagnostic markers obtained by the two algorithms; (e) In accordance
with their mean absolute values, SHAP beeswarm plot for the five features demonstrate the relationship between these features and S. aureus
bloodstream infection. Each point represents one patient. High values of the features were shown in red and low values were shown inblue. SHAP
analysis exhibits the average impact on model output.
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Validation for the expression difference
and diagnostic value of the diagnostic
score by a mouse model and patient
samples

To further validate the diagnostic utility of the Diagnostic Score,

we established a mouse model of S. aureus bloodstream infection

and collected blood samples for RNA-Seq analysis in our previous

study (46)and RT-qPCR experiments. The choice of the S. aureus

Newman strain was based on its characterization as a hypervirulent

strain that has been extensively utilized in various models involving

S. aureus infections. The results from RNA-Seq analysis

corroborated our previous findings (Figure 7A), with ROC curve

analyses indicating a high diagnostic value for the Diagnostic Score

(Figure 7D). Furthermore, RT-qPCR results proved that the

expression levels associated with the Diagnostic Score were

significantly elevated in the S. aureus Newman treatment group

compared to those in the control group (Figure 7B), thereby

reinforcing its diagnostic significance (Figure 7E). Most

importantly, the analysis of clinical samples collected by our team

confirmed that Diagnostic Score was significantly overexpressed in
Frontiers in Immunology 07
patients with S. aureus bloodstream infection (Figure 7C),

demonstrating high diagnostic value (Figure 7F).
Discussion

S. aureus is a prevalent bacterial pathogen responsible for

bloodstream infection, with an annual incidence ranging from 12

to 18 cases per 100,000 populations (47–49). Despite a decline in the

case fatality rate associated with S. aureus bloodstream infection

over the past three decades, this rate remains alarmingly high at

approximately 27% within three months post-infection (50–52). In

the realm of sepsis management, advanced machine-learning

approaches have been shown to significantly improve the

accuracy of short-term outcome predictions, such as 30-day

mortality rates, thereby underscoring their potential advantages

over traditional models (53). To provide more comprehensive

diagnostic information and optimize diagnostic precision, this

study harnessed machine-learning integration methods aimed at

optimizing predictive model presentation through the utilization of

multiple algorithms.
FIGURE 4

Performance of XGBoost evaluation on training and validation datasets. (a) Boxplot showed the expression of Diagnostic Score between the S.
aureus infection group and control group in GSE33341 human group by XGBoost; (b) Boxplot showed the expression of Diagnostic Score between
the S. aureus infection group and control group in GSE33341 mice group by XGBoost; (c) Boxplot showed the expression of Diagnostic Score
between the S. aureus infection group and control group in GSE65088 by XGBoost; (d) Boxplot showed the expression of Diagnostic Score between
the S. aureus infection group and control group in GSE16129 by XGBoost; (e) The ROC curve of the diagnostic efficacy verification of Diagnostic
Score between the S. aureus infection group and control group in GSE33341 human group by XGBoost; (f) The ROC curve of the diagnostic efficacy
verification of Diagnostic Score between the S. aureus infection group and control group in GSE33341 mice group by XGBoost; (g) The ROC curve
of the diagnostic efficacy verification of Diagnostic Score between the S. aureus infection group and control group in GSE65088 by XGBoost; (h)
The ROC curve of the diagnostic efficacy verification of Diagnostic Score between the S. aureus infection group and control group in GSE16129
by XGBoost.
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To accurately identify key genes associated with the S. aureus

infection phenotype, we constructed a gene co-expression network

adopting the WGCNA algorithm. By intersecting genes from the

blue module identified through WGCNA screening with up-

regulated DEGs in S. aureus infection samples, we obtained a

total of 38 candidate genes. Subsequently, two algorithms

including Boruta and LASSO regression analysis, were employed

to pinpoint DRAM1, UPP1, IL18RAP, CLEC4A, and PGLYRP1 as

potential diagnostic markers. Most importantly, we applied

XGBoost alongside SVM-RFE and RF algorithms to derive

Diagnostic Scores for S. aureus bloodstream infection based on

these five identified genes. Comparative analyses revealed that

XGBoost outperformed other models and exhibited exceptional

diagnostic capabilities for detecting S. aureus bloodstream infection.

To conclude, we designated the XGBoost algorithm as instrumental

in defining five genes as part of our proposed Diagnostic Score for S.

aureus bloodstream infection. In summary, the XGBoost Diagnostic

Score represents a novel approach to diagnosing S. aureus

bloodstream infection that holds considerable clinical promise.
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In recent years, many studies in the field of bacterial infection

immunology have focused on the five genes mentioned above. DNA

damage-regulated autophagy regulator 1 (DRAM1) is a stress-

induced regulator that regulates autophagy and cell death (54). A

study published in Nature suggested that DRAM1 was relevant to

interferon-induced expression signature in tuberculosis patients

(55). Vaart et al. confirmed that DRAM1 linked mycobacterial

recognition via TLR-MYD88 to autophagic defense (56). Uridine

phosphorylase 1 (UPP1) encodes uridine phosphorylase, a key

enzyme that regulates intracellular uridine and 2’-deoxyuridine

metabolism (57). Research conducted by Hamasaki et al. revealed

that UPP1 was upregulated in all three brain regions of sepsis-

associated encephalopathy samples (58). Moreover, Fan et al.

identified UPP1 as a notable diagnostic marker for pediatric

septic shock (59). Interleukin 18 receptor accessory protein

(IL18RAP) encodes the accessory subunit of the heterodimeric

receptor for interleukin 18 (IL18), a proinflammatory cytokine

involved in inducing cell-mediated immunity (60). This protein

enhances the IL18-binding activity of the IL18 receptor and plays a
FIGURE 5

Performance of SVM-RFE and RF models on training and validation datasets. (a) The ROC curve of the diagnostic efficacy verification of Diagnostic
Score between the S. aureus infection group and control group in GSE33341 human group by SVM-RFE; (b) The ROC curve of the diagnostic
efficacy verification of Diagnostic Score between the S. aureus infection group and control group in GSE33341 mice group by SVM-RFE; (c) The
ROC curve of the diagnostic efficacy verification of Diagnostic Score between the S. aureus infection group and control group in GSE65088 by
SVM-RFE; (d) The ROC curve of the diagnostic efficacy verification of Diagnostic Score between the S. aureus infection group and control group in
GSE16129 by SVM-RFE; (e) The ROC curve of the diagnostic efficacy verification of Diagnostic Score between the S. aureus infection group and
control group in GSE33341 human group by RF; (f) The ROC curve of the diagnostic efficacy verification of Diagnostic Score between the S. aureus
infection group and control group in GSE33341 mice group by RF; (g) The ROC curve of the diagnostic efficacy verification of Diagnostic Score
between the S. aureus infection group and control group in GSE65088 by RF; (h) The ROC curve of the diagnostic efficacy verification of Diagnostic
Score between the S. aureus infection group and control group in GSE16129 by RF.
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role in signaling by IL18 (61). Chen et al. disclosed that IL18RAP

might be closely linked with Escherichia coli (E. coli)-induced sepsis

(62). A study conducted by Vaher pointed out that the NLRP1-

dependent inflammasome could be activated in the skin by S.

aureus, which may lead to increased levels of the IL-18 and IL-1b

cytokines in the skin and thereby contribute to the development of

atopic dermatitis, especially in more susceptible individuals with

respective sequence variants in the IL18RAP gene (63). Apart from

that, C-type lectin domain family 4 member A (CLEC4A) encodes a

member of the C-type lectin/C-type lectin-like domain (CTL/

CTLD) superfamily. Members of this family share a common

protein fold and have diverse functions, such as cell adhesion,

cell-cell signaling, glycoprotein turnover, and roles in inflammation

and immune response (64). Zhang et al. identified CLEC4A as a

potential prognostic marker for Chronic lymphocytic leukemia

(65). The research of Uto et al. supported that CLEC4A was a

potential target for immune checkpoint blockade in tumor
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immunotherapy (64). Peptidoglycan recognition protein 1

(PGLYRP1) Enables several functions, including Hsp70 protein

binding activity; peptidoglycan binding activity; and peptidoglycan

immune receptor activity (66). Involved in antimicrobial humoral

immune response mediated by antimicrobial peptide and defense

response to Gram-positive bacterium (67, 68). Chen et al.

confirmed that the expression of PGLYRP1 protein in S. aureus-

induced mastitis tissues was significantly higher than that in healthy

tissues (69). Gong et al. identified PGLYRP1 as critical in sepsis and

sepsis-related Acute respiratory distress syndrome (ARDS) by

bioinformatic analysis (70). Zhang et al. found that PGLYRP1

was upregulated, which may result in dysfunction of immune

response in sepsis (71). The above results suggested the

importance of these five genes in the field of bacterial infection.

Similarly, the high expression levels associated with the Diagnostic

Score constructed by these five genes were validated in our mouse

bloodstream infection model and clinical patient samples,
FIGURE 6

Compared and correlated in immune cell infiltration. (a) Boxplot showed the distinct fractions compared to each immune cell between the S. aureus
and control group in GSE33341 human samples. (b) Analysis of correlations among 22 immune cell subtypes in GSE33341 human samples. The
horizontal and vertical axes represented the names of immune cells, and the values stood for the correlation coefficients between immune cells.
Red denoted a positive correlation, while blue denoted a negative correlation. (c) Correlation between Diagnostic Score and immune cells in
GSE33341 human samples. (d) Boxplot showed the distinct fractions compared to each immune cell between the S. aureus and control group in
GSE33341 mouse samples. (e) Analysis of correlations among 36 immune cell subtypes in GSE33341 mouse samples. The horizontal and vertical
axes represented the names of immune cells, and the values stood for the correlation coefficients between immune cells. Red denoted a positive
correlation, while blue denoted a negative correlation. (f) Correlation between Diagnostic Score and immune cells in GSE33341 mouse samples.
*P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001, ns, not significant.
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demonstrating that these five genes have good diagnostic value for

S. aureus bloodstream infection.

Neutrophils are key players in the host defense against S. aureus.

These cells circulate in the bloodstream and are recruited to tissues by

locally produced chemoattractants following S. aureus infection (72).

Although CD4 T naive cells do not directly participate in bacterial

killing, they can promote S. aureus clearance by increasing the

recruitment of phagocytic cells to the site of infection and by

augmenting their antimicrobial activity via the production of

cytokines (73, 74). During S. aureus skin infections, the bacterium

stimulates the proliferation of CD8+ cytotoxic T lymphocytes (CTLs)

via activation of LN-resident dendritic cells (75). Immune infiltration

analysis indicated significant alterations in the immune

microenvironment between S. aureus and healthy groups. Notably,

the Diagnostic Score was discovered to be significantly negatively

correlated with both CD8 T cells and naive CD4 T cells across human

andmouse samples. Therefore, the Diagnostic Score had the potential
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as a biomarker for predicting responses to immunotherapy,

facilitating personalized treatment strategies that mitigate

unnecessary burdens on patients due to inappropriate therapies. In

spite of that, this study had certain limitations. Although we have

collected clinical samples from patients with S. aureus bloodstream

infection for verification, the number of samples was not large

enough, and more samples need to be collected for validation.

Furthermore, animal and cellular models will be established to

investigate the molecular mechanisms underlying S. aureus induced

bloodstream infection in greater depth.

In summary, this study thoroughly investigated predictive

diagnostics for S. aureus bloodstream infection using an

integrated machine-learning approach. The findings accentuated

that the Diagnostic Score derived from the XGBoost algorithm,

incorporating five genes (DRAM1, UPP1, IL18RAP, CLEC4A, and

PGLYRP1), showed promising diagnostic efficiency for

bloodstream infection caused by S. aureus. These findings
FIGURE 7

Validation for the diagnostic value of the Diagnostic Score by a mouse model and patient samples. (a) Boxplot showed the expression of Diagnostic
Score between the S. aureus infection group and control group in RNAseq analysis by XGBoost; (b) Boxplot showed the expression of Diagnostic
Score between the S. aureus infection group and control group in RT-qPCR results from mouse samples by XGBoost; (c) Boxplot showed the
expression of Diagnostic Score between the S. aureus infection group and control group in RT-qPCR results from patients samples by XGBoost; (d)
The ROC curve of the diagnostic efficacy verification of Diagnostic Score between the S. aureus infection group and control group in RNAseq
analysis by XGBoost. (e) The ROC curve of the diagnostic efficacy verification of Diagnostic Score between the S. aureus infection group and control
group in RT-qPCR results from mouse samples by XGBoost; (f) The ROC curve of the diagnostic efficacy verification of Diagnostic Score between
the S. aureus infection group and control group in RT-qPCR results from patients samples by XGBoost.
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promise novel avenues for diagnosing and treating S. aureus

bloodstream infection while contributing significantly to early

diagnosis and intervention efforts aimed at improving patient

outcomes through targeted therapeutic approaches.
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