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Introduction: A significant challenge in treating non-small cell lung cancer

(NSCLC) is its inherent resistance to radiation therapy, leading to poor patient

prognosis. This study aimed to identify key genes influencing radiotherapy

resistance in NSCLC through comprehensive bioinformatics analysis.

Methods: A total of 103 common genes were identified, enriched in critical

biological pathways such as coagulation, complement activation, growth factor

activity, and cytokine signaling. Using advanced machine learning techniques like

SVM-RFE, LASSO regression, and random forest algorithms, four pivotal genes—

TGFBI, FAS, PTK6, and FA2H—were identified.

Results: TGFBI showed the strongest correlation with NSCLC prognosis as

indicated by a diagnostic nomogram. Additionally, significant differences in

immune cell infiltration, particularly involving naive B cells and M0

macrophages, were noted between high-risk and low-risk patients.

Discussion: The study suggests that targeting pathways regulating macrophage

polarization or enhancing naive B cell activation could play a crucial role in

addressing radiotherapy resistance. The findings highlight the potential

therapeutic targets, thereby advancing the understanding of the molecular

mechanisms underlying radiotherapy resistance in NSCLC, with implications

for improving patient management and outcomes.
KEYWORDS

NSCLC, radiotherapy resistance, bioinformatic analysis, bioinformatics analysis,
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Highlights
Fron
• Identified 103 genes enriched in NSCLC radiotherapy

resistance pathways. Using machine learning, pinpointed

four key genes (TGFBI, FAS, PTK6, FA2H), with TGFBI

highly correlated with prognosis.

• Found significant immune cell infiltration differences

between high- and low-risk NSCLC patients, hinting at

new therapeutic strategies involving macrophage

polarization and B cell activation.

• Developed a prognostic model with high diagnostic

accuracy based on identified genes , advancing

understanding of radiotherapy resistance mechanisms and

potentially improving patient outcomes.
Introduction

NSCLC is still the most common cause of cancer-related

mortality globally, accounting for around 85% of all occurrences

of lung cancer (1).

Lung cancer caused over 1.8 million deaths worldwide in 2020,

highlighting its aggressive nature and treatment challenges. Despite

advancements in surgery, chemotherapy, and targeted therapies (2),

the five-year survival rate for NSCLC patients remains low. This is

mostly because to late-stage diagnosis and the emergence of

treatment resistance (3). Current diagnostic methods, including

imaging and histopathological examination, often fail to detect

early-stage disease, limiting the effectiveness of potentially

curative interventions (4).

The current standard treatment strategies mainly include: for

early-stage NSCLC patients, surgery is the preferred treatment

approach (5), while for patients with locally advanced or

inoperable disease, radiation therapy and concurrent or sequential

chemotherapy are the conventional regimens (6–8). In recent years,

significant progress has been made in molecular targeted therapy,

with targeted inhibitors for driver gene mutations such as EGFR,

ALK, and ROS1 (e.g., EGFR-TKI, ALK-TKI) becoming standard

treatment options for advanced NSCLC (9, 10). Additionally,

immune checkpoint inhibitors (e.g., PD-1/PD-L1 inhibitors),

either alone or in combination, have also demonstrated good

efficacy in advanced NSCLC without driver gene mutations (11).

However, despite the improvements in survival for patients, the

emergence of resistance and the variability in treatment response

among individuals remain major clinical challenges (12, 13).

Radiotherapy is essential for managing NSCLC, especially in

patients with inoperable tumors or those unable to undergo surgery

(14). However, its effectiveness is often reduced by radioresistance,

where cancer cells adapt to resist radiation’s cytotoxic effects (15).

This resistance involves complex molecular mechanisms, including

changes in DNA repair, cell cycle regulation, apoptosis, and the

tumor microenvironment (6). Identifying genetic factors of

radioresistance is vital for improving therapeutic responses and

patient outcomes. Research indicates that specific genes and

signaling pathways are crucial in radioresistance across various
tiers in Immunology 02
cancers. For example, increased epidermal growth factor receptor

(EGFR) expression is associated with radioresistance in head and

neck squamous cell carcinoma, suggesting that EGFR inhibition

could enhance radiation therapy effectiveness (16). Similarly,

radioresistance in breast cancer is linked to alterations in the

PI3K/AKT pathway, with inhibitors being investigated as

potential radiosensitizers (17). These findings highlight the

benefits of targeting molecular pathways to overcome

radioresistance and improve radiotherapy efficacy in NSCLC.

Our methodology combined Support vector machine-recursive

feature elimination(SVM-RFE), Gene set variation analysis(LASSO)

regression, and random forest algorithms to identify key genes

associated with radioresistance. We developed diagnostic

nomograms and predictive models to assess the clinical relevance

of these genes. By elucidating the genetic basis of radioresistance, we

aim to advance targeted treatment strategies, potentially improving

radiotherapy efficacy and patient survival.
Materials and methods

Data sources

This study utilized publicly accessible, cost-free data from the

Gene Expression Omnibus (GEO) and The Cancer Genome Atlas

Program (TCGA). Whole genome expression profiles for NSCLC

were retrieved from these databases using the R packages

‘GEOquery’ and ‘TCGAbiolinks.’ The dataset GSE197236,derived

from the GPL26963 Agilent-085982 Arraystar human lncRNA V5

microarray, includes three control samples and three radiation-

resistant samples from A549 lung adenocarcinoma cell lines.

Additionally, the dataset GSE253564, using the Illumina NovaSeq

6000 platform (GPL24676 for Homo sapiens), comprises 32

samples. This study specifically examines the Arm1 group, with

10 lung adenocarcinoma samples treated with PD-L1, and the

Arm2 group, with 10 samples receiving a combination of PD-L1

and radiotherapy. The datasets GSE197236 and GSE253564 were

used to identify genes linked to radiotherapy resistance in NSCLC.

The TCGA-LUAD dataset consists of 600 samples, including 539

from primary tumors, 2 from recurrent tumors, and 59 from nearby

normal tissues. However, the two recurrent tumor samples were not

included in this analysis. The TCGA-LUAD dataset was utilized for

patient classification and prognostic assessment based on genes

associated with radiotherapy resistance. The ComBat function from

the R package ‘sva’ was applied to correct dose effects caused by

non-biotechnological biases (18). The adjustment effect was

managed using principal component analysis (PCA).In this study,

we followed the data access policies of each database and assessed

the impact of rectification using PCA.
Raw data processing

GSE253564 provides normalized data (FPKM) on GEO,

making it unsuitable for differential analysis.This research
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obtained raw data from the SRA database and aligned the

sequencing information to the GRCh38 reference genome using

the STAR alignment tool. (v2.7.11b), obtaining gene expression

da ta tab l e s us ing f ea tu reCount and the ENSEMBL

Homo_sapiens.GRCh38.112.chr.gtf annotation file.
Differential expression analysis

This study utilized the limma package to analyze GSE197236

chip data, identifying differentially expressed genes based on criteria

of p<0.05 and |log2 Fold Change|>1.GSE253564 is second-

generation sequencing data, and this study used DESeq2 for

differential analysis, with the same criteria for identifying

differentially expressed genes.
GO/KEGG enrichment analysis

The GeneOntology (GO) enrichment analysis encompasses three

categories: biological process (BP), molecular function (MF), and

cellular component (CC) (19). Metabolic pathways were identified

using the Kyoto Encyclopedia of Genes and Genomes (KEGG) (20).

The R package ‘clusterProfiler’ (version 4.2.2) was employed for both

GO and KEGG analyses, with significance set at p< 0.05 (21).
GSEA

Gene Set Enrichment Analysis (GSEA) is a widely utilized

computational technique in bioinformatics for uncovering

detailed insights in genomic expression data (22). To delve deeper

into how key genes influence NSCLC, we conducted a single-gene

GSEA analysis. We computed log2Fold Change values for other

genes relative to the expression levels of key genes. Using the R

package ‘clusterProfiler’ (version 4.2.2), we ranked all genes by their

log2Fold Change values and performed 1,000 permutation analyses

on gene sets. The c2.cp.kegg.v7.5.1.symbols collection from the

Molecular Signatures Database (MSigDB) was used as the reference

gene set (22–24). Gene sets with an adjusted p-value<0.05 were

deemed significantly enriched.
GSVA

Gene Set Variation Analysis (GSVA) is an unsupervised, non-

parametric approach for evaluating gene set enrichment, facilitating the

investigation of links between biological pathways and gene features

from expression data. To examine functional differences between high-

risk and low-risk groups, we used the ‘c2.cp.kegg.v7.5.1.symbols’ gene

set from the MSigDB database (http://software.broadinstitute.org/gsea/

msigdb) as a reference. GSVA was performed using the R package

‘GSVA’ (version 1.42.0), and results were visualized with the R

package ‘pheatmap’ (version 1.0.12). We utilized 50 hallmark gene

sets from the MSigDB database as reference points. The Sample
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Gene Set Enrichment Analysis(ssGSEA) function from the GSVA

package calculated GSVA scores for each gene set across various

samples. The limma software analyzed differences in GSVA scores

between high-risk and low-risk groups.
Construction of diagnostic nomogram

A nomogram model for diagnosing non-small cell lung cancer

was developed using the R package rms, incorporating risk scores

derived from key gene expression levels and pertinent clinical data.

The cumulative risk score aggregates individual gene risk scores to

offer a comprehensive risk assessment. The nomogram’s diagnostic

effectiveness for NSCLC was assessed through calibration.
Receiver operating characteristic curve

The receiver operating characteristic (ROC) curve is an essential

tool for assessing diagnostic test performance, illustrating the

relationship between sensitivity and specificity as continuous

variables. The area under the curve (AUC), derived from sensitivity

and specificity measures, is a widely used parameter in graphical

analysis. In this case, the R package “pROC” was used to construct

ROC curves, allowing the estimation of the AUC for various screening

feature genes and assessing their diagnostic importance (25). Typically,

AUC values vary between 0.5 and 1, with an AUC value approaching 1

signifying outstanding diagnostic accuracy.
Screening key genes

SVM-RFE is a sophisticated machine learning technique

focused on training feature subsets from different categories to

enhance the feature set and pinpoint the most predictive variables.

The “glmnet” package in R was employed for LASSO regression,

facilitating the computation and selection of linear models while

retaining significant variables. For LASSO classification, we utilized

binomial distribution variables, where the model was developed by

choosing the minimum error, despite using only 10 cross-

validation variables.

The “RandomForest” function was employed for random forest

analysis, with the mtry parameter set to minimize error and

consistent image values chosen for the ntree parameter. The

analysis identified the top 50 crucial genes based on mean

decrease accuracy (MDA) and mean decrease Gini (MDG) of

feature weights. Key genes were determined by cross-referencing

those identified through LASSO regression, SVM-RFE, and random

forest methods.
Building the ceRNA network

We utilized miRTarBase, starbase2.0, and miRDB databases to

perform reverse prediction of microRNAs, identifying long non-
frontiersin.org
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coding RNAs (lncRNAs) that share microRNAs with key genes,

thereby aiding in the construction of the ceRNA network.
RBP-mRNA regulatory network

This research employed the StarBasehttps: We utilized the

starbase.sysu.edu.cn platform to explore non-coding RNA

(ncRNA) relationships by analyzing CLIP-seq, degradome-seq,

and RNA-RNA interaction data. This analysis focused on the

expression levels of mRNA and RNA-binding proteins (RBPs).In

a disease context, we applied specific thresholds (p<0.05,

lusterNum≥5, clipExpNum≥5) to identify significant mRNA-RBP

pairs. Subsequently, we constructed an RBP-mRNA network using

Cytoscape to visualize and further investigate these interactions.
TF-mRNA regulatory network

The hTFtarget database provides an extensive collection of

transcription factor(TF) target regulations, compiles from a wide

range of human TF ChIP-Seq data, which includes 7,190

experimental samples from 659 transcription factors (http://

bioinfo.life.hust.edu.cn/hTFtarget#!).This data encompasses 569

conditions, including 399 cell lines,129 tissue or cell types, and

141 treatment methods.
Building prognostic models

To evaluate the prognostic importance of phenotype-related

differentially expressed genes(DEGs) on overall survival (OS)

within tumor cohort. Genes with p<0.05 were considered to be

highly associated with OS and their selection for further research.

We randomly assigned tumor samples with clinical information to

two sets in a 7:3 ratio:A training set of 279 samples and a validation

set of 141 samples were utilized. The LASSO Cox regression model,

implemented via the ‘glmnet’ R package, was employed to refine

candidate genes and develop the prognostic model (26). The penalty

parameter (l) was determined using the minimal criterion, and the

risk score was calculated using the derived equation.

riskScore =o
n

i=1
Coef (genei) � Expression(genei)

Coef (genei),  Expression(genei)

The training set samples were divided into low-risk and high-

risk groups based on the average risk score. The prognostic

significance was evaluated using Kaplan-Meier survival curves

and statistical significance was determined with a log-rank test.

The prognostic model’s performance was assessed via the ROC

curve, with AUC values ranging from 0.5 to 1, where values closer to

1 indicate greater accuracy. The validation set underwent the same

processing to confirm the model’s predictive effectiveness.
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Immune infiltration analysis

Sample Gene Set Enrichment Analysis (ssGSEA) extends Gene

Set Enrichment Analysis (GSEA) by computing an enrichment

score for each sample and gene set (27). This score reflects the level

of coordinated expression changes, either upregulation or

downregulation, within a gene set for a specific sample. Unlike

traditional GSEA, which evaluates enrichment scores for groups of

samples and gene sets, ssGSEA provides scores for individual

sample and gene set pairs. This study utilized immune cell

marker gene expression data sourced from the Tumor Immune

System Interaction Database (TISIDB) (28).

The dataset encompasses a range of immune cell types,

including various subtypes of CD8 and CD4 T cells, T helper

cells, B cells, natural killer cells, dendritic cells, and other immune

cells such as macrophages, eosinophils, mast cells, monocytes, and

neutrophils. We analyzed gene expression profiles to determine the

relative enrichment scores for these immune cell types. Using the R

package ‘ggplot2’,we visualized differences in immune cell

infiltration between NSCLC samples categorized into high and

low groups (29). Additionally, rank-sum tests were performed to

compare mutation frequencies between high-risk and low-risk

groups, with results visualized using the maftools package.
Somatic mutation analysis

Utilizing the “maftools” R package, we examined mutation data

to compare tumor mutation burden between high-risk and low-risk

groups (30), starting with the calculation of total mutation counts

across samples. Next, we identified genes with mutation counts

greater than 40.To compare the mutation frequencies we applied

rank-sum tests and the maftools package to visualize the data.
Statistical analysis

The study utilized R software v4.1.2 for statistical analysis.

Spearman correlation tests assessed relationships between two

variables. The Wilcoxon test compared differences between two

groups, and the Kruskal-Wallis test evaluated variations across three

or more groups. Statistical significance was determined by a two-sided

p-value< 0.05.
Results

The analysis flowchart of this study is shown in Figure 1.
Screening for radiotherapy tolerance genes

To identify genes associated with radiotherapy tolerance, we

conducted a differential analysis using GSE197236 (radiation v.s.
frontiersin.org
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control) (Supplementary Figures 1A, B and Supplementary Table

S1), using GSE253564 (anti PD-L1 + radiation therapy v.s. anti PD-

L1 therapy).Using a threshold of p<0.05 and |log2 Fold Change| ≥ 1,

we identified 2,188 DEGs, comprising 112 upregulated and 2,076

downregulated genes. To illustrate our findings, we generated a

volcano plot (Supplementary Figure 2A) and a heatmap showcasing

the top 20 DEGs between the two groups (Supplementary

Figure 2B). We subsequently identified the overlap between the

two sets of DEGs mentioned earlier, resulting in a total of 103 genes

that are associated with radiotherapy resistance in NSCLC

(Figure 2A; Supplementary Table S3). The enrichment analysis of

the selected differential genes showed significant associations with

pathways involved in DNA damage, cytokines, and p53

(Supplementary Figure 1C). GO (Supplementary Table S4) and

KEGG enrichment analyses (Supplementary Table S5)

demonstrated a notable enrichment of gene sets associated with

the process of blood coagulation. The processes of fibrin clot

formation, complement activation, and the activities of growth

factors and cytokines(including cytokine-cytokine receptor

interaction and chemokine signaling) suggest potential roles in

mediating radiotherapy resistance (Figure 2B).
Machine learning algorithms for selecting
key genes

We employed three machine learning algorithms:LASSO, random

forest, and SVM-RFE to screen the intersection of 103 genes

(Supplementary Figure 3), ultimately identifying a total of 4 key

genes (Supplementary Table S4). The enrichment analysis of the four

key genes indicated significant enrichment in gene sets associated with

tissue development, cellular component organization or biogenesis,
Frontiers in Immunology 05
positive regulation of protein phosphorylation and phosphorus

metabolic processes, nuclear body, organelle subcompartment, trans-

Golgi network, ruffle, Golgi apparatus subcompartment,identical

protein binding, integrin binding, extracellular matrix structural

constituent, kinase binding, transmembrane signaling receptor

activity, Platinum drug resistance, p53 signaling pathway,

Necroptosis, MAPK signaling pathway, and Apoptosis

(Supplementary Figure 3F).
Constructing a diagnostic nomogram
based on key genes

Based on key genes, we developed a diagnostic nomogram, as

illustrated in Figure 3A. This nomogram indicates that

transforming growth factor beta-induced(TGFBI) exhibits the

strongest correlation with the prognosis of NSCLC, followed

closely by Fatty acid synthase(FAS).To assess the accuracy of our

diagnostic nomogram, we utilized calibration curves, shown in

Figure 3B. The results demonstrated that the predicted values

from the nomogram closely aligned with the actual observed

values, indicating a robust predictive capability. Additionally, we

conducted ROC analysis on the key genes, revealing that all four key

genes displayed strong classification ability, with an AUC>0.7, as

presented in Figures 3C–F.
Constructing the regulatory network of key
genes

To investigate the molecular mechanisms underlying key genes

in NSCLC we created an mRNA-miRNA-lncRNA regulation
FIGURE 1

Analysis flowchart.
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network (Supplementary Figure 4A and Supplementary Table S7).

Using the Starbase database, we screened for miRNAs and lncRNAs

that regulate FAS,TGFB1, and Fatty acid 2-hydroxylation (FA2H).

The StarBase database was employed to identify and obtain

mRNA/RBP (RNA binding protein) pairs of four key genes. An

RBP-mRNA network (Supplementary Figure 5A, Supplementary

Table S9) was built from the interactions among target genes

provided by the online dataset. To investigate the transcriptional

regulatory factors affecting the key genes, we constructed a

regulatory factor network using the TRRUST database

(Supplementary Figure 5B, Supplementary Table S8). The results

showed that FAS is regulated the most, and SP1 can simultaneously

regulate both FAS and PTK6.

We used DGIdb to screen potential drugs that regulate key gene

activities (Supplementary Figure 6 and Supplementary Table S10).

The results showed that EDELFOSINE, VB−111,IUPHAR.

LIGAND:2011 , IUPHAR.LIGAND:2025 , and IUPHAR.

LIGAND:2006 are potential target drugs for FAS.
Frontiers in Immunology 06
Building a prognostic model

Utilizing the intersecting genes and clinical data obtained from

TCGA-LUAD, we initially divided the samples into training and

testing groups at 7:3 ratio. We employed univariate Cox regression

analysis to identify prognostic-related genes from the intersecting

genes (Supplementary Table S11) and further refined this selection

using LASSO regression (Figures 4A, B; Supplementary Table

S12).We assessed ach individual sample’s risk values and applied

the surv_cutpoint method to find the threshold that distinguishes

high-risk from low-risk groups. This threshold categorized samples

into high- and low-risk groups. Survival analysis indicated a notable

disparity in survival outcomes between the high-risk and low-risk

groups, demonstrating that individuals in the high-risk group

experienced significantly shorter survival times compared to those

in the low-risk group (Figures 4C–F). We proceeded to plot the

ROC curves for both groups (Figure 4G), which indicated that our

model demonstrated good classification ability for the data, with an
FIGURE 2

Screening of radiotherapy tolerance-related genes. (A). Intersection of differentially expressed genes from two datasets. (B). GO/KEGG
enrichment analysis.
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AUC greater than 0.6, suggesting a certain predictive value for

patient prognosis. Survival analysis indicated notable differences in

outcomes between high-and low-risk groups, with the high-risk

group exhibiting a significantly shorter median survival time.(Refer

to Figures 4E, F).

Additionally, we generated the risk curves, survival status, and

created heatmaps illustrating the expression levels (Supplementary

Figures 7A–F). We produced a risk curve, assessed survival status,

and generated a heatmap to illustrate the expression levels of

prognosis-related genes in high- and low-risk group.
Frontiers in Immunology 07
Immune infiltration analysis

To investigate the role of immune cells in tumor development, we

analyzed the infiltration levels of 28 immune cell types in high- and

low-risk groups. The analysis revealed significant differences in naive B

cells, M0 macrophages, activated and quiescent mast cells, monocytes,

and both activated and dormant CD4+memory T cells (Figures 5A, B).

The correlation analysis identified a statistically significant positive

association between naive B cells and plasma cells, resting mast cells

and activated NK cells, and resting CD4 memory T cells and
FIGURE 3

Construction of diagnostic nomograms. (A) Key gene diagnostic nomogram. (B) Calibration curve of the diagnostic nomogram. (C) ROC curve of
FA2H. (D) ROC curve of FAS. (E) ROC curve of PTK6. (F) ROC curve of TGFB1.
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monocytes (Figure 5C). Conversely, a significant negative relationship

was observed between M2 macrophages and plasma cells infiltration

levels, as well as between activated dendritic cells andM1macrophages.

(Figure 5C). Analysis of gene expression levels related to prognosis

(Figure 5D) revealed that only TGFBI showed a statistically significant

difference, with higher expression in the low-risk group.

We conducted a correlation analysis between the expression

levels of prognosis-related genes and immune cell infiltration. Since

only T cells CD4 memory resting, Mast cells resting, B cells naïve,
Frontiers in Immunology 08
Macrophage M0, Mast cells activated, and Monocytes indicated

notable variations in two groups, we showed the top 6 strongest

correlations genes with prognosis-related genes in the scatter plots.

The infiltration levels of FAS was highly correlated with T cells CD4

memory resting, Monocytes, and Mast cells resting, and showed a

negative correlation with B cells naïve (Supplementary Figures 8A,

C ,D, F).Furthermore, there existed a negative correlation between

the infiltration level of naïve B lymphocytes and TGFBI, whereas a

positive connection with FA2H (Supplementary Figures 8B, E).
FIGURE 4

Construction of the prognostic model. (A) Variable path diagram of LASSO regression. (B) LASSO regression cross-validation graph. (C) Training set
risk curve. (D) Training set survival status. (E) Heatmap of prognostic-related gene expression levels of the training group. (F) Survival analysis of the
test group. (G) ROC curve of the training group.
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GSEA and GSVA

GSEA and GSVA were utilized to examine expression

differences in various pathways between high and low-risk

groups. The GSEA results revealed that the low-risk group had

considerably higher levels in the Pentose Phosphate and

Proteasome Pathway (Supplementary Figures 9A, B and

Supplementary Table S13). In contrast, the high-risk group

showed significant enrichment in the Phosphatidylinositol

signaling system and vascular smooth muscle contraction

(Supplementary Figures 9C, D and Supplementary Table S13).

GSVA analysis revealed significant enrichment of the

K EGG _GNRH_ S I GNAL ING _ PATHWAY , K EGG_

ALDOSTERONE_REGULATED_SODIUM_REABSORPTION,

and KEGG_VASCULAR_SMOOTH_MUSCLE_CONTRACTION

pathways in the high-risk group.

The pa thway s KEGG_FOLATE_BIOSYNTHESIS ,

KEGG_DRUG_METABOLISM_OTHER_ENZYMES,and

KEGG_GLUTATHIONE_METABOLISM were significantly

enriched in the low-risk group (Figure 6A; Supplementary Table

S14). Furthermore, mutation burden analysis revealed a higher

mutation load in the low-risk group compared to the high-risk
Frontiers in Immunology 09
group (Figure 6B). Immune checkpoint analysis showed significant

overexpression of CD24, CD28, CTLA4, and TIGIT in the high-risk

group (Figure 6C).
Diagnostic nomogram

Utilizing univariate and multivariate Cox regression models, we

examined the relationship between survival outcomes and clinical data.

The results revealed significant associations of Risk, Stage N, and

Oncogene activity with survival status. We then developed a diagnostic

nomogram incorporating these three clinical variables and validated it

using ROC curves. The findings demonstrated that the nomogram

possessed predictive capability (AUC > 0.6) (Supplementary Figure 10).
Discussion

NSCLC is the most prevalent and deadly form of lung cancer

(2), posing a significant public health threat due to its high mortality

rate and poor prognosis at advanced stages (4, 31). Recent progress

in molecular biology and genetics has identified key genetic
frontiersin.or
FIGURE 5

Immune infiltration analysis. (A) Proportion of immune cells in different samples. (B) Box plot of immune cell infiltration levels between high and
low-risk group. (C) Box plot of immune cell infiltration levels. (D) Box plot of the expression levels of prognostic-related genes in high and low-risk
group. The asterisk represents the P value: ****p<0.0001, ***p<0.001, **p<0.01, *p<0.05. ns, no significance.
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mutations and pathways critical to NSCLC development, enhancing

our understanding of its causes (17, 32). These discoveries have

facilitated targeted therapies and personalized treatments, which

show promise in improving survival rates and reducing disease

progression (6). Moreover, combining radiotherapy and

immunotherapy with conventional treatments has shown

potential in overcoming therapeutic resistance and enhancing

NSCLC management efficacy (33). This study seeks to identify

genes involved in radiation therapy resistance by analyzing

radiation-resistant related genes in NSCLC. Through this

research, we hope to provide new insights into the mechanisms of

radiotherapy resistance in NSCLC and to identify potential

biomarkers or therapeutic targets for overcoming radiotherapy

resistance in clinical practice.

Through differential analysis of the GSE197236 and GSE253564

datasets, We managed to identify 103 genes linked to radiotherapy

tolerance in NSCLC, marking a significant achievement in our

screening process. Our analysis of these genes revealed important

connections to DNA damage response mechanisms, cytokine
Frontiers in Immunology 10
signaling, and pathways related to the p53 tumor suppressor

protein. The discovery indicates that these pathways could be of

pivotal importance in determining the level of tolerance to

radiotherapy. The role of DNA damage repair mechanisms in

enabling radiotherapy tolerance has been thoroughly investigated.

Radiotherapy works by inducing DNA double-strand breaks in

cancer cells, and cells that exhibit tolerance may withstand this

damage by bolstering their DNA repair capabilities. The role of

DNA damage repair mechanisms in facilitating radiotherapy

resistance has been extensively studied, Radiotherapy works by

causing DNA double-strand breaks in cancer cells, and those cells

that demonstrate tolerance may endure this damage by enhancing

their DNA repair processes (34). Moreover, the role of cytokines in

the tumor microenvironment should not be ignored, and they can

affect the effect of radiotherapy by modulating the immune

response and the inflammatory response (35, 36). As the

important regulator of cell cycle regulation and apoptosis, the

specific mechanism of the p53 Elevated TGFBI expression is

linked to poorer outcomes for patients. Additionally, it also
FIGURE 6

GSVA analysis of high and low-risk groups. (A) The top 20 pathways. (B) Analysis of tumor mutation burden. (C) Expression levels of immune
checkpoints. The asterisk represents the P value: ****p<0.0001, ***p<0.001, **p<0.01, *p<0.05.
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strengthens their resilience against chemotherapy. Focus on

understanding the detailed molecular mechanisms behind these

pathways, offering hope for the discovery of new therapeutic targets.

TGFBI, transforming growth factor beta-induced, is a protein

linked to various types of cancer due to its role in the ECM and its

interaction with integrins. This protein may also affect how tumors

respond to radiotherapy by altering the tumor microenvironment.

TGFBI significantly influences tumor progression and dissemination

in NSCLC (37) and is markedly overexpressed in various cancers,

notably glioblastoma multiforme (GBM), where it is associated with

poorer patient outcomes and increased chemotherapy resistance (38).

In esophageal squamous cell carcinoma (ESCC), elevated TGFBI

expression correlates with a higher risk of hematogenous relapse and

adverse patient outcomes, indicating its potential as a therapeutic

target (39). In head and neck squamous cell carcinoma (HNSCC),

TGFBI significantly influences cancer stem cell traits and epithelial-

mesenchymal transition (EMT), highlighting its role in tumor

aggressiveness and metastasis potential (40). These findings align

with observations that TGFBI enhances cell proliferation, migration,

and invasion in various cancer cell lines, such as lung cancer (41). The

construction of the diagnostic nomogram shows that TGFBI has the

highest correlation with the prognosis of NSCLC. Therefore, targeting

TGFBI could be a promising strategy for overcoming radiotherapy

resistance and improving the prognosis of NSCLC patients.

FAS, an essential enzyme involved in the synthesis of fatty acids,

has emerged as a significant player in cancer metabolism and the

proliferation of tumors. Elevated FAS levels are observed in various

cancers, significantly influencing cancer cell metabolism and

supporting their growth and survival in nutrient-poor conditions

(42). Pharmacological inhibition of FAS shows promise in

preclinical models by selectively inducing apoptosis in cancer cells

dependent on FAS (43). FAS is also associated with chemotherapy

resistance, underscoring its potential in targeting tumor metabolic

vulnerabilities (44). Future research should focus on developing

selective FAS inhibitors and combining them with current therapies

to improve treatment efficacy. As a key regulator, FAS is crucial in

controlling apoptosis (45).

Research indicates that PTK6 is often overexpressed in cancers

like breast and colon, significantly contributing to cell growth and

survival by affecting key signaling pathways (46). PTK6 also influences

EMT, a crucial process in cancer metastasis. Thus, targeting PTK6

could disrupt tumor progression and metastasis, suggesting that

developing selective small molecule inhibitors or monoclonal

antibodies against PTK6 may provide a novel therapeutic approach.

FA2H,while traditionally recognized for its role in lipid

metabolism, has recently been implicated in cancer biology,

particularly in ovarian cancer. Research indicates that lower

FA2H expression is linked to worse outcomes in ovarian cancer,

suggesting its role as a tumor growth inhibitor (47). FA2H may

affect cisplatin sensitivity by modifying lipid metabolism and cell

survival signaling, underscoring the need for further investigation

into its dual roles in lipid metabolism and cancer progression. This

positions FA2H as a potential biomarker and therapeutic target in

ovarian and other cancers.
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In our investigation of the transcriptional regulation of key genes,

notably, our results revealed that the FAS gene is subjected to the most

extensive regulation by various transcription factors. This discovery

aligns with previous research highlighting the crucial role of FAS in

lipid metabolism and its implications for cancer and metabolic

disorders. Furthermore, we identified SP1 as a pivotal transcription

factor capable of simultaneously regulating both FAS and PTK6. This

dual regulatory role of SP1 underscores its importance in coordinating

metabolic and signaling pathways, which may have significant

implications in understanding the pathophysiology of diseases where

these genes are involved (48, 49). The intricate interplay between these

transcription factors and the identification of their target genes

highlights the complexity of gene regulation and emphasizes the

need for further investigation into the specific roles these genes play

in various biological contexts.

Subsequently, we conducted a comprehensive pathway

enrichment analysis to identify potential mechanisms underlying

the differential prognostic risks observed in chemotherapy patients.

GSEA identified significant enrichment of pathways like the Pentose

Phosphate Pathway and Proteasome in the low-risk group, while the

Phosphatidylinositol signaling system and vascular smooth muscle

contraction pathways were enriched in the high-risk group. These

findings suggest that metabolic and proteolytic activities may be

crucial in the tumor microenvironment of low-risk patients,

potentially contributing to better outcomes. In contrast, the

activation of pathways related to cell proliferation and vascular

function in high-risk patients may indicate a more aggressive

disease phenotype, consistent with previous studies linking these

pathways to tumor progression and metastasis (50, 51).

The GSVA analysis showed a significant enrichment of pathways

K EGG_ALDOSTERONE_REGULATED_ SOD IUM_

REABSORPTION and KEGG_GNRH_SIGNALING_PATHWAY

in the high-risk group. This underscores the potential role of

hormonal signaling and sodium reabsorption mechanisms in the

pathophysiology of NSCLC, which may influence tumor behavior

and patient outcomes. The observed increase in mutation load in the

low-risk group, alongside the elevated expression of immune

checkpoint markers such as CD24, CD28, CTLA-4, and TIGIT in

the high-risk group, underscores the complex interplay between

genetic mutations and immune escape mechanisms in cancer

development. These findings advance our understanding of the

molecular mechanisms in NSCLC and propose potential

therapeutic targets for high-risk patients, emphasizing the necessity

for further research into the clinical implications of these pathways.

Our findings also revealed that the p53 pathway, a well-known

tumor suppressor, is involved in the DDR mechanisms, as observed

with the small molecule STK899704, which resulted in an increase

in the levels of proteins associated with the p53 signaling pathway,

subsequently impacting the fundamental DNA damage response

mechanisms (52). Furthermore, the engagement of DDR pathways

in cisplatin radiosensitization of NSCLC has been demonstrated,

where the combination of cisplatin and ionizing radiation led to

persistent DNA double-strand breaks (DSBs), suggesting that

delayed repair of DSBs contributes to radiosensitization (53).
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The regulation of the cell cycle pathway holds a prominent

position in NSCLC. For instance, the knockdown of GTSE1, which

is involved in cell cycle regulation, enhances radiosensitivity in NSCLC

through the DDR pathway by increasing DNA damage post-

irradiation (54). Additionally, the involvement of the cell cycle and

DDR pathways in leptomeningeal metastasis of NSCLC underscores

the complexity and heterogeneity of the disease, suggesting potential

therapeutic targets for managing metastatic NSCLC (55).

Moreover, apoptosis pathways are integral to the response of

NSCLC to radiotherapy. Defective caspase-3 relocalization in

NSCLC cells contributes to resistance against DNA-damage-

induced apoptosis, emphasizing the importance of targeting

apoptotic pathways to counteract this resistance (56). Jingfukang,

a traditional Chinese medicinal formulation, induces apoptosis in

circulating tumor cells by activating the ATM/ATR-p53 pathways

through reactive oxygen species(ROS), leading to DNA damage.

This mechanism offers a promising therapeutic strategy for NSCLC

treatment (57).

Overall, understanding the interplay between DDR, cell cycle

regulation, and apoptosis pathways provides significant insights on

the mechanisms underlying NSCLC’s radiotherapy resistance.

These pathways offer promising targets for developing novel

therapeutic approaches aimed at augmenting radiotherapy efficacy

and improve patient outcomes.

The immunemicroenvironment is crucial for NSCLC development

and treatment response, we performed a comprehensive immune

infiltration analysis among patients with distinct prognostic risks to

characterize risk-associated immune dynamics, which may hold

significant implications for prognostic stratification and therapeutic

strategies. Our study identified notable differences in immune cell

infiltration between high-risk and low-risk groups, particularly

emphasizing naïve B cells and M0 macrophages. These findings align

with prior research showing that immune infiltrate composition

significantly impacts patient survival rates. For example, Tamminga

et al.’s research showed that increased levels of M2 macrophages and

active dendritic cells are linked to lower overall OS rates in patients with

NSCLC. A higher presence of inactive mast cells and CD4 T-helper cells

is associated with better overall survival outcomes (58).This suggests

that the undifferentiated macrophages present in the tumor

microenvironment may undergo polarization into pro-tumor M2

macrophages. Such a transformation could facilitate tumor

progression and contribute to the development of resistance. The

distinct infiltration patterns of naïve B cells between risk groups

suggest a role in modulating the immune response to NSCLC. This

may affect immune response efficacy and patient prognosis.

Understanding the immune landscape of NSCLC provides

valuable insights into potential therapeutic targets. Existing

studies indicate that the polarization of macrophages, activation

of B cells, and changes in the proportions of various B cell subtypes

are intricately linked to the regulation of the tumor immune

microenvironment and the responses to immunotherapy (59, 60).

In the future, targeting the pathways that regulate macrophage

polarization or enhancing the activation of naïve B cells could

present new strategies for overcoming resistance to radiotherapy.
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Furthermore, the analysis of immune cell infiltration characteristics

can provide strong support for patient stratification management

and personalized treatment plans, holding significant potential for

translational applications.

It is important to interpret these findings with caution, since

experimental validation is essential for establishing their biological

significance and potential clinical applications. Results from cell line

studies may not fully reflect the mechanisms leading to radiotherapy

resistance in actual clinical situations. We recognize that in vitro

experiments can offer more direct insights into the functional

mechanisms of key genes, and we intend to carry out these

experiments when circumstances permit. At present, our study is

constrained by the availability of clinical samples and experimental

resources, leading us to concentrate on bioinformatics analysis

utilizing extensive transcriptomic data. We plan to conduct relevant

functional experiments in our future research endeavors, aim to

validate genes and pathways associated with radiotherapy resistance

through cell and animal model experiments.
Conclusion

In summary, through data analysis, genes related to

radiotherapy tolerance in NSCLC were identified. The genes

involved in blood coagulation, complement activation, growth

factor functionality, and cytokine activity—including interactions

between cytokines and their receptors, as well as the chemokine

signaling pathway-exhibit significant enrichment. These pathways

may contribute to radioresistance, as evidenced by the identification

of four crucial genes. A prognostic model based on these genes

demonstrated high diagnostic accuracy in predicting patient

outcomes, indicating their potential as targets for radiotherapy in

NSCLC. Further investigation into these genetic associations could

offer significant insights for advancing tumor radiotherapy.
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BP Biological Process
CC Cellular Component
DEG Differentially Expressed Gene
DSBs Double-strand Breaks
EGFR Epidermal Growth Factor Receptor
EMT Epithelial-mesenchymal Transition
ESCC Esophageal Squamous Cell Carcinoma
FA2H Fatty Acid 2-Hydroxylation
FAS Fatty Acid Synthase
GBM Glioblastoma Multiforme
GEO Gene Expression Omnibus
GO Gene Ontology
GSVA Gene Set Variance Analysis
HNSCC Head and Neck Squamous Cell Carcinoma
KEGG Kyoto Encyclopedia of Genes and Genomes
LASSO Gene Set Variation Analysis
MDA Mean Decrease Accuracy
MDG Dean Decrease Gini
MSigDB Molecular Signatures Database
ncRNA non-coding RNA
NSCLC Non-Small Cell Lung Cancer
OS Overall Survival
PCA Principal Component Analysis
RBPs RNA-binding Proteins
ROC Receiver Operating Characteristic
ROS Reactive Oxygen Species
ssGSEA Sample Gene Set Enrichment Analysis
SVM-RFE Support Vector Machine-Recursive Feature Elimination
TGFBI Transforming Growth Factor Beta-Induced
TISIDB Tumor Immune System Interaction Database
MF Molecular Function
TCGA The Cancer Genome Atlas Program
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