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Leveraging the integration of 
bioinformatics and machine 
learning to uncover common 
biomarkers and molecular 
pathways underlying diabetes 
and nephrolithiasis 
Xudong Shen1,2,3† , Guoxiang Li1,2,3† , Junfeng Yao1,2,3† , 
Junping Yang4†, Xiaobo Ding1,2,3, Zongyao Hao1,2,3*, 
Yan Chen4* and Yang Chen1,2,3* 

1Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, China, 
2Institute of Urology, Anhui Medical University, Hefei, China, 3Anhui Province Key Laboratory of 
Genitourinary Diseases, Anhui Medical University, Hefei, China, 4Department of General Practice, 
Wuhu City Second People`s Hospital (Affiliated Wuhu Hospital of East China Normal University)Wuhu, 
Anhui, China 
Background: Kidney stones are a common benign condition of the urinary 
system, characterized by high incidence and recurrence rates. Our previous 
studies revealed an increased prevalence of kidney stones among diabetic 
patients, suggesting potential underlying mechanisms linking these two 
conditions. This study aims to identify key genes, pathways, and immune cells 
that may connect diabetes and kidney stones. 

Methods: We conducted bulk transcriptome differential analysis using our 
sequencing data, in conjunction with the AS dataset (GSE231569). After 
eliminating batch effects, we performed differential expression analysis and 
applied weighted gene co-expression network analysis (WGCNA) to investigate 
associations with 18 forms of cell death. Differentially expressed genes (DEGs) 
were subsequently analyzed using 10 commonly used machine learning 
algorithms, generating 101 unique combinations to identify the final DEGs. 
Functional enrichment analysis was performed, alongside the construction of 
protein-protein interaction (PPI) networks and transcription factor (TF)-gene 
interaction networks. 

Results: For the first time, bioinformatics tools were utilized to investigate the 
close genetic relationship between diabetes and kidney stones. Among 101 
machine learning models, S100A4, ARPC1B, and CEBPD were identified as the 
most significant interacting genes linking diabetes and kidney stones. The 
diagnostic potential of these biomarkers was validated in both training and 
test datasets. 
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Conclusion: We identified three biomarkers—S100A4, ARPC1B, and CEBPD— 
that may play critical roles in the shared pathogenesis of diabetes and kidney 
stones. These findings open new avenues for the diagnosis and treatment of 
these comorbid conditions. 
KEYWORDS 
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1 Introduction 

Urinary system stones, also known as urolithiasis, are caused by 
the abnormal accumulation of crystalline substances in the kidneys 
(1). Recent evidence suggests that the global prevalence of 
urolithiasis has been rising in recent years due to various factors, 
including societal changes, dietary habits, climate variations, and 
comorbidities (2, 3). Studies have indicated that kidney stones are 
not merely a result of urinary metabolic abnormalities but are also 
associated with multiple metabolic features such as central obesity, 
elevated triglyceride levels, hypertension, and diabetes (4). In our 
previous research, we identified insulin resistance as a central factor 
in the pathogenesis of diabetic kidney stones (5). Insulin resistance 
may lower urinary pH by disrupting ammonium production and 
enhancing the reabsorption of sodium and bicarbonate (6). 
Additionally, compensatory hyperinsulinemia due to insulin 
resistance may increase urinary calcium excretion, thereby 
promoting the formation of calcium-based kidney stones in 
diabetic patients (7, 8). However, the underlying mechanisms 
linking diabetes and kidney stones remain poorly understood. 
Therefore, elucidating the distinct mechanisms driving the 
progression of these two diseases is of paramount importance. 

Cell death is a fundamental biological process associated with 
various life phenomena, including growth, development, aging, and 
disease (9). Based on triggering mechanisms, cell death can be 
categorized into programmed cell death (PCD) and accidental cell 
death (ACD). PCD is a controlled and sequential process regulated 
by specific molecular mechanisms, and it can be modulated through 
pharmacological or genetic interventions. PCD occurs via diverse 
mechanisms, including apoptosis, autophagy, pyroptosis, 
ferroptosis, necroptosis, and NETosis, among others. Notably, 
many nephroprotective mechanisms of drugs are based on 
modulating PCD. For instance, irbesartan and metformin alleviate 
renal apoptosis induced by advanced glycation end products 
(AGEs) (10, 11), while fenofibrate and sodium-glucose 
cotransporter 2 (SGLT2) inhibitors enhance autophagy to 
improve kidney function in patients with diabetic kidney disease 
(DKD) (12, 13). Additionally, SGLT2 inhibition has been reported 
to suppress kidney stone formation (14). 

Nevertheless, the role of PCD in the biological mechanisms 
underlying kidney stone and diabetes pathogenesis remains 
02 
incompletely understood. To clarify the shared biomarkers 
and PCD pathways involved in these two conditions, we first 
identified these biomarkers using microarray and RNA 
sequencing datasets. A variety of bioinformatics analyses were 
subsequently employed to uncover key biomarkers and biological 
functions, providing valuable perspectives on potential innovative 
therapeutic targets. 
2 Methods 

2.1 Mouse models of diabetes and diabetic 
kidney stones 

All experimental procedures were conducted in compliance 
with the guidelines of the National Institutes of Health for the 
Care and Use of Laboratory Animals. Male C57BL/6J mice (6–8 
weeks old) were used in the study. Diabetes was induced by 
intraperitoneal injection of streptozotocin (STZ) at 40 mg/kg for 
one week. After one week, blood glucose levels were measured using 
the OneTouch Ultra Glucometer (LifeScan, Milpitas, CA, USA) via 
the glucose oxidase method. Mice with blood glucose levels >16.7 
mmol/L were selected for further studies. To establish a kidney 
stone model, the mice were administered glyoxylate (GA, 75 mg/kg, 
200 mL) daily for one week. One week later, mice were sacrificed 
following standard experimental procedures. Kidney sections were 
stained with hematoxylin and eosin (H&E) and examined under a 
polarized microscope (Zeiss, Germany). The presence of crystalline 
deposits in the kidneys confirmed the successful establishment of 
the kidney stone model. After model validation, RNA sequencing 
was performed for subsequent analyses. 
2.2 Sample sources 

In addition to RNA sequencing data from mouse models, 
microarray datasets from the Gene Expression Omnibus (GEO) 
database were analyzed, including GSE231569 and GSE73680. The 
GSE231569 dataset comprised four renal papilla samples and one 
renal medulla sample. The GSE73680 dataset included 29 kidney 
stone patient samples and 33 normal samples. 
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2.3 Differential expression analysis 

PCD-related genes were sourced from the literature (9). The 
preprocessCore R package was used to normalize the data, and 
differential expression analysis of PCD-related genes was conducted 
using the limma R package. Differentially expressed genes (DEGs) 
were identified based on the criteria of adjusted P.Val < 0.05 and 
|logFC| > 0.25. These DEGs were used in subsequent analyses to 
identify genes with altered expression between disease and 
normal samples. 
2.4 Weighted gene co-expression network
analysis 

WGCNA (15) was performed on self-generated datasets to 
identify gene modules associated with kidney stones and diabetes. 
Prior to clustering, missing data points were evaluated. A soft-
threshold power (b) was selected based on the scale-free topology 
standard to construct a biologically meaningful network. A 
topological overlap matrix (TOM) was derived from the 
adjacency matrix, and gene modules were identified using the 
dynamic tree-cutting algorithm. Gene significance (GS), module 
membership (MM), and correlations between modules and clinical 
traits were calculated. Pearson correlation coefficients and p-values 
of module eigengenes with disease traits facilitated the identification 
of key modules related to kidney stones and diabetes. Key genes 
from these modules were integrated, and shared genes were 
identified using the AWFE diagram. 
2.5 Enrichment analysis 

Functional enrichment analysis was conducted on DEGs. Gene 
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway analyses were performed using the R packages 
“org.Hs.eg.db,” “ggplot2,” “clusterProfiler,” and “enrichplot.” GO 
analysis identified biological processes (BP), molecular functions 
(MF), and cellular components (CC) associated with overlapping 
genes, while KEGG analysis identified enriched signaling pathways. 
Keywords were clustered based on similarity, with the most 
enriched and representative terms selected. Statistical significance 
was determined with a threshold of p < 0.05. 
2.6 Single-cell RNA data processing 

The single-cell RNA sequencing (scRNA-seq) dataset GSE231569 
was reanalyzed. Data filtering and analysis were performed using the 
Seurat R package. ScRNA-seq data were filtered with thresholds of 
nFeature_RNA < 5000, percent_mito < 15, percent_ribo > 3, and 
percent_hb < 0.1. Cell clustering results were visualized using TSNE 
and UMAP methods. Cell types were annotated with the SingleR 
package (version 2.4.1). WGCNA (version 1.72-5) identified DEGs in 
the GSE231569 dataset. Cluster-specific DEGs were identified using the 
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FindAllMarkers function with a resolution of 0.8. DEGs from scRNA-
seq data (using Seurat) and bulk RNA-seq data (using limma) were 
intersected with WGCNA and PCD-related genes, yielding 12 potential 
prognostic genes. Protein-protein interaction (PPI) networks were 
visualized using STRING (https://string-db.org) and GeneMANIA 
(http://genemania.org). 
2.7 Machine learning to identify key PCD 
genes 

To pinpoint key PCD genes associated with diabetes and kidney 
stones, 10 machine learning algorithms were applied, generating 
101 unique combinations (16–18) (PMIDs: 33794304, 35145098, 
39346927). Model performance was evaluated using an 
independent validation set (GSE73680). The glmBoost+RF 
combination performed best, ultimately identifying three key 
genes. Correlation analysis of these genes with all other genes was 
visualized using heatmaps displaying the top 50 positively 
correlated genes. Gene set enrichment analysis (GSEA) was 
performed to explore functional correlations of the key genes. 
Upstream transcription factors were predicted using the 
RegNetwork database (https://regnetworkweb.org), and networks 
were constructed with Cytoscape software. 
2.8 Western blotting 

Protein extraction was performed using RIPA lysis buffer 
(Solarbio, China) with protease inhibitors. Protein concentration 
was quantified using a BCA protein assay kit (Biosharp, China). 
Equal amounts of total protein (30 mg) were separated by 10% SDS-
PAGE and transferred to NC membranes (Cytiva, China). 
Membranes were blocked with 5% non-fat milk for 1 hour at 
room temperature and incubated overnight at 4°C with primary 
antibodies against ARPC1B, S100A4, CEBPD, and b-actin (Affinity, 
China). After incubation with secondary antibodies for 1 hour, 
protein bands were visualized using enhanced chemiluminescence 
(Tanon, China) and captured with a Tanon imaging system. 
2.9 Real-time PCR analysis 

Total RNA was extracted using TRIzol and quantified with a 
NanoDrop 2000 (Thermo Fisher Scientific, Wilmington, DE, USA). 
Reverse transcription was performed using ToloScript All-in-one 
RT EasyMix for qPCR. Real-time quantitative PCR was conducted 
with Q3 SYBR qPCR Master Mix on an ABI 7500 system to evaluate 
RNA expression levels. Primer sequences were as follows: 

S100A4: Forward: 5’-TGAGCAACTTGGACAGCAACA-3’, 
Reverse: 5’-CTTCTTCCGGGGCTCCTTTATC-3’; 

ARPC1B: Forward: 5’-GGAACAAGGACCGTACACAGA-3’, 
Reverse: 5’-CAATGCGGTTACTCTCAGGGG-3’; 

CEBPD: Forward: 5’-CAAGAACAGCAACGAGTACCG-3’, 
Reverse: 5’-GTCACTGGTCAACTCCAGCAC-3’. 
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2.10 Statistical analysis 

Data analysis was conducted using GraphPad Prism 9.0 
software. Results are presented as mean ± SEM. Unpaired t-tests 
were used for two-group comparisons, while one-way or two-way 
ANOVA (with Dunnett or Tukey multiple comparison tests) was 
applied for comparisons among three or more groups. Log-rank 
(Mantel-Cox) tests were used for survival analysis. A p-value < 0.05 
was considered statistically significant. 
3 Results 

3.1 Single-cell transcriptional profiling in 
kidney stones based on PCD 

To elucidate the potential processes of PCD (programmed cell 
death) during kidney stone formation, we reanalyzed a previously 
published scRNA-seq dataset (GSE231569) using the Seurat 
method. After quality control filtering (Supplementary Figure 1), 
a total of 21,432 unique genes were identified from 29,609 cells 
across four samples. Annotation of these genes identified 
eight distinct cell clusters (Supplementary Figure 2). Using the 
FindAllMarkers  funct ion,  we  ident ified  different ia l ly  
expressed genes (DEGs) for each cell type, showcasing the 
top five genes per cell type (Supplementary Figure 2B). 
Marker genes were analyzed using the COSG R package, 
with the top 10 genes visualized in a heatmap (Supplementary 
Figure 2C). Additionally, KEGG and Reactome analyses were 
performed for the top 100 marker genes per cell type, displaying 
the top five enriched pathways for each (Supplementary 
Figures 2D, E). 

After normalizing gene expression data, we conducted PCA and 
UMAP-based clustering in the PCA space to identify cell types. These 
clusters were annotated based on marker genes into recognizable cell 
types: Fibroblast, Epithelial, Endothelial_cell, Monocyte, Plasma, 
T_cell, Pericyte, and Principal_cell (Figure 1). Figures 1B, C depict 
the proportions of different cell types across samples, highlighting an 
enrichment of Fibroblast, Epithelial, and Endothelial cells in kidney 
stone patients. Using the GSVA R package, we scored each cell type for 
hallmark pathways downloaded from the MSigDB database (https:// 
www.gsea-msigdb.org/gsea/msigdb). Heatmaps of hallmark pathway 
scores revealed pathways like “EPITHELIAL_MESENCHYMAL_ 
TRANSITION” and “TNFA_SIGNALING_VIA_NFKB” as 
prominent (Figure 1D). Next, we investigated the relationship 
between cells from kidney stone samples and PCD. PCD gene 
sets were scored using GSVA, and UMAP visualized the PCD gene 
set scores, grouping cells into high and low score categories 
(Figure 2A). As shown in Figure 2B, high PCD score groups 
exhibited significantly increased proportions of Fibroblast, 
Epithelial, Endothelial_cell, Monocyte, Plasma, T_cell, and 
Pericyte cells, with a concurrent reduction in Principal cells. The 
relationship between hallmark pathway scores and PCD scores was 
further explored for each cell type (Figure 2C, D). 
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3.2 Establishing diabetic and diabetic
nephrolithiasis mouse models 

The aim of this study was to investigate the role of PCD genes in 
nephrolithiasis and diabetes. However, no existing datasets combine 
sequencing data for these two conditions. To address this, we 
conducted relevant animal experiments to obtain diabetic and 
diabetic nephrolithiasis samples for transcriptomic analysis. 

First, we established animal models. Blood glucose levels were 
significantly elevated in the STZ and STZ+GA groups compared to 
the control group (P < 0.001), with no statistically significant 
difference between the STZ and STZ+GA groups (Figure 3A). 
Under polarized light microscopy, the STZ+GA group showed 
evident crystal deposits compared to the STZ group (Figure 3B). 
These results confirm the successful establishment of the diabetic 
and diabetic nephrolithiasis mouse models. 
3.3 Identification and functional 
enrichment analysis of DEGs in diabetes
and nephrolithiasis 

To investigate the molecular interactions between diabetes and 
nephrolithiasis, mice were divided into four groups for 
transcriptomic sequencing: normal control (NC), STZ (GLU), GA, 
and STZ+GA (GLU+GA). Differentially expressed genes (DEGs) 
were identified using the “limma” package in R, comparing GLU 
vs. NC, GA vs. NC, and GLU+GA vs. NC. Volcano plots were 
generated to visualize the results (Figures 4A, C, E). 

To further explore the most significant differences between the 
disease and control groups, heatmaps highlighting the top 40 most 
variable genes were constructed (Figures 4B, D, F). By comparing the 
genes present in both diseases, a Venn diagram revealed a total of 764 
shared differentially expressed genes (DEGs), with 529 genes upregulated 
and 235 genes downregulated (Figures 5A, B). Gene Ontology (GO) and 
Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were 
performed to determine the potential underlying mechanisms.The GO 
analysis revealed that the upregulated genes were primarily associated 
with biological processes (BP) such as “positive regulation of response to 
external stimulus,” “adaptive immune response based on somatic 
recombination of immune receptors built from immunoglobulin 
superfamily domains,” and “regulation of immune effector process.” In 
cellular components (CC), the upregulated genes were mainly localized 
to the “collagen-containing extracellular matrix,” “membrane raft,” and 
“membrane microdomain.” In molecular functions (MF), the 
upregulated genes significantly contributed to “phospholipid binding,” 
“actin binding,” and “peptidase regulator activity.” These findings 
suggest that upregulated DEGs play a role in maintaining cell 
structure, cell homeostasis, cell communication, and fundamental cell 
growth (Figure 5C). 

KEGG pathway analysis emphasized that upregulated DEGs were 
significantly enriched in pathways such as “Epstein-Barr virus infection” 
and “Herpes simplex virus 1 infection” (Figure 5D). For the 
downregulated DEGs, GO analysis indicated that they were mainly 
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related to biological processes such as “fatty acid metabolic process,”
“cellular amino acid metabolic process,” and “small molecule catabolic 
process.” In  cellular components (CC),  the downregulated  DEGs  were  
primarily localized to the “apical part of cell,” “apical plasma 
membrane,” and “basolateral plasma membrane.” In molecular 
functions (MF), downregulated DEGs contributed significantly to 
Frontiers in Immunology 05 
“active transmembrane transporter activity,” “secondary active 
transmembrane transporter activity,” and “monooxygenase activity” 
(Figure 5E). KEGG pathway analysis highlighted significant 
enrichment of downregulated DEGs in pathways such as “Valine, 
leucine, and isoleucine degradation” and “Drug metabolism - other 
enzymes” (Figure 5F). 
FIGURE 1 

scRNA-seq analyses and cluster annotation of renal tissues in kidney stone patients. (A). Stacked bar graph showing the proportions of different cell 
types (Fibroblast, Epithelial, Endothelial, Monocyte, Plasma cell, T cell, Pericyte, and Principal cell) identified from the GSE231569 dataset based on 
canonical marker genes. (B). UMAP-based dimensionality reduction for cell clustering and visualization, with cells color-coded by cluster annotation. 
(C). Dynamic changes in cell-type composition across samples, highlighting the enrichment of fibroblasts, epithelial, and endothelial cells in kidney 
stone tissues. (D). GSVA-based pathway enrichment heatmap for hallmark gene sets from the MSigDB database, demonstrating the activation (red) 
or inhibition (green) of pathways in different samples. Statistical differences between groups were calculated using Student’s t-test or the Kruskal-
Wallis test. These analyses reveal the heterogeneity of the cellular and transcriptional landscape in nephrolithiasis. 
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3.4 WGCNA identified key modules in
kidney stones and diabetes 

WGCNA revealed 19 relevant modules in the self-test data, each 
represented by a unique color. A module-trait relationship heatmap 
Frontiers in Immunology 06
was generated to assess the association of each module with the 
disease (Figures 6B, C). The WGCNA gene selection showed that 
NC or Glu+GA modules differed from the other three groups, with 
statistically significant differences. The results indicated that the 
following modules were significantly correlated with the disease: 
FIGURE 2 

Relationship between kidney stone–derived cells and programmed cell death (PCD). (A). UMAP visualization of PCD gene set enrichment scores 
across individual cells using GSVA, dividing cells into high and low PCD score groups. (B). Cell type proportions in different PCD score groups, 
showing increased frequency of Fibroblasts, Epithelial cells, Endothelial cells, and immune cells in high-score clusters. (C, D). Correlation between 
PCD scores and hallmark pathway activities within each cell type, suggesting biological pathways associated with high cell death signatures. These 
findings link cell fate decisions with nephrolithiasis-associated inflammation and remodeling. ****p < 0.0001. 
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MElightyellow (|r| = 0.92, p < 0.0001),MEgreen (|r| = 0.51, p = 0.04), 
MEdarkolivegreen (|r| = -0.69, p = 0.003),MEroyalblue (|r| = -0.66, 
p = 0.005)These four modules together contained a total of 
28,162 genes. 
 

3.5 Identification of Key PCD genes in
kidney stones and diabetes and enrichment
analysis 

Based on the previous results, the intersection of single-cell 
differential analysis genes, bulk differential genes, WGCNA genes, 
and PCD genes was obtained, including 12 upregulated genes: 
EGR1, ATF3, AOC1, BTG2, JUN, RHOB, S100A4, GDF15, 
GADD45B, CEBPD, DDIT4, and ARPC1B. No downregulated 
genes were identified (Figures 7A, B). Further GO analysis 
revealed that these genes were mainly involved in biological 
processes  (BP)  such  as  “response  to  nutrient  levels,” 
“regulation of neuron death,” and “response to extracellular 
stimulus.” In terms of cellular components (CC), the shared PCD 
genes were predominantly localized to the “RNA polymerase II 
transcription regulator complex.” For molecular functions (MF), 
the shared PCD genes significantly contributed to “DNA-binding 
transcription repressor activity.”KEGG pathway analysis 
emphasized the significant enrichment of shared PCD genes in 
pathways such as “Salmonella infection” (Figures 7C, D). Next, we 
analyzed the differences in the expression levels of the 12 genes 
between the GLU+GA group and the NC group. The results 
indicated that the expression levels of all 12 genes were 
significantly higher in the GLU+GA group compared to the NC 
group (Supplementary Figure 3). Finally, PPI networks were 
constructed using STRING and GENEMANIA databases 
(Supplementary Figure 4). 
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3.6 Identification of candidate diagnostic
biomarkers for kidney stones in diabetic
patients using machine learning algorithms 

Based on the previous results, we obtained 12 PCD genes. In this 
study, we employed machine learning to construct prognostic models 
from these genes. Using the GEO dataset, we built 101 prognostic 
models and evaluated the performance of each model in an independent 
validation set (GSE73680). The results indicated that the glmBoost+RF 
algorithm performed the best, ultimately identifying three key genes: 
S100A4, ARPC1B, and CEBPD (Figure 8A; Supplementary 
Table 1).Next, we performed correlation analysis of these three genes 
with all other genes and displayed the expression of the top 50 positively 
correlated genes using heatmaps (Supplementary Figure 5). We also 
investigated the signaling pathways enriched by these three feature genes 
to explore their potential molecular mechanisms in the progression of 
diabetes and kidney stones. Figure 8C lists the top 20 enriched pathways 
from GSEA analysis, showing that the feature genes play a crucial role in 
regulating inflammation, cell metabolism, apoptosis, and the cell cycle in 
the progression of diabetes and kidney stones.Finally, we used the 
RegNetwork database (https://regnetworkweb.org/) to predict

transcription factors upstream of these genes. The core genes are 
highlighted in red, and only genes present in the database are 
shown. A PPI network was constructed using Cytoscape 
software (Figure 8). 
3.7 Expression of biomarkers and western
blot validation in animal models 

We validated the mRNA expression of these key genes in diabetic 
and kidney stone comorbidity mice. We found that after kidney stone 
treatment, the expression of S100A4, ARPC1B, and CEBPD genes in 
FIGURE 3 

Construction and validation of diabetic and diabetic nephrolithiasis mouse models. (A). Blood glucose levels in different mouse groups (Control, STZ-
induced diabetes, and STZ+GA-induced diabetic nephrolithiasis), confirming successful establishment of the hyperglycemic model (P < 0.001). (B). 
Representative hematoxylin and eosin (H&E) staining images under polarized light microscopy showing calcium oxalate crystal deposits in the 
kidneys of the STZ+GA group. These findings verify the in vivo modeling of combined diabetes and nephrolithiasis. ****p < 0.0001. 
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diabetic mice was significantly elevated. Western blotting further 
confirmed that the protein levels of S100A4, ARPC1B, and CEBPD 
were significantly upregulated.These results collectively suggest that 
S100A4, ARPC1B, and CEBPD may serve as core biomarkers in the 
common mechanisms underlying diabetes and kidney stones (Figure 9). 
Frontiers in Immunology 08
4 Discussion 

Kidney stones and diabetes are prevalent clinical issues that 
severely impact patients’ quality of life. Previous epidemiological 
studies have confirmed that diabetes increases the incidence of 
FIGURE 4 

Identification and visualization of differentially expressed genes (DEGs). (A, C, E). Volcano plots showing DEGs between disease and control groups 
(GLU vs. NC, GA vs. NC, and GLU+GA vs. NC), with color-coded significance thresholds (adjusted P < 0.05, |logFC| > 0.25). (B, D, F). Heatmaps 
displaying the top 40 DEGs by variance across samples, clustering genes and conditions to illustrate transcriptomic divergence. These results provide 
a basis for identifying shared gene signatures between diabetes and nephrolithiasis. 
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kidney stones (5). Unraveling the potential mechanisms underlying 
the interaction between diabetes and kidney stones could inspire 
novel therapies for both conditions, paving the way for beneficial 
treatments. This study uses bioinformatics analysis to deeply 
Frontiers in Immunology 09
explore the molecular features of common pathways in diabetes 
and kidney stones, and based on machine learning, identifies three 
novel biomarkers related to the diagnosis and treatment of 
these conditions. 
FIGURE 5 

Identification of common DEGs and functional enrichment analysis. (A, B). Venn diagrams showing the overlap of DEGs from the diabetes and 
nephrolithiasis groups, revealing 764 shared genes (529 upregulated, 235 downregulated). (C). GO enrichment analysis of upregulated genes 
indicating involvement in immune activation, extracellular matrix organization, and cellular signaling. (D). KEGG pathways of upregulated genes 
highlighting virus infection-related pathways, possibly linked to innate immune activation. (E, F). GO and KEGG analysis of downregulated genes 
associated with amino acid metabolism, transmembrane transport, and drug metabolism. 
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In this study, we initiated our analysis by obtaining data from 
the GEO database, specifically the GSE231569 dataset (patients 
diagnosed with kidney stones). Using DEGs and PCD, we applied 
GSVA to score the PCD gene set. In the high PCD score group, we 
observed a marked increase in the content of fibroblast, epithelial, 
endothelial cells, monocytes, plasma cells, T cells, and pericytes. 
Further pathway analysis revealed significant associations between 
the high-score group and pathways such as the PI3K-Akt signaling 
pathway, inflammation response, and metabolic processes. The 
PI3K-Akt pathway is essential for cellular functions like cell cycle 
regulation, proliferation, metabolism, survival, growth, and 
angiogenesis, and is considered crucial in the pathogenesis of 
both diabetes and kidney stones (19, 20). To further elucidate the 
main molecular clusters common to both diabetes and kidney 
stones, we conducted a multi-omics study integrating single-cell 
data with machine learning. Comprehensive analysis of multi-

omics data helps us better understand the disease-specific 
regulatory mechanisms (21). The selection of common omics 
clustering methods is often influenced by personal preference, 
which further broadens the limitations of specific methods (22). 
Machine learning algorithms have emerged to address these 
shortcomings, and they have become an effective means of 
analyzing multi-omics data (17). In this study, we integrated the 
latest 10 clustering algorithms, creating 101 algorithm 
combinations to identify the best model and overcome the 
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limitations of algorithm selection. At present, when artificial 
intelligence algorithms are combined with large biological 
datasets, overfitting is an important issue during model 
construction (23). Models that perform well in training datasets 
often fail to generalize effectively to independent validation sets. To 
avoid overfitting issues in the training cohort, we used the AUC 
index of the validation cohort as the sorting criterion and selected 
the  glmBoost+RF  algorithm,  which  demonstrated  the  
best performance. 

One of the strengths of this study is the identification of three 
novel biomarkers for diabetes and kidney stones using machine 
learning methods: S100A4, ARPC1B, and CEBPD. S100A4, also 
known as metastasis-associated protein (Mst1) or fibroblast-specific 
protein (FSP1), is a member of the S100 calcium-binding protein 
family (24). It is highly expressed in tumor cells and is closely 
related to cancer proliferation, invasion, and metastasis (25). 
Recently, S100A4 has been implicated in the progression of 
fibrosis in various organs (26–29) and in inflammatory diseases 
such as rheumatoid arthritis (30–32). A common feature of these 
pathological conditions is the involvement of inflammation and 
fibrosis. S100A4 is upregulated in proliferative diabetic retinopathy 
and is associated with angiogenesis and fibrosis markers (33). The 
major pathological process in type 2 diabetes (T2DM) is pancreatic 
dysfunction, characterized by impaired insulin secretion (34). In 
advanced T2DM patients, abnormal ECM accumulation, or fibrosis, 
FIGURE 6 

Weighted gene co-expression network analysis (WGCNA) to identify trait-related modules. (A). Determination of optimal soft-thresholding power to 
ensure scale-free topology in the co-expression network. (B). Hierarchical clustering dendrogram showing 19 distinct gene modules, each assigned 
a unique color. (C). Heatmap correlating module eigengenes with clinical traits (e.g., diabetes, nephrolithiasis), identifying four key modules 
(lightyellow, green, darkolivegreen, and royalblue) significantly associated with disease status. 
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is frequently observed, which can lead to organ dysfunction (34). 
Studies combining bioinformatics analysis and animal models have 
shown that pancreatic inflammation and fibrosis contribute to the 
development of pancreatic dysfunction in T2DM patients (35). 
Renal fibrosis is common in various kidney diseases and leads to 
mechanical and electrical dysfunction, as well as the progression of 
renal failure (36). In the early stages of kidney stone formation or 
crystal-induced kidney damage, renal tubular epithelial cells (TEC) 
undergo epithelial-to-mesenchymal transition (EMT), leading to 
renal fibrosis (37). S100A4 is considered an inducer of the EMT 
process and has been widely reported in kidney fibrosis (27, 28). 
These findings highlight the critical role of S100A4 signaling in TEC 
during kidney regeneration and suggest its potential as a therapeutic 
target for initiating intrinsic repair processes in chronic and acute 
kidney diseases. 

The human actin-related protein 2/3 complex (Arp2/3) is 
essential for actin filament branching and contains two ARPC1 
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subunits, with ARPC1B being significantly expressed in blood cells 
(38). Deletion of ARPC1B results in platelet abnormalities and 
triggers inflammatory diseases (38, 39). Moreover, almost complete 
loss of ARPC1B expression leads to platelet defects, including 
microthrombus formation and spreading defects, as well as 
eczematous lesions, leukocyte fragmentation, vasculitis, 
eosinophilia, and increased IgA and IgE levels (38). Increased IgE 
levels are involved in multiple immune pathways,  including
enhanced  Th2 cytokine production  (40). Clinical studies have 
found that perioperative Th2 dominance is associated with a 
higher risk of febrile urinary tract infections in patients 
undergoing ureteroscopic surgery for ureteral stones (41). The 
Th1/Th2 ratio is significantly correlated with impaired glucose 
homeostasis, abnormal lipid profiles, and insulin resistance in 
type 2 diabetes (42). In addition, the Th1/Th2 ratio plays an 
essential role in type 1 diabetes (43, 44). ARPC1B’s effects on 
diabetes are not limited to immune responses; studies have shown 
FIGURE 7 

Identification of key PCD genes by integrated analysis and functional annotation. (A, B). Venn diagrams integrating DEGs from bulk RNA-seq, scRNA-seq, 
WGCNA modules, and curated PCD gene lists, identifying 12 upregulated candidate genes (e.g., S100A4, ARPC1B, CEBPD). (C, D). GO and  KEGG  
pathway enrichment analysis of the 12 intersected genes, highlighting biological processes related to nutrient sensing, apoptosis, and immune signaling. 
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that ARPC1B is a substrate of PAK1 during mitosis (45), and 
changes in PAK1 levels regulate the tissue crosstalk of pancreatic b 
cells, affecting systemic glucose homeostasis (46). These insights 
emphasize the potential novel link between ARPC1B regulation of 
kidney stones and diabetes metabolism. 

The transcription factor CCAAT/enhancer-binding protein 
delta (CEBPD) belongs to the CCAAT/enhancer-binding protein 
family. It plays functional roles in cell differentiation, movement, 
growth arrest, cell death, metabolism, ECM generation, and 
immune responses (47–50). Research has shown that CEBPD can 
promote macrophage aggregation by activating FN-1 expression, 
and inhibiting CEBPD prevents kidney ischemia-reperfusion 
injury. CEBPD expression can induce upregulation of CHOP 
expression, leading to pro-apoptotic endoplasmic reticulum stress 
(51). Endoplasmic reticulum stress-mediated cell apoptosis can 
contribute to calcium oxalate stone formation (52). Additionally, 
IL-17 levels increase in kidney damage caused by calcium oxalate 
crystallization (53), and CEBPD, as an IL-17 downstream effector 
gene, is activated to perform its biological function (54, 55). The role 
of CEBPD in diabetes is less well understood, but it has been shown 
that during type 1 diabetes, pro-inflammatory cytokines (such as 
IL-1b, IFN-g, and TNF-a) secreted by infiltrating immune cells 
Frontiers in Immunology 12 
alter the expression of key gene networks in b cells, resulting in local 
inflammation and b cell apoptosis. CEBPD has anti-apoptotic and 
anti-inflammatory effects in pancreatic b cells (56). These findings 
suggest that the biological processes related to S100A4, ARPC1B, 
and CEBPD may synergistically regulate the pathophysiology of 
kidney stones and diabetes. 

As shown in Figure 10, the overall workflow of the study 
integrates single-cell transcriptomic analysis, bulk RNA-seq, 
machine learning screening, and in vivo validation to uncover 
shared molecular signatures between diabetes and nephrolithiasis. 
Overall, our study suggests that S100A4, ARPC1B, and CEBPD may 
serve as valuable biomarkers that play a crucial role in the shared 
pathogenesis of kidney stones and diabetes. However, our study has 
some limitations. The current results emphasize the need for 
prospective clinical trials to further validate the clinical 
applicability of our findings. The mechanisms of S100A4, 
ARPC1B, and CEBPD in kidney stones and diabetes should be 
further explored in wet lab experiments. Lastly, we used correction 
algorithms to mitigate these differences, but the cohorts included 
still have differences in scale and sequencing platforms. 

In addition, although we validated the expression and 
functional relevance of the candidate biomarkers using a mouse 
FIGURE 8 

Machine learning–based identification and characterization of diagnostic biomarkers. (A). Performance evaluation of 101 machine learning algorithm 
combinations to build prognostic models; the glmBoost+RF combination demonstrated optimal AUC and stability. (B). Heatmaps showing genes 
most positively correlated with the three hub genes (S100A4, ARPC1B, CEBPD), based on co-expression analysis. (C). GSEA analysis of the hub genes 
identifying enriched pathways involving inflammation, oxidative stress, cell cycle, and apoptosis. (D). Transcription factor–gene regulatory network 
predicted via the RegNetwork database, visualized in Cytoscape. 
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FIGURE 9 

Experimental validation of biomarker expression in animal models. (A–C). Quantitative PCR analysis showing significantly elevated expression of S100A4, 
ARPC1B, and CEBPD in diabetic nephrolithiasis mouse models compared to controls. (D–G). Western blot analysis further confirming increased protein 
expression of the three biomarkers. Densitometry quantification supports the transcriptomic findings. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. 
FIGURE 10 

Flowchart depicting research methodology on diabetic nephrolithiasis. 
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model of diabetic nephrolithiasis, interspecies variation represents a 
non-negligible source of bias. Physiological and transcriptomic 
differences  between  mice  and  humans  may  affect  the  
translatability of findings. While murine models offer mechanistic 
insights into disease progression, further functional validation using 
human tissues or patient-derived samples is essential to enhance the 
clinical relevance of the results. 
5 Conclusion 

Our study has preliminarily identified unique biomarkers and 
pathways shared between kidney stones and diabetes at the 
transcriptomic level. By integrating different datasets and 
bioinformatics technologies, we have identified S100A4, ARPC1B, 
and CEBPD as core biomarkers in the common mechanisms of 
these diseases, making them promising therapeutic targets. 
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Gene expression levels of 12 genes(EGR1, ATF3, AOC1, BTG2, JUN, RHOB, 
S100A4, GDF15, GADD45B, CEBPD, DDIT4, AR PC1B) in different groups. 
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PPI network construction for 12 genes by STRING database and 
GENEMANIA database. 
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Correlation analysis of the 3 hub genes with all genes using heatmaps to show 
the expression of positively correlated top50 genes, respectively. 
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