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Background: Cervical cancer’s tumor microenvironment (TME) was composed 
of a diverse array of immune cells that significantly influence tumor progression 
and response to treatment. Recent advancements in multi-omics and single-cell 
sequencing had provided valuable insights into the cellular heterogeneity and 
immune landscape of the TME, revealing critical interactions that shape tumor 
behavior and therapy outcomes. 

Method: This study used multi-omics and single-cell sequencing to explore the 
immune landscape, cellular heterogeneity, and drug sensitivity in cervical cancer, 
focused on tumor subtypes and their interactions with immune cells, and aimed 
to understand therapy responses. 

Results: The research presented a thorough single-cell analysis of cervical 
cancer, identified distinct tumor epithelial cell (EPC) subtypes, and explored 
their roles in tumor progression, immune evasion, and therapeutic response. It 
underscored the potential of tumor EPCs as valuable biomarkers for prognosis 
and as targets for personalized treatment approaches. 

Conclusion: The immune landscape of cervical cancer and its interaction with 
tumor endothelial progenitor cells played crucial roles in determining the tumor’s 
progression and response to therapy. The classification of tumor subtypes based 
on immune characteristics and drug sensitivity was critical for personalized 
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treatment. The identification of TSPAN1 as key biomarkers provided insight into 
tumor biology and potential therapeutic targets. Our findings emphasized the 
need for combining immune checkpoint modulation with precise drug sensitivity 
analysis  to  optimize  treatment  strategies,  particularly  in  advanced  
cervical cancer. 
KEYWORDS 

cervical cancer, tumor microenvironment, endothelial progenitor cells, immune 
checkpoints, drug sensitivity 
Introduction 

As one of the most common cancers in women, cervical cancer 
affected the cervix. The cervix, located at the lower part of the 
uterus, connected the uterine body and the vagina, serving as the 
birth canal during childbirth (1). Cervical cancer primarily occurred 
at the squamocolumnar junction, where the squamous epithelium 
and columnar epithelium meet. Infection with high-risk HPV types, 
particularly 16, 18, 31, and 33, was the main cause of cervical cancer 
(2). Over 90% of cervical cancer patients were found to be infected 
with high-risk HPV. As a primary preventive tool, the HPV vaccine 
reduced high-risk HPV infection and cervical cancer incidence (3). 
Advances in cervical cancer screening, such as liquid-based cytology 
and HPV DNA testing, allowed for earlier detection of 
precancerous lesions and early intervention (4). 

Traditional treatment methods for cervical cancer included 
surgery, radiotherapy, and chemotherapy. Surgery was suitable for 
early-stage cervical cancer, such as total hysterectomy or radical 
hysterectomy; radiotherapy and chemotherapy were used for 
cervical cancer at all stages, especially advanced or recurrent 
cervical cancer (5, 6). In recent years, new treatment strategies, 
such as targeted therapy, immunotherapy, and therapeutic vaccines, 
had emerged (7). Targeted therapies based on viral gene integration, 
oxidative stress, VEGF, EGFR, and PD-1 signaling were applied. 
Clinical trials indicated promising results for immune checkpoint 
inhibitors and other immunotherapies (8). 

Immunotherapy for cervical cancer has made significant progress 
in recent years, with immune checkpoint inhibitors becoming the main 
focus of research. Pembrolizumab and nivolumab, PD-1/PD-L1 
inhibitors, were included in the National Comprehensive Cancer 
Network guidelines as first-line treatments for PD-L1-positive 
advanced cervical cancer based on their clinical efficacy (9). 
Moreover, the combination of CTLA-4 inhibitor ipilimumab with 
PD-1 inhibitors, known as dual immunotherapy, has further enhanced 
immune responses, thereby increasing disease control rates and 
objective response rates (10, 11). In addition, adoptive T cell 
therapies, including TILs, TCR-T, and CAR-T cell therapies, have 
demonstrated enormous potential by modifying or expanding the 
patient’s own T cells to improve their ability to attack tumor cells. 
Furthermore, combination therapy strategies, such as immunotherapy 
02 
combined with chemotherapy, radiotherapy, and targeted therapy, 
have improved efficacy, thus extending progression-free survival and 
overall survival (12, 13). Notably, novel immunotherapeutic agents, like 
the bispecific antibody cadonilimab, have also shown good clinical 
outcomes, especially in PD-L1-negative patients (14, 15). Looking 
ahead, future research will focus on exploring the application of 
immunotherapy in frontline cervical cancer treatment, as well as 
identifying biomarkers to predict efficacy (16, 17). Further research 
will examine the long-term safety and adverse reactions to refine 
personalized treatment for greater precision and effectiveness. 

Single-cell sequencing technology advanced the study of cervical 
cancer, particularly in tumor microenvironment (TME) and tumor cell 
heterogeneity. Through single-cell sequencing (18), TME characteristics 
of cervical cancer were revealed, identifying crucial subpopulations 
involved in immune responses (19–21) Similarly, in studies on tumor 
cell heterogeneity, single-cell sequencing had helped analyze cervical 
cancer tissues with different HPV integration statuses, showing that 
tumor cells with transcriptional HPV integration exhibited reduced 
HLA-related antigen expression and increased expression of immune 
checkpoint ligands (22). This finding indicated that HPV integration 
status had led to transcriptional reprogramming of tumor cells, thereby 
enabling immune evasion (23). By identifying biomarkers associated 
with cervical cancer development, single-cell sequencing showed 
promise for clinical application. Constructing the single-cell immune 
landscape at different stages of cervical cancer helped us track immune 
changes, providing insights for targeted treatments (24). In summary, 
single-cell sequencing advanced cervical cancer research by uncovering 
its biological complexity, aiding early diagnosis, prognosis, and targeted 
treatment (25). 
Materials and methods 

Get cervical cancer data 

Cervical cancer single-cell RNA sequencing (scRNA-seq) data 
were accessed from the GEO database (GSE208653), and bulk 
RNA-seq data, with clinical and mutation information, were 
retrieved from TCGA. Ethical approval was not necessary as the 
data were publicly available (26–28). 
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Analyzing raw data through processing and 
visualization 

R software (version 4.3.0) and Seurat (v4.1.1) (29, 30) were used 
to analyze the 10X genomics data. DoubletFinder (v2.0.3) identified 
and removed doublets (31, 32) while low-quality cells were filtered 
based  on  nFeature  (300–6,000),  nCount  (500–75,000),  
mitochondrial gene expression (<25%), and red blood cell gene 
expression (<5%). The data were normalized, the top 2,000 highly 
variable genes selected. ScaleData functions prepared the gene 
expression data guiding subsequent principal component analysis 
(PCA) (33), and batch correction were applied using Harmony 
(v0.1.1) mitigated batch effects between sample. Seurat’s 
FindClusters and FindNeighbors functions are used initially to 
identify cell clusters. Uniform manifold approximation and 
projection (UMAP) (34) was used to transform high dimensional 
data into a lower dimensional 2D space. 
Investigation into cancer preferences 

To analyze different cell types and tumor cell subtypes’ cancer 
preference, odds ratios (OR) were calculated using the standard 
method (35). 
Enrichment analysis coupled with AUCell 

We performed functional analysis using Gene Ontology (GO) 
(36, 37), analyzing Gene Ontology Biological Process (GOBP) and 
Kyoto Encyclopedia of Genes and Genomes (KEGG) (38) with the 
ClusterProfiler R package (version 4.6.2) (39). Gene Set Enrichment 
Analysis (GSEA) was applied to evaluate gene set expression 
patterns (40). Additionally, AUCell was used to identify active 
gene sets in our scRNA-seq data. The AUCell R package assessed 
stemness gene set enrichment by ranking them using the 
“AUCell_buildRankings” function. Gene set variation analysis 
(GSVA) was conducted to evaluate gene expression variability 
and enrichment in each sample. 
InferCNV for tumor cell detection 

CNV analysis of scRNA-seq data was performed using the 
inferCNV R package (version 1.6.0) (41, 42). The analysis combined 
gene expression and chromosomal location data to assess the CNV 
status of chromosomes in each cell, enabling efficient distinction 
between malignant and normal cells. 
Identification and annotation of cell types 

We begin by extracting cells for each major cell type from the 
integrated overview dataset. Next, these major cell types undergo 
integration for further subclustering. Following integration, we scale 
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genes to unit variance. As a final step, we apply scaling, PCA, and 
clustering as outlined earlier. Cell clusters were initially identified 
with Seurat’s FindClusters and FindNeighbors functions (43). 
Clusters were annotated based on marker gene expression 
averages. Differentially expressed genes (DEGs) among clusters 
were identified using FindAllMarkers (44), tumor cells were re-
clustered and classified by specific marker genes to explore 
their heterogeneity. 
Trajectory analysis of lineages 

Tumor cell subtypes were ranked by differentiation using 
CytoTRACE. Slingshot (v2.6.0) was then applied to infer cell 
lineages, and the “getLineages” and “getCurves” functions 
estimated expression levels, aiding in the understanding of 
differentiation trajectories (45). 
Cellular interaction and signaling 

Cell interactions, including those between tumor subtypes and 
other cells, were visualized using the CellChat R package 
(v1.6.1). Intercellular interactions were inferred from scRNA­

seq data. The “netVisual_diffInteraction” function was 
used to visualize communication intensity differences, and 
“identifyCommunicationPatterns” helped identify communication 
patterns. The CellChat database (http://www.cellchat.org/) was also 
consulted to predict signaling pathways and interactions, with a p-
value cutoff of 0.05. 
SCENIC-based reconstruction of gene 
regulatory networks 

To reconstruct gene regulatory networks and identify stable cell 
states from scRNA-seq data, we applied the pySCENIC (v0.10.0) in 
Python (v3.7). AUCell matrices were used to evaluate the 
enrichment of transcription factors (TFs) and regulatory factor 
activity (46). 
Establishment and validation of a 
predictive model 

Significant prognostic genes were identified using univariate 
Cox and Lasso regression analyses (47–49). Multivariate Cox 
regression was then applied to calculate risk coefficients, forming 
a risk score model (Risk score = i Xi x Yi). Patients were o n 

classified  based  on  the  optimal  cut-off  value  and  the  
“surv_cutpoint” function (50). Survival analysis was performed 
using the Survival package in R (version 4.3.0), and curves were 
visualized with ggsurvplot (51). The model’s accuracy was evaluated 
by generating receiver operating characteristic (ROC) curves with 
the timeROC package (version 0.4.0). To assess the classification 
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performance of the model, we use the area under the ROC curve 
(AUC) (52). 

We validated the independence of the risk score with 
multivariate Cox regression and developed a Nomogram to 
predict overall survival (OS). Internal validation was performed 
using the C-index and calibration curves (53). 
Immune microenvironment assessment 
and analysis 

The CIBERSORT R package (version 0.1.0) was employed to 
score immune cells. We used CIBERSORT, ESTIMATE, and Xcell 
to evaluate the immune microenvironment, including immune 
infiltration and checkpoint gene expression (54–56). We 
examined correlations between immune cells, model genes, OS, 
and risk scores. Tumor immunotherapy response was evaluated 
using the TIDE tool (http://tide.dfci.harvard.edu) (57). 
Assessment of drug sensitivity 

To relate our findings to clinical drug use, we evaluated drug 
sensitivity with the “pRRophetic” package (version 0.5), 
determining half maximal inhibitory concentration (IC50) values 
for each sample and comparing responses between high and low-
risk groups (58). 
Cell cultivation 

Ca Ski and MS751 cells were cultured in RPMI-1640 medium 
with 10% FBS and 1% antibiotics at 37°C with 5% CO2 and 95% 
humidity to ensure optimal growth conditions. 
Application of cell transfection 

To knock down CDC42EP5 expression, cells were transfected 
with RNA constructs from GenePharma (Suzhou, China). Cells, 
seeded at 50% confluence in a 6-well plate, were transfected with si­
CDC42EP5-1, si-CDC42EP5-2, or a control si-RNA (si-NC) using 
Lipofectamine 3000RNAiMAX reagent (Invitrogen, USA), as 
instructed by the manufacturer. Additional si-RNAs from RIbio 
(China) were also introduced. 
Western blot analysis 

At 70% confluence, the transfected cells were lysed with RIPA 
buffer, and lysates were centrifuged at 12,000 rpm for 15 minutes 
(59). The supernatants were analyzed by SDS-PAGE and transferred 
to PVDF membranes. After blocking with 5% BSA for 1.5 hours, the 
membranes were incubated overnight with Anti-CDC42EP5 
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antibody at 4°C. After a 1-hour incubation with a secondary 
antibody, CDC42EP5 was detected via enhanced chemiluminescence. 
qRT-PCR: gene expression quantification 

RNA extraction was performed using Trizol reagent, followed by 
reverse transcription with the PrimeScript™ Kit. Gene expression was 
measured using qRT-PCR with SYBR Green (60, 61). 
Viability analysis of cells 

Cell survival in Ca Ski and MS751 cells was assessed using the 
CCK-8 assay. Cells (5×10³/well) were incubated in 96-well plates for 
24 hours, followed by the addition of 10mL CCK-8 reagent (62). 
Plates were incubated at 37°C for two hours, and absorbance at 450 
nm was recorded daily for four days. The survival pattern was 
plotted using mean optical density values. 
Transwell migration and invasion 
experiment 

Before starting the experiment, cells were serum-starved for 24 
hours in serum-free medium. They were then suspended in Matrigel 
and placed in the upper compartment of Costar transwell plates, with 
serum-containing medium in the lower compartment to create a 
chemotactic gradient. After 48 hours, cells were fixed with 4% 
paraformaldehyde and stained with crystal violet to assess invasion. 
Wound healing assay: cell migration study 

Stably transfected cells were cultured to confluence in 6-well 
plates. Uniform scratches were made with a 200mL pipette tip, and 
the wells were rinsed with PBS. After incubation in serum-free 
medium, the wound area was photographed at 0 and 48 hours. 
Image-J software measured the scratch width to analyze migration. 
EdU proliferation assay experiments 

Ca Ski and MS751 cells were transfected and seeded in 6-well 
plates at 5×10³ cells per well. After 24 hours, EdU reagent was added 
to label DNA for 2 hours. The cells were washed, fixed, 
permeabilized, and stained with Apollo and Hoechst dyes. 
Proliferation was analyzed by fluorescence microscopy. 
Analysis of statistical data 

Statistical analysis was done using R (v4.3.0) and Python (v4.2.0), 
with Wilcoxon’s test  and  Pearson’s correlation  coefficient applied to 
evaluate differences. We defined significance as *P< 0.05, **P< 0.01, 
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***P< 0.001, and  ****P< 0.0001, with  “ns” for non-significant results. 
This approach ensured the robustness of our conclusions (63, 64). 
Results 

Single cell landscape of cervical cancer 
and its analysis of tumor EPCs subtypes 
were explored 

We performed an analysis to reveal the single-cell landscape of the 
cervical cancer microenvironment, as shown in Figure 1 from 
GSE208653, cells from nine samples (NO-HPV, N-HPV, HSIL, and 
CA patients) were classified into forty clusters. The distribution of cells 
by type, stage, and group was displayed. Using UMAP plots for 
dimensionality reduction, eleven cell types were identified: T cell and 
NK cells, endothelial cells (ECs), fibroblasts, smooth muscle cells 
(SMCs), epithelial cells (EPCs), B cells, plasma cells, mast cells, 
neutrophils, proliferating cells, and myeloid cells (Figures 2A, B). 
Figures 2C–E showed cell distribution in different phases (G1, G2/M, 
S) and groups. 

We analyzed cell distribution and density for pMT, Cell Stemness 
AUC, nCount-RNA, G2/M.Score, S.Score, and nFeature-RNA 
Frontiers in Immunology 05 
(Figure 2F). Figure 2G illustrated the value and AUC of various cell 
types. We then assessed the proportions of cell types across groups and 
their distribution. Fibroblasts and EPCs were predominant in HSIL and 
the G1 phase  (Figures 2H–J). To better understand HSIL tissue and the 
role of EPCs and fibroblasts in cervical cancer, we conducted functional 
enrichment analysis. HSIL showed enrichment in cell-substrate 
adhesion, collagen metabolism, phenylalanine metabolism, N-glycan 
biosynthesis, glutathione metabolism, and arginine/proline metabolism 
in G1. HSIL also displayed enrichment in apoptotic signaling, 
mononuclear cell differentiation, RNA splicing regulation, protein 
response, and translation (Figures 2K–M). Most cervical cancers are 
squamous cell carcinomas, typically originating from the squamous 
epithelium of the cervix (65). HPV infection is the primary cause of 
cervical cancer and promotes the carcinogenic transformation of 
cervical EPCs (66). Our findings align with the role of EPCs in 
cervical cancer, highlighting their key involvement in the disease. 
Characterization of tumor EPC subtypes in 
cervical cancer 

To explore tumor EPCs in the TME, we analyzed their CNVs 
using inferCNV with ECs as a reference (Supplementary Figure 1). 
FIGURE 1 

Graphical abstract. Workflow diagram for single-cell sequencing analysis of the GSE208653 dataset. 
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FIGURE 2
 

Single-cell profiling of cervical cancer. (A) The UMAP plot depicted the distribution of fourty seurat clusters across the entire cell population.
 
(B) The UMAP plot displayed the distribution of eleven different cell types, including T cell and NK cells, ECs, Fibroblasts, SMCs, EPCs, B cells, 
Plasma cells, Mast cells, Neutrophils, Proliferating cells, and Myeloid cells. (C) The UMAP plot illustrated the distribution of different cell cycle phases. 
(D, E) The UMAP plots illustrated the distribution of four groups including NO-HPV, N-HPV, HSIL, CA. (F) The UMAP plots was employed to visualize 
the distribution of pMT, Cell Stemness AUC, nCount-RNA, G2/M.Score, S.Score, and nFeature-RNA. (G) The violin plots showed the value and AUC 
of pMT, Cell Stemness AUC, nCount-RNA, G2/M.Score, S.Score and nFeature-RNA in different cell types. (H) The Ro/e score was utilized to assess 
each cell type preference in different cell cycle phases and different groups. (I) The bubble graph showed KEGG enrichment analysis across different 
cell cycle phases. (J) The bubble graph showed KEGG enrichment analysis in different groups. (K) The box plots illustrated the distribution of each 
sample across the eleven cell types. (L) Visualization of enrichment analysis in different cell cycle phases. (M) Visualization of enrichment analysis 
in different groups. 
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Based on CNV levels, tumor EPCs were distinguished from ECs. We 
identified five tumor EPC subtypes using cell markers: C0 TSPAN1+, 
C1 AKR1B10+, C2 TOP2A+, C3 PTPRC+, and C4 LRMP+. Their 
distribution and phases were shown in Figures 3A–D. Figures 3E, F 
depict expression levels of Cell Stemness AUC, CNVScore, G2/ 
M.Score, nFeature-RNA, and nCount-RNA in the subtypes. 
Figure 3G illustrated the differential expression of top five 
marker genes. 

Our analysis showed that the C0 subtype was mainly composed 
of HSIL and CA cells. It had a higher proportion of these cells than 
other subtypes, indicating its potential role in the heterogeneity of 
HSIL and CA. The Ro/e preference plot confirmed a higher 
abundance of C0 cells in these groups (Figures 3H–J). 

The C0 subtype had a significantly higher CNV.Score than 
other subtypes, aligning with the biological traits of cervical cancer. 
It also showed increased nFeature-RNA expression, suggesting a 
more malignant nature. 
Insights into metabolic and biological 
pathways of tumor EPC subtypes 

To investigate the biological functions of tumor EPC subtypes, we 
analyzed EPCs from different tissue types. We utilized a volcano plot to 
illustrate the differential genes in each subgroup. In the C0 subtype, 
significant upregulation was observed for SLPI, B3GNT3, CRIP2, 
SEZ6L2, and  SYCP2, while  genes such  as  TP53AIP1, GSTA4, 
NDRG4, EEF1A1, and  NACA were downregulated (Figure 4A). The 
C0 subtype was associated with actin, filament, polymerization 
(Figure 4B). Enrichment analysis of DEGs in tumor EPC subtypes 
was conducted using GOBP and KEGG. The heatmap showed the top 
five enriched processes (Figure 4C). Following this, we carried out 
GSEA enrichment analysis for C0 subtype and identified ten biological 
processes that were closely related to the C0 subtype. We identified five 
processes with positive correlations, including antigen processing, viral 
entry regulation, macrophage chemotaxis, peptide antigen 
presentation, and T cell immunity. Conversely, five processes showed 
negative correlations: peptide biosynthesis, translation, ribosomal 
biogenesis, and cytoplasmic translation (Figure 4D). C0 TSPAN1+ 
tumor EPCs were linked to viral life cycle, actin organization, and host 
interactions in GOBP, and to adherens junction, tight junction, protein 
processing, focal adhesion, and HPV infection in KEGG. 
Pseudotime analysis to explore the 
developmental and differentiation traits of 
tumor EPC subtypes 

We analyzed the lineage and differentiation of cervical cancer tumor 
EPCs. Figures 5A–C showed that C4 LRMP+ tumor EPCs were in early 
differentiation stages, while C0 TSPAN1+ tumor EPCs were more 
differentiated. To further explore the heterogeneity of tumor EPC 
subtypes in cervical cancer, infer their cell lineage loci and pseudo-
temporal order, and analyze the differentiation loci using Slingshot, we 
identified two cell lineage trajectories for tumor EPC subtypes: Lineage 1: 
Frontiers in Immunology 07 
C4 LRMP+ tumor EPCs→C3 PTPRC+ tumor EPCs→C1 AKR1B10+ 
tumor EPCs→C2  TOP2A+  tumor EPCs;  Lineage 2: C4 LRMP+  tumor  
EPCs→C3 PTPRC+ tumor EPCs→C1 AKR1B10+ tumor EPCs→C0 
TSPAN1+tumor EPCs. The C0 subtype was positioned at the end of 
pseudotime lineage2, a stage typically corresponding to the mature phase 
of cell differentiation. The runslingshot analysis of state progression 
trajectories further confirmed that the C0 subtype was closely related to 
the HSIL and CA groups. Moreover, the terminal points of the state 
trajectories for different groups in runslingshot were found to coincide 
with the C0 subtype (Figure 5D). Through a more detailed analysis of 
the trajectories of each subtype, we reaffirmed that the C0 subtype was at 
the far end of lineage2, displaying an obvious upward trend with data 
values continuously increasing over time (Figure 5E). 

We then used GOBP enrichment analysis to examine the 
biological processes of the two lineages (Figure 5F). The dynamic 
timing revealed gene expression changes of tumor EPCs across the 
two trajectories in pseudotime. 
Cell-cell communication and MK signaling 
pathway visualization 

CellChat was used to assess the communication between tumor 
EPC subtypes and other cell types in cervical cancer. The interactions 
between all cell types were summarized in terms of both number and 
intensity. C0 TSPAN1+ tumor EPCs showed a particularly strong effect 
on fibroblasts compared to other cell types. The circle graphs quantified 
these interactions, with C0 TSPAN1+ tumor EPCs acting as the 
signaling source and target (Figures 6A–C). The findings revealed 
significant communication between C0 TSPAN1+ tumor EPCs 
and fibroblasts. 

Ligand-receptor interactions tied to the MK signaling pathway 
were identified. Analysis revealed that C0 TSPAN1+ tumor EPCs 
played multiple roles—senders, receivers, mediators, and influencers. 
Fibroblasts were also involved, possibly aiding the transformation to 
cancer-associated fibroblasts (CAFs). Fibroblasts acted as receivers, 
mediators, and influencers in interactions with C0 TSPAN1+ tumor 
EPCs. (Figure 6D). High communication between C0 TSPAN1+ 
tumor EPCs and fibroblasts was observed with the MDK-NCL and 
MDK-LRP1 ligand-receptor pairs (Figures 6E, F), and a chord 
diagram further validated these interactions (Figure 6G). C0 
TSPAN1+ tumor EPCs promoted paracrine and autocrine 
interactions with fibroblasts, leading communication (Figure 6H). 

The study revealed key interactions between fibroblasts and 
tumor EPCs in cervical cancer, suggesting that fibroblasts could 
transform into CAFs, promoting cancer progression. 
Exploration of TF regulatory modules 

TFs regulate gene expression by attaching to specific sequences 
upstream of target genes, affecting cell functions. 

We classified cells into four regulatory modules (M1, M2, M3, M4) 
using a connection specificity index matrix based on AUCell score 
similarities. Next, we applied the SCENIC method to cluster cervical 
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FIGURE 3 

TSPAN1+ tumor EPCs specifically expressed in HSIL and CA. (A) The circular plot represented the clustering of five tumor EPCs subtypes identified in 
cervical cancer with contour curves delineating the boundaries of each subtype. The outer axis displayed a logarithmic scale of the total number 
of cells within each category. (B-D) The UMAP plots illustrated the expression distribution of groups, phases and each group across all tumor cells. 
(E) The UMAP plots illustrated the density distribution of Cell Stemness AUC, CNV.Score, G2/M.Score, nFeature-RNA and nCount-RNA. (F) Bar plots 
illustrated the expression levels of Cell Stemness AUC, CNV.Score, G2/M.Score, nFeature-RNA and nCount-RNA across each subtype. (G) Bubble 
plots depicted the mean expression levels of the top five stemness genes in each tumor EPCs subtype. The size of each bubble corresponded to the 
percentage of gene expression, while the color indicated data normalization. (H) The stacked bar graphs displayed the distribution of each cell 
subtype in different sample source and group classifications. (I) The Ro/e score was utilized to assess the group preference of each tumor EPCs 
subtype. (J) The box plots illustrated the distribution of each subtype across different groups. 
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FIGURE 4
 

Metabolic and enrichment analysis in Tumor EPCs of cervical cancer. (A) The volcano plots illustrated the DEGs among the distinct cell subtypes.
 
(B) The word cloud graphs depicted the biological processes linked to each tumor EPC subtype. (C) The heatmap displayed the top five enrichment 
pathways among the five clusters identified through GOBP and KEGG enrichment analysis. (D) GSEA analyzed ten positively or negatively enriched 
pathways in C0 TSPAN1+ tumor EPCs *P< 0.1**P< 0.01, ****P< 0.0001. 
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cancer tumor EPCs by subtype, group, and phase (Figures 7A–C). By 
analyzing TF expression and regulatory activity in different tumor cell 
subtypes, we determined that  the  M1  module mainly regulated  the C0  
TSPAN1+ tumor EPCs (Figure 7D). 
Frontiers in Immunology 10 
We reviewed the top five TFs across tumor EPC subtypes, 
paying particular attention to their specificity scores in different 
tissues (Figures 7E, F). Notably, C0 subtypes exhibited significant 
expression in M1 module. Furthermore, we studied the distribution 
FIGURE 5 

Tumor EPCs subtypes trajectory analysis. (A-C) The UMAP plots showed the distribution of two cell differentiation trajectories and two trajectory 
curves simulated by Slingshot. (D) The UMAP plots showed the differentiation trajectory of different state and different group by using Slingshot. The 
solid lines represented the differentiation trajectories, and the arrows indicated the direction of differentiation. (E) The dynamic trend graphs showed 
the expression of five marker genes. (F) The heatmaps showed GO enrichment pathways during the differentiation process of tumor EPCs. The top 
bar charts represented pseudo-time and seven different subtypes of tumor EPCs. The ridgeline plots showed the distribution density of seven 
subtypes across tumor EPCs, spanning various pseudo-time stages. The trajectory plots showed the expression of S.Score and G2/M. Score (red 
represents S.Score, blue represents G2/M. Score) as they change with pseudotime. 
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FIGURE 6 

Identification of cell crosstalk networks in C0 TSPAN1+ tumor EPCs. (A) The circle diagrams summarized the quantity and intensity of interactions 
between five subtypes of tumor EPCs and ten distinct cell types, providing insights into their interconnectedness. (B, C) The circle diagrams showed 
the strength (upper) and number (lower) of interactions of C0 TSPAN1+ tumor EPCs as the source and target with other cells. (D) The heatmaps 
illustrated the roles of various proteins in different tumor EPCs types. (E, F) The bubble plots and violin plot illustrated the expression levels of key 
genes of the MK signaling pathway in different tumor EPCs types. (G) Chord diagrams showed the communication network of MDK-NCL and MDK­
LRP1 ligand-receptor pairs. (H) Hierarchical graphs detailed the interactions between C0 TSPAN1+ tumor EPCs and other types of cells in MK 
signaling pathway. 
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of the subtypes, ranked the TF for each subtype (Figures 7G, H). We 
also visualized the distribution of five key regulatory factors 
(POU5F1,  MYCN, FOXA3, RAX, and  HNF4G)  across  C0
subtypes (Figure 7I). 
Establishing and evaluating the correlation 
in a risk prediction model 

Univariate Cox regression analysis was performed to evaluate 
each gene’s effect on  prognosis  (Figure 8A). To mitigate 
multicollinearity, we used IHC regression to select the key genes 
(Figure 8B). We conducted multivariate Cox regression analysis and 
found that C4orf48, CDC42EP5, DSG2, PTTG1IP, CA9, and ERO1A 
were independent unfavorable prognostic factors (HR > 1). The 
coefficients for these genes were calculated to measure their survival 
association (Figures 8C, D). 

We calculated the TSPAN1+ tumor EPCs score  for each patient  
using the regression coefficients and expression levels of nine genes, as 
shown in the following formula: TSPAN1+ tumor EPCs score = 
(0.225314727) × (C4orf48 expression) + (0.207132307) × (CDC42EP5 
expression) + (0.205498094) × (DSG2 expression) + (0.196215053) × 
(PTTG1IP expression) + (0.141686413) × (CA9 expression) + 
(0.13721923) × (ERO1A expression) -(0.257186496824633)×(ISG20 
expression) - (0.454610734136572) × (CRIP1 expression) ­
(-0.0352359066640519) × (CD74 expression). 

DEGs analysis was performed to examine differences between 
scoring groups. Based on the optimal TSPAN1+ tumor EPCs score 
cut-off, TCGA participants were divided into high and low TTRS 
(TSPAN1+ tumor EPCs risk score) groups. The analysis revealed that 
high TTRS was associated with poor clinical outcomes. Graph and 
scatter plot showed differences in risk scores, survival, and prognosis, 
with the high TTRS group having worse outcomes (Figure 8E). The 
heatmap highlighted gene expression differences between the high and 
low TTRS groups (Figure 8F). Kaplan-Meier survival curves showed 
worse prognosis for the high TTRS group (Figure 8G). 

The ROC curve demonstrated the model’s ability to predict 
outcomes, showing AUC values at 1, 3, and 5 years (Figure 8H). 
Subgroup analysis of OS predictions across factors like age, tumor 
stage, and risk score revealed notable differences (Figure 8I). The 
risk score was negatively correlated with survival (Figure 8J), 
supporting the conclusion that higher risk scores resulted in 
shorter survival. Subsequently, we performed scatter plot analysis 
to assess the risk of prognostic genes and evaluated their survival 
curves and expression profiles in both the high and low TTRS risk 
groups (Figure 8K, Supplementary Figures 2A, B). The survival 
analysis highlighted CDC42EP5 as the comparatively relevant gene 
for the high TTRS group, leading to its selection for experimental 
study (Figure 8L). 
Experimental validation in vitro 

To investigate CDC42EP5’s role in cervical cancer, we 
conducted in vitro experiments on Ca Ski and MS751 cells. 
Frontiers in Immunology 12 
CDC42EP5 knockdown significantly reduced both mRNA and 
protein levels (Figure 9A). This reduction led to decreased cell 
viability (Figure 9B), fewer colonies (Figures 9C, D), and impaired 
migration and invasion (Figures 9E–I). Additionally, Transwell and 
EDU assays confirmed that CDC42EP5 knockdown inhibited cell 
proliferation (Figures 9E, J, K). 

In conclusion, knockdown of CDC42EP5 inhibited tumor cell 
activity, migration, invasion, and proliferation, resulting in 
suppressed tumor growth. This inhibition was correlated with 
tumor progression and adverse prognosis. 
Immunoinfiltration, investigation of DEG, 
functional enrichment, and drug sensitivity 
evaluation 

Visualization and enrichment analysis were employed to assess 
gene expression and biological processes in high and low-risk 
groups. We began with a stacked bar chart to show cell 
proportions in these groups (Figures 10A, B). The incidence of 
TIDE was slightly lower in the high TTRS group (Figure 10C), 
which may have indicated to have a higher likelihood of benefiting 
from immune checkpoint inhibitor treatment. A low TIDE score 
likely reflected a better outcome from immunotherapy (67). 
Reduced Stromal, Immune, and ESTIMATE Scores pointed to 
lower cell infiltration, implying higher tumor purity and 
enhanced invasiveness (Figure 10D). 

A positive correlation between CD74 and most immune 
checkpoint genes was observed, while CA9 showed a negative 
correlation (Figures 10E, F). The prognostic model revealed a 
positive link to M0 macrophages and a negative one to M1 
macrophages, both associated with immune evasion and cancer 
progression. This pattern suggested that immune evasion may be 
contributing to poor prognosis. By analyzing the immune 
microenvironment, we gained a deeper understanding of 
macrophage polarization, TME interactions, and disease progression. 
We also investigated the relationship between these genes and immune 
checkpoint-associated genes (Figures 10G–I, 11A). Volcano plots 
depicted DEG upregulation and downregulation (Figure 10J). 

GO enrichment analysis revealed important biological 
processes, components, and molecular functions. Genes in GOBP 
were mostly enriched in axoneme assembly and microtubule bundle 
formation. For GOCC, the enrichment was primarily in the 
axoneme and ciliary plasm. In GOMF, the genes showed 
significant enrichment in extracellular matrix structural 
constituents and water channel activity (Figure 10K). Further 
analysis of the immune environment and KEGG pathway 
enrichment of differential genes revealed pathways like salivary 
secretion, staphylococcus aureus infection, and tyrosine 
metabolism. We performed a GSEA of the enriched pathways, 
finding positive enrichment in endothelial cell migration, collagen 
fibril organization, and skin epidermis development. Conversely, 
antigen receptor signaling, B cell immunity, lymphocyte-mediated 
immunity, and immune response-regulating receptor pathways 
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FIGURE 7 

Cluster analysis of TFs and the top five TFs in each Tumor EPCs subtype. (A) Heatmap displayed the identification of four regulatory modules in 
tumor EPCs subtypes based on SCENIC regulatory rule modules and AUCell similarity scores. (B, C) UMAP plots colored and visualized all tumor 
EPCs based on the activity scores of regulatory modules, respectively, according to tumor EPCs subtypes, group and phases classifications. 
(D) The violin plots illustrated the expression levels of five tumor EPCs subtypes in four modules comprised by M1, M2, M3, M4. (E) The heatmap 
displayed top five TFs in five tumor EPCs subtypes. (F) The Scatter plots displayed the ranking of TF regulatory activity scores for different tumor 
EPCs subtypes in four modules. (G, H) The UMAP plots visualized the distribution of each tumor EPCs. The Scatter plots displayed the ranking 
of TF specificity scores for top five TFs in different tumor EPCs subtypes. (I) The UMAP plots visualized the distribution of top five TFs across C0 
TSPAN1+ tumor EPCs. 
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FIGURE 8 

Construction and validation of the C0 TSPAN1+ Tumor EPCs risk score (TTRS) model. (A) Forest plot of univariate Cox regression analysis showed 
genes with significant differences (HR<1: protective factors, HR>1: risk factors). (B) LASSO regression analysis identified eleven prognostic-related 
genes. Each line represents the coefficient of a specific screened to have significant prognostic potential(up). The optimal parameter was determined 
through cross-validation (upper plot), and the LASSO coefficient curve was determined using the optimal lambda (lower plot). (C) Forest plot 
displayed nine genes obtained from multivariate Cox analysis that were associated with prognosis. (D) Bar graph showed the coefficient values of the 
genes used for model construction. (E) Curve chart illustrated the risk scores of high and low TTRS groups, and scatter plot depicted survival/death 
events over time for both groups. (F) The heatmap showed the expression of nine risk genes in the high TTRS group and the low TTRS group, with 
color scale based on normalized data. (G) Kaplan-Meier survival curve illustrated the survival differences among high TTRS group and low TTRS 
group. (H) Calculated the area AUC for predicting outcomes at the 1st, 3rd, and 5th years in the queue. (I) Nomogram showed the prediction of 1st, 
2nd, and 3rd years of OS based on race, tumor clinical stage (T, M, and N), age, and risk score, with the most significant difference in the risk score 
group. *P< 0.1 **P< 0.01, ***P< 0.001. (J) Heatmap and Scatter plots demonstrated the correlation between prognostic genes, OS, and genes used 
in model establishment. The scatter plot showed that risk score was inversely proportional to OS. (K) The scatter plots showed the correlation of 
nine genes with OS. (L) Kaplan-Meier survival curve illustrated the survival differences among high CDC42EP5 group and low CDC42EP5 group. 
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FIGURE 9 

In vitro experiments confirmed the effects of CDC42EP5 knockdown. (A) The bar graphs showed the expression of gene mRNA (left) and gene-
encoded proteins (right) in the three groups of si-NC, siCDC42EP5-1, and siCDC42EP5-2 in Ca Ski and MS751 cell lines. Following CDC42EP5 
knockdown, both mRNA and protein expression levels were significantly reduced. (B) The CCK-8 assay results showed a notable reduction in cell 
viability in the Ca Ski and MS751 cell lines following the knockdown of CDC42EP5. (C, D) Colony formation assays demonstrated a significant 
decrease in colony numbers after CDC42EP5 knockdown. The bar graphs showed the colony numbers in two cell lines. (E-G) Transwell assays 
showed that CDC42EP5 knockdown suppressed the migration and invasion abilities of tumor EPCs in Ca Ski and MS751 cell lines. (H, I) The cell 
wound healing assays evaluated the migration ability of C0 TSPAN1+ tumor EPCs after treatment. Bar graph displayed a significant decrease in 
wound healing capabilities after CDC42EP5 knockdown. (J, K) The EDU staining assay confirmed that CDC42EP5 knockdown exerted an inhibitory 
effect on cell proliferation. **P< 0.01, and ***P< 0.001. 
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FIGURE 10 

Immunoinfiltration differences, enrichment analysis across different risk groups. (A, B) The stacked bar graph and box plot displayed the estimated 
proportions of 22 types of immune cells among different risk score groups. (C) The violin plot illustrated TIDE expression levels in different risk score 
groups. (D) The analysis compared the differences in Stromal Score, Immune Score, and ESTIMATE Score between the high TTRS group and low 
TTRS group. (E) The bubble plots illustrated correlations among modeled genes, risk scores, OS, and immune checkpoint-related genes. (F) The box 
plot presented the expression levels of immune checkpoint-related genes in both the high TTRS group and low TTRS group. (G, H) The lollipop 
chart and heatmap demonstrated the relationship between genes and immune patterns and expression in the high TTRS group versus the low TTRS 
group. (I) The heatmap demonstrated the relationship between genes and immune patterns. (J) The volcano plot showed the significantly 
upregulated and downregulated genes in the high TTRS group and low TTRS group. (K) The bubble plots sequentially displayed Biological Process 
(BP), Cellular Component (CC), and Molecular Function (MF) categories from the GO enrichment analysis. *P< 0.05, **P< 0.01, and ***P< 0.001, “ns” 
was used to say that there was no significant difference. 
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showed negative trends (Figures 11B, C). GSVA analysis of both 
TTRS groups revealed functional distinctions (Figure 11D). 

Finally, the high TTRS group displayed increased sensitivity to 
Shikonin, Bleomycin, and  Docetaxel. Meanwhile, the  low-risk
group had lower IC50 values for Methotrexate, Metformin, and 
Erlotinib,  implying  these drugs  could be more effective  for
them (Figure 11E). 
Discussion 

TME in cervical cancer has been established as a crucial factor 
affecting its development, progression, and therapeutic response 
(68). In recent years, with the advancement of multi-omics 
techniques, considerable progress has been made in the study of 
the TME of cervical cancer, unveiling its complex cellular 
composition and the interactions among different cell types. The 
cervical cancer TME comprises various immune cells, such as 
tumor-infiltrating lymphocytes (TILs), regulatory T cells (Tregs), 
dendritic cells (DCs), and tumor-associated macrophages (TAMs). 
These cells, through the secretion of cytokines and their 
interactions, create a complex immune microenvironment that 
influences the recurrence and metastasis of cervical cancer (69). 
Research has used multi-omics analysis to highlight the tumor cell 
expression heterogeneity and the immune microenvironment 
diversity in cervical squamous cell carcinoma (66). We also 
employed single-cell sequencing to characterize the cervical 
cancer TME and found that EPCs had elevated pMT, Cell 
Stemness AUC, nCount-RNA, G2/M.score, S.score, and nFeature-
RNA, signifying higher metabolic activity, greater transcriptional 
complexity, and stronger stemness. EPCs were found to be in a 
proliferative state, with an active cell cycle, thus holding significant 
research potential (70). Other studies have shown that EPCs 
migrated to tumor sites and differentiated into endothelial cells, 
promoting tumor angiogenesis, a crucial process for tumor growth 
and metastasis. EPCs might interact with immune cells within the 
TME, playing a role in the formation of an immune-suppressive 
environment that aids tumor cells in evading immune surveillance 
and accelerates tumor progression. 

We further investigated and analyzed the EPCs subtypes, 
categorizing them into C0 TSPAN1+ Tumor EPCs, C1 AKR1B10 
+ Tumor EPCs, C2 TOP2A+ Tumor EPCs, C3 PTPRC+ Tumor 
EPCs, and C4 LRMP+ Tumor EPCs. Among these, TSPAN1 plays a 
critical role in various cancers and is associated with processes such 
as tumor proliferation, invasion, apoptosis, autophagy, 
angiogenesis, stemness, and metastasis (71). TSPAN1 can activate 
PI3K/AKT and EGFR/MAPK/ERK signaling pathways, enhancing 
tumor cell proliferation (72). TSPAN1 may promote tumor 
angiogenesis by influencing EPCs in the TME. Tumor EPCs, as 
precursor cells involved in new blood vessel formation, play a 
pivotal role in tumor growth and metastasis. TSPAN1 might affect 
tumor invasion and metastasis by modulating the expression of 
matrix metalloproteinases, which involves EPCs’ function (73). The 
expression of TSPAN1 varies in different cancer types, making it a 
potential biomarker for cancer diagnosis and prognosis (74). The 
Frontiers in Immunology 17 
combined evaluation of TSPAN1 with other molecules such as 
PTEN may improve predictions of tumor invasiveness (75). 
AKR1B10, an NAD(P)H-dependent enzyme in the aldo-keto 
reductase family, plays a crucial role in the proliferation and 
metastasis of various malignancies, including hepatocellular 
carcinoma (76). AKR1B10 influences liver cancer cell proliferation 
and apoptosis by regulating the glycolytic pathway. It also plays a 
significant role in the tumor immune microenvironment, 
correlating positively with the infiltration levels of immune cells 
like macrophages and activated dendritic cells. AKR1B10 is also 
significantly associated with immune regulatory factors, including a 
positive correlation with the immune checkpoint molecule CTLA-4 
(77). TOP2A, a DNA topoisomerase, plays a key role in DNA 
replication, transcription, and chromosome structure maintenance. 
TOP2A is closely related to tumor development, invasion, therapy, 
and prognosis through its involvement in the cell cycle and 
apoptosis. TOP2A expression increases in various tumors, 
particularly non-small cell lung cancer, where its expression 
correlates with tumor differentiation, TNM staging, and lymph 
node metastasis (78). TOP2A interacts with Wnt3a to activate the 
Wnt signaling pathway, promoting tumor formation, progression, 
and metastasis (79). TOP2A is an important target for cancer drug 
development, with inhibitors such as doxorubicin and epirubicin 
being used in chemotherapy (80, 81). Co-amplification of HER2 
and TOP2A serves as a sensitive indicator for selecting 
anthracycline-based chemotherapy for invasive breast cancer 
patients, who can benefit significantly from these treatments (82). 
Finally, PTPRC, also known as CD45, is a transmembrane 
glycoprotein expressed on almost all hematopoietic cells, except 
for mature red blood cells. PTPRC is a critical regulator in the 
activation of T and B cell antigen receptors. Disruption of PTPRC 
balance can lead to immune deficiencies, autoimmune diseases, or 
malignancies (83). Additionally, lymphoid-restricted membrane 
protein (LRMP), associated with the endoplasmic reticulum, has 
been found to be expressed in a developmentally regulated manner 
in B and T cell lines (84). Under endoplasmic reticulum stress 
conditions, Rictor phosphorylation at S1235 interferes with the 
binding between AKT and mTORC2, consequently inhibiting the 
phosphorylation of AKT at Ser473 via glycogen synthase kinase-3b 
(GSK-3b) (85). 

The elevated CNV.Score observed in the C0 subtype revealed 
considerable genomic alterations, which not only enhanced the 
cellular heterogeneity but also implied a reduced stemness and 
increased malignant potential. This group of cells was positioned at 
the terminal end of the pseudotemporal lineage2 trajectory, 
typically indicative of the final stage in a cell’s developmental 
path. However, the terminal position of the C0 subtype did not 
signify complete differentiation but rather a state of low 
differentiation, which was closely associated with the tumor cells’ 
high proliferative and invasive capabilities (86). In pseudotemporal 
analysis, cells located at the end of the trajectory usually represented 
the most mature phase in their differentiation process, having 
completed multiple differentiation steps from stem or progenitor 
cells. Studying the cells at this terminal point allowed researchers to 
gain a deeper understanding of pivotal events in the differentiation 
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FIGURE 11 

Immunoinfiltration differences, enrichment analysis, and drug sensitivity analysis across different risk groups. (A) The heatmap highlighted the differences 
in model gene expression, stromal score, immune score, ESTIMATE Score, tumor purity, and levels of immune cell infiltration calculated using 
CIBERSORT and Xcell between the high and low TTRS groups. Color scales were based on standardized data. (B) KEGG enrichment bar plot showed top 
20 enrichment pathways. (C) Eight GSEA pathways that were positively and negatively enriched. (D) Detailed results of the GSVA enrichment analyses for 
differential gene sets between the high TTRS group and low TTRS group were presented. (E) The violin plots illustrated the differences in IC50 values of 
various chemotherapy drugs between the high TTRS group and the low TTRS group. *P< 0.05,  **P< 0.01, and ***P< 0.001. 
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process, such as the determination of cell fate, the activation or 
suppression of essential genes, and how cells responded to the 
surrounding microenvironment (87). In disease research, analyzing 
the terminal points in pseudotemporal differentiation proved 
crucial for identifying abnormal differentiation pathways in the 
disease state. By examining the C0 subtype, we gained insights into 
the key junctures in tumor cell differentiation, revealing how these 
critical points influenced tumor progression and patient prognosis, 
and potentially offering novel therapeutic targets. 

TSPAN1 likely influenced tumor progression within the TME 
by regulating the interaction between tumor endothelial progenitor 
cells and fibroblasts. CAFs constituted one of the major 
components of this microenvironment. Through direct contact 
with tumor endothelial cells and intercellular signaling, CAFs 
actively participated in the formation of tumor microvasculature, 
tumor growth, and invasion processes (88). Specifically, TSPAN1 
might have modulated intercellular signaling pathways, thereby 
affecting the function of both CAFs and tumor endothelial 
progenitor cells. This modulation could influence the dynamic 
balance within the TME, which plays a critical role in 
tumor progression. 

TSPAN1 expression in breast cancer was associated with 
increased migration and invasion. Knockdown of TSPAN1 
reduced these traits in MDA-MB-231 and SUM159PT cells and 
modified epithelial-mesenchymal transition (EMT)-related proteins 
expression (89). This suggests that TSPAN1 may regulate key 
processes that promote metastasis in breast cancer. 

Similarly, in gastric cancer, TSPAN1 appeared to regulate 
CDH11 expression, which, in turn, mediated the interaction 
between gastric cancer cells and CAFs. The expression of CDH11 
correlated closely with CAF markers, highlighting the potential role 
of TSPAN1 in influencing the TME through CDH11-mediated 
signaling pathways. Moreover, TSPAN1 might have activated the 
YAP signaling pathway, promoting the nuclear translocation of 
YAP and subsequently upregulating Tenascin-C (TNC) expression. 
This activation could enhance gastric cancer cell migration and 
facilitate tumor spheroid formation, further contributing to 
cancer progression. 

Additionally, TSPAN1 was involved in the regulation of 
extracellular matrix (ECM) proteins, particularly interacting with 
collagen I in fibroblasts. This interaction likely influenced the 
fibroblasts’ collagen contraction ability, which is essential for 
tumor cell invasion and metastasis (90). By modulating the ECM 
composition and structure, TSPAN1 could directly affect the 
function of tumor endothelial progenitor cells, thereby 
influencing tumor angiogenesis and contributing to the overall 
progression of the tumor. 

The C0 subtype, with MDK-LRP1 and MDK-NCL as its 
sources, both being part of the MK pathway, suggested that 
MDK, a heparin-binding growth factor, could interact with its 
receptor,  LRP1.  LRP1,  expressed  by  tumor-infi ltrating  
macrophages, promoted the differentiation of immunosuppressive 
macrophages (91). The expression of LRP1 in cervical cancer tissues 
was found to differ from that in normal cervical tissue. In cervical 
cancer, LRP1 expression was potentially linked to tumor 
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development. Studies indicated that aberrant LRP1 expression in 
cervical cancer might contribute to poor therapeutic outcomes. 
High LRP1 expression was associated with low differentiation in 
cervical cancer and a shorter overall survival (OS) in patients, 
suggesting that LRP1 could serve as an effective prognostic factor 
for poor clinical outcomes in cervical cancer (92). Thus, MDK­

LRP1 may impact cervical cancer progression and prognosis by 
modulating macrophage behavior, immune responses, and directly 
influencing cancer cell proliferation and invasion. Research using 
scRNA-seq and spatial transcriptomics highlighted MDK-NCL­

dependent immune suppression in endometrial cancer. It found 
that cancer cells transmit malignant phenotypes to endothelial cells 
via MDK-NCL signaling, which is linked to immune suppression, 
suggesting a role in TME modulation. Downregulating NCL was 
found to inhibit tumor growth in cervical cancer through the PI3K/ 
AKT pathway, indicating NCL’s significant role in cancer 
progression and its potential as a therapeutic target (93). As a 
growth factor, MDK contributes significantly to cancer progression 
and holds potential as a therapeutic target. Its expression in the 
TME could influence chemotherapy sensitivity, and MDK 
inhibitors are currently under preclinical development. 
Additionally, targeting MDK has been shown to eliminate IFN-g­
induced metastasis in various cancer types, further highlighting its 
potential role in cancer progression and metastasis (94, 95). In 
conclusion, the MDK-NCL signaling network may influence 
cervical cancer by impacting the immune microenvironment and 
promoting the malignant phenotype of tumor cells, with NCL 
expression linked to immune suppression, while MDK remains a 
potential target for cervical cancer therapy. 

We discovered the five most prominent TFs in the C0 subgroup 
during our study. FOXA3, part of the FOXA family, was essential 
for the development and functional maintenance of organs such as 
the liver and pancreas (96). Similarly, HNF4G, a TF in the HNF4 
family, was involved in the development and functional integrity of 
the liver, kidneys, and other organs (97). Moreover, MYCN, a TF 
from the MYC family, regulated key processes such as the cell cycle, 
proliferation, and apoptosis (98). As a member of the POU domain 
family, the POU5F1 protein regulated differentiation by binding 
specific octamer DNA motifs (99). RAX, another key TF, was 
essential for the development of the retina and brain and the 
differentiation of retinal ganglion cells (100). 

Creation of a prognostic model that is founded on the 
classification of tumor cell subtypes represents a highly 
individualized and advanced method for forecasting the potential 
outcomes of patients with cancer (101). By meticulously analyzing 
the distinct characteristics and biological behaviors of different 
tumor cell subtypes, this model can provide highly tailored 
predictions regarding disease progression, survival rates, and 
potential complications. Moreover, it serves as a crucial tool for 
guiding personalized treatment decisions. Through our analysis of 
prognostic genes, we discovered that CDC42EP5 played a vital role 
in prognosis. As a protein-coding gene, CDC42EP5 belonged to the 
Borg family of CDC42 effector proteins. CDC42, a small GTPase, 
controlled the formation of F-actin structures by interacting with its 
downstream effector proteins (102). Research suggested that 
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CDC42EP5 was involved in multiple types of cancer. Knocking out 
CDC42EP5 in prostate cancer increased the invasive and metastatic 
abilities of the cells (103). These findings indicated that CDC42EP5 
might regulate tumor invasion and metastasis, with a similar 
mechanism potentially present in cervical cancer. By performing 
further cell experiments, we provided additional evidence 
supporting this conclusion. 

Immune checkpoints were key in regulating immune responses, 
with tumor cells often avoiding immune detection by increasing 
their expression, thereby inhibiting local immune reactions (104). 
Given the plentiful immune cells in cervical cancer TME, we studied 
variations in immune cell infiltration across distinct risk groups. 
Among high TTRS group, a decreased TIDE score reflected weaker 
immune evasion by the tumor, meaning that the immune system 
could more effectively detect and attack malignant cells (105, 106). 
As a result, these patients tended to exhibit a better response to 
immune checkpoint inhibitor treatment. 

The immune microenvironment analysis showed that the high-risk 
group had lower stromal and immune scores, indicating reduced 
immune cell infiltration in the tumor. This reduced immune 
presence suggests increased tumor aggression and metastatic 
potential, supporting the idea that tumor purity influences 
invasiveness (107). 

We also observed that the expression of CD74, a key immune

checkpoint-related gene, was positively correlated with several other 
immune checkpoints, while CA9 was negatively correlated. The 
findings suggest that immune checkpoints might be co-regulated, 
contributing to tumor immune evasion. Macrophage polarization 
was notably associated with prognosis: high levels of M0 
macrophages in the high-risk group were tied to a worse prognosis, 
while M1 macrophages  were  inversely related to cancer progression 
(108). These findings suggest that macrophage polarization within the 
TME is critical for immune evasion and disease outcome. 

Cervical cancer exhibited significant tumor heterogeneity, making 
precision medicine crucial. The study found that patients in the high 
TTRS group were more sensitive to drugs such as Shikonin, Docetaxel, 
and Camptothecin, whereas those in the low TTRS group responded 
better to Methotrexate, Metformin, and Erlotinib. 

Shikonin inhibited the proliferation, migration, and invasion of 
cervical cancer cells, including HeLa and CaSki cells. It also induced 
apoptosis and regulated key signaling pathways, such as ROS/ 
MAPK, Wnt/b-catenin, and FAK (109, 110). Patients in the high 
TTRS group exhibited greater sensitivity to Shikonin, as observed in 
previous studies. Docetaxel, a taxane chemotherapy, inhibits cell 
division by blocking microtubule depolymerization. It was used in 
neoadjuvant chemotherapy, combination chemotherapy, and 
second-line treatments for cervical cancer, demonstrating efficacy, 
although not without adverse effects (111). Furthermore, they 
enhanced therapeutic efficacy when combined with radiotherapy 
or chemotherapy (112–114). AUY922 was a potent HSP90 inhibitor 
that showed promising anticancer activity in various tumors. Since 
HSP90 supported the survival and proliferation of cancer cells, 
AUY922 disrupted this process by degrading key oncogenic 
proteins, ultimately leading to cell cycle arrest and apoptosis 
(115). NVP-BEZ235 (Dactolisib) acted as a dual PI3K/mTOR 
Frontiers in Immunology 20 
inhibitor and was shown to inhibit cervical cancer cell 
proliferation while inducing apoptosis in cellular assays. 
Furthermore, its effectiveness was enhanced in combination 
treatments and it exhibited radiosensitizing properties (116). 

Primarily used as a tyrosine kinase inhibitor in chronic 
myelogenous leukemia (CML) treatment, Bosutinib also exerted 
tumor-suppressive effects in cervical cancer. It achieved this by 
downregulating Src/NF-kappaB/Survivin expression in HeLa cells 
(117, 118). As an antitumor antibiotic, Bleomycin was commonly 
used in conjunction with cisplatin for interventional and neoadjuvant 
chemotherapy in the treatment of locally advanced cervical cancer. 
Although it yielded significant results, its administration required 
caution due to the potential for pulmonary toxicity and other 
adverse effects (119). The selective mTOR kinase inhibitor AZD8055 
displayed antitumor properties by inhibiting the mTORC1 and 
mTORC2 complexes (120). Additionally, AZD8055 enhanced the 
antitumor efficacy of other agents, such as HDAC inhibitors and 
MEK inhibitors (121). As a naturally occurring compound with 
antitumor properties, Embelin affected cervical cancer by targeting 
the SLC16A1/3 pathway. Through this action, it regulated the 
glycolysis and redox homeostasis of tumor cells, which ultimately 
suppressed the growth of cervical cancer cells (122). 

In particular, doxorubicin, known for its broad-spectrum 
antitumor properties, was effectively applied in the treatment of 
cervical cancer. Nevertheless, the drug necessitated careful 
monitoring due to risks of cardiotoxicity and additional side 
effects (123). It is noteworthy that CHIR-99021, a GSK-3a/b 
inhibitor, was mainly applied in the basic research of cervical 
cancer and organoid model development. At that time, it had not 
entered clinical trials, and its safety and efficacy in cervical cancer 
treatment remained under further investigation (124). 

Furthermore, Pazopanib, an oral multi-target tyrosine kinase 
inhibitor, had not yet become a standard treatment for cervical 
cancer but showed promise in improving survival and treatment 
outcomes when combined with chemotherapy or radiotherapy. 
Therefore, further clinical trials were essential to evaluate its 
safety and effectiveness. These drugs demonstrated distinct 
operational mechanisms and potential efficacy in the approach to 
cervical cancer. They exhibited better drug sensitivity in the high 
TTRS group, although some of these drugs were still in the research 
phase. Therefore, more clinical trials were needed in the future to 
verify their safety and efficacy. 

Recent research mainly focused on specific cell types and 
signaling pathways in the cervical cancer TME, such as EPCs and 
their associated pathways (e.g., TSPAN1, AKR1B10), while studies on 
other cell types and molecular mechanisms were relatively scarce. 
This limitation might have prevented a holistic understanding of the 
cervical cancer TME. Additionally, the sample size was limited, and 
although single-cell sequencing provided a high-resolution cellular 
landscape, its restricted sample availability, potentially impacting the 
generalizability of findings. Additionally, we aimed to integrate 
advanced technologies such as spatial transcriptomics and single-
cell multi-omics to further dissect the spatial and cellular 
heterogeneity of the tumor microenvironment. Experimental 
validation was also insufficient, as many conclusions were drawn 
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primarily from bioinformatics analyses and in vitro experiments, 
lacking in vivo confirmation. Some drugs demonstrated promising 
effects in vitro, but whether they would be equally effective in vivo 
remained uncertain. Moreover, clinical applications had not yet been 
fully validated, as many therapeutic targets and drugs (e.g., MDK, 
NCL, CDC42EP5) were still in the research phase, with their safety 
and efficacy in clinical settings yet to be established. 

To overcome these limitations, future research could expand 
the scope by investigating additional cell types and molecular 
mechanisms within the cervical cancer TME, such as CAFs and 
TANs, as well as their interactions with tumor and immune cells, to 
better capture the complexity of the TME. Increasing the sample 
size through multicenter collaborations could enhance the 
reliability and generalizability of research findings. Strengthening 
in vivo validation by conducting animal model experiments could 
help confirm the efficacy of drugs and therapeutic targets, ensuring 
their successful translation into clinical practice. Accelerating 
clinical trials for promising therapeutic targets and drugs would 
facilitate their validation in patients, ultimately improving 
treatment options for cervical cancer. Furthermore, integrating 
multi-omics approaches, such as genomics, transcriptomics, 
proteomics, and metabolomics, could provide deeper insights into 
the cervical cancer TME and uncover novel therapeutic targets and 
biomarkers. Longitudinal studies could be conducted to observe 
changes in the TME over disease progression and assess treatment 
impacts, contributing to personalized medicine. Lastly, developing 
individualized treatment strategies based on patient-specific 
characteristics and TME heterogeneity could improve therapeutic 
efficacy while reducing adverse effects. 
Conclusion 

This study utilized multi-omics approaches to reveal the 
essential function of TSPAN1 EPCs in the cervical cancer TME. 
However, further improvements, such as expanding the dataset, 
enhancing experimental validation, and optimizing clinical 
translation strategies, were needed to increase the credibility of 
the findings. Future studies could focus on developing TSPAN1­
targeted combination therapies and applying spatial multi-omics 
technologies to explore the dynamic evolution of the TME, paving 
the way for more precise therapeutic strategies. 
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SUPPLEMENTARY FIGURE 1 

The analysis of inferCNV. (A, B) The analysis of inferCNV. Using scRNA-seq 
data of ECs to predict CNV. Red indicated amplification, while green 
indicated deletion. 
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SUPPLEMENTARY FIGURE 2 

The analysis and expression levels of prognostic genes. (A, B) Kaplan-Meier 
survival curves depicted the prognostic genes of C0 TSPAN1+ tumor EPCs 
and the prognostic genes expression levels across high and low TTRS groups. 
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