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Colorectal cancer (CRC) is among the most prevalent and lethal cancers globally,

accounting for approximately 10% of all cancer cases and deaths. Regulatory T

(Treg) cells, which accumulate in CRC tissue, suppress anti-tumor immune

responses and facilitate tumor progression. This review discusses Treg cell

origins and functions, along with the mechanisms by which Tregs influence

CRC development. In addition, we highlight therapeutic strategies targeting

Tregs-such as immune checkpoint inhibitors and combinatorial approaches-to

enhance effector T cell responses. A deeper understanding of Treg-mediated

immunosuppression in CRC may inform the design of more effective

immunotherapies and precision medicine strategies.
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1 Introduction

Colorectal cancer (CRC) is the third most common cancer worldwide, contributing to

10% of cancer cases and deaths globally (1). It is a heterogeneous disease, with genetic and

molecular variations affecting clinical outcomes and treatment responses (2, 3).

Approximately 70% of CRC cases are sporadic, while 20%-30% are familial, with one-

third linked to highly penetrant genetic mutations, referred to as hereditary CRC. The

remaining familial cases involve low-expressivity susceptibility genes and polymorphisms

influenced by environmental or genetic factors (4–6). Chronic inflammation, particularly

in inflammatory bowel disease (IBD), also increases CRC risk (7, 8). Colorectal polyps or

adenomas, arising from epithelial cells, are precursors to CRC, where genetic and epigenetic

changes lead to malignant transformation, progressing through the adenoma-carcinoma

sequence (2, 3).

Host immune status significantly influences CRC development. Immune cells play a

critical role in tumor immunity by suppressing immune effector cells in the tumor
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microenvironment (TME) (9–12), facilitating immune evasion and

tumor growth (13–17). Studies show increased Treg infiltration in

CRC tissues compared to normal tissues, correlating with higher

TNM stages and elevated mRNA expression of Foxp3, IL-10, and

TGF-b1 in tumor-infiltrating CD4+ T cells (18). Peripheral blood

Treg levels are also higher in CRC patients, with greater Treg

infiltration in tumor-adjacent tissues and regional lymph nodes

than in distant or non-regional nodes (19, 20). Depleting Tregs can

enhance cancer immunotherapy efficacy (21), but risks autoimmune

diseases by disrupting immune tolerance (22, 23). Effective

immunotherapy should selectively target TME Tregs while

preserving peripheral Tregs to avoid autoimmune responses (24–26).

While CRC treatment primarily relies on surgery, radiotherapy,

and chemotherapy, targeted therapies and immunotherapies are

increasingly utilized, advancing “immuno-precision medicine.”

Tregs typically promote tumor progression by suppressing anti-

tumor immunity but may also exert anti-inflammatory protective

effects, particularly in early tumorigenesis, where excessive

inflammation could drive malignancy (27). The dual roles of

Tregs in CRC remain incompletely understood, necessitating

further research to develop context-specific immunotherapeutic

strategies. This review introduced the role of Treg cells in CRC

and progress in immunotherapy targeting Treg cells.
2 Origins and classification of Treg
cells

Treg cells are classified based on their developmental origins

into natural regulatory T cells and peripherally induced regulatory

T cells (28–31). Thymus-derived Treg cells, formally known as

naturally occurring Treg (nTreg) cells, develop in the thymus from

CD4+ single-positive thymocytes and are considered to exhibit a

high affinity for self-peptide major histocompatibility complex

(MHC) molecules through their T cell receptor (TCR) (32). In

contrast, peripheral Treg (pTreg) cells are generated in the

periphery following antigen encounter under the influence of

various factors, such as IL-2 and TGF-b (33). The pathways for

the generation of Treg cells in the TME differ from those in normal

tissues. In the TME, multiple factors interact to influence immune

cells generation (34, 35). Chemokines recruit Treg cells from the

thymus, bone marrow, lymph nodes, and peripheral blood to the

tumor site, where they proliferate. Dysfunctional antigen-

presenting cells can also induce the differentiation and

proliferation of Treg cells. Moreover, suppressive molecules in the

TME can directly convert CD4+CD25+ T cells into CD4+CD25+

FoxP3+ Treg cells (36).

Treg cells are integral to immune tolerance and anti-

inflammatory responses, comprising both CD4+ and CD8+

subtypes (37). Both subsets exhibit functional differences, with a

prominent distinction in their recognition of antigens. CD8+ Treg

cells recognize antigens presented by MHC-I molecules, which are

expressed on nearly all nucleated cells, enabling them to be activated

by virtually any cell and exert inhibitory functions. In contrast,

CD4+ Treg cells are activated only by cells expressing MHC-II
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molecules (37). Foxp3, a member of the forkhead transcription

factor family, is a key intracellular marker and the principal

regulatory factor of Treg cells (38, 39). Human Foxp3+ CD4+ T

cells can be classified into three subsets based on the expression of

CD4, CD45RA, CD25, and Foxp3: naïve/resting Treg cells, effector/

activated Treg (eTreg) cells, and non-Treg cells. Although Foxp3+ T

cells can be induced from conventional T cells via TCR stimulation,

these induced cells typically secrete inflammatory cytokines and

lack immunosuppressive capabilities. In contrast, specific cytokines

or microbiota can promote the differentiation of CD4+CD25- T cells

into functional Treg cells with immunosuppressive properties.

Conversely, certain cytokines or specific microbiota can induce

Treg cells with immune-suppressive functions from CD4+CD25-T

cells. In contrast, non-Treg cells do not possess immune-

suppressive functions but instead produce inflammatory

cytokines, such as interferon (IFN)-g and IL-17 (36, 40).
3 Function of Treg cells

Treg cells possess two major functional characteristics: immune

tolerance and immune suppression. Immune tolerance refers to the

inability of Treg cells to respond to high concentrations of

interleukin (IL)-2 stimulation alone, solid-phase coating, or

soluble anti-CD3 monoclonal antibodies (mAb), as well as the

lack of response to combined CD3 and CD8 monoclonal

antibody stimulation. Additionally, Treg cells themselves do not

secrete IL-2. Immune suppression refers to the ability of activated

Treg cells to nonspecifically suppress the activation and

proliferation of T cells through various mechanisms, including

inhibition of both CD4+ and CD8+ T cells.

The immune suppressive function of Treg cells is mediated

through multiple mechanisms, including downregulation of co-

stimulatory signals (41), IL-2 consumption, secretion of

immunosuppressive cytokines (e.g., IL-10 and IL-35) (42, 43), and

production of immunosuppressive metabolites. Cytotoxic T-

lymphocyte-associated protein 4 (CTLA-4) is crucial for Treg

cell-mediated suppression, as it prevents aberrant autoimmune

responses and excessive immune activation, thereby protecting

the host from autoimmune attacks (44, 45). Treg cells also inhibit

anti-tumor immune responses, especially tumor antigen-specific T

cell responses (46). IL-2 is essential for effector T cell activation and

survival. The high-affinity IL-2 receptor, comprising CD25 (a-
chain), CD122 (b-chain), and CD132 (g-chain), is expressed on

most Treg cells, which consume IL-2 and limit its availability in the

TME. This depletion impairs effector T cell activation (47). IL-10

and IL-35 further suppress T cell function by downregulating MHC

and co-stimulatory molecules on antigen-presenting cells

(APCs) (42).

Treg cells also exhibit granzyme-dependent immune

suppression, releasing granzymes and perforins that promote

cytolysis by NK cells and cytotoxic T lymphocytes (CTLs) (48).

In the TME (49), Treg cells amplify in an antigen-specific manner,

displaying distinct T cell receptor (TCR) repertoires compared to

conventional CD4+ T cells (50). Recent studies have shown that
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Treg cells within the TME are highly activated and phenotypically

differentiated (51). Treg cells strongly suppress anti-tumor immune

responses through the function of hypoxia-inducible factor 1a
(HIF-1a). In terms of metabolism, anti-tumor immune cells such

as CD8+ T cells primarily utilize glycolysis for activation. Tumor

cells consume glucose, reducing blood glucose levels in the TME

(Warburg effect), thereby inhibiting the activation process of CD8+

T cells (52). Meanwhile, Treg cells proliferate and exert their

immunosuppressive functions by metabolizing abundant lactate

(53) and fatty acids (54) in the TME. In glucose-enriched TME,

such as in liver metastatic lesions, Treg cells are activated by large

amounts of lactate. Consequently, Treg cells acquire high

programmed cell death protein-1 (PD-1) expression, and their

activation is further enhanced by anti-PD-1 monoclonal antibody

(mAb) treatment, leading to resistance to PD-1/PD-L1 blockade

therapy (55). Besides, lymphocyte activation gene-3 (LAG-3) and

T-cell immunoglobulin and mucin-domain containing-3 (TIM-3)

are emerging immune checkpoints that can further contribute to T

cell exhaustion and Treg-mediated immunosuppression in

CRC (56).
4 Role of Treg cells in CRC

In CRC, Tregs heighten their suppressive function by elevating

surface molecules such as CD39, CTLA-4, and PD-1 (57, 58), and

by secreting IL-10 and IL-35, which jointly modulate the B-

lymphocyte-induced maturation protein 1 (BLIMP1) inhibitory

axis in CD4+ and CD8+ TILs (59). Tregs also dampen T cell

recruitment to tumor sites by reducing CXC chemokine ligand 10

(CXCL10) (60) and can regulate CRC cell growth via IL-6

modulation (61). Additionally, by suppressing Th1 cell activity,

Tregs indirectly or directly promote CRC angiogenesis through the

inhibition of Th1-derived angiogenesis inhibitors, such as

transforming growth factor-beta (TGF-b), and the production of

angiogenic factors like neuropilin-1 (NRP-1) (62, 63). Foxp3+ Treg-

derived IL-10 promotes lung metastasis in CRC by acting on both

Foxp3+ Tregs and myeloid cells (64). However, the role of IL-23R

signaling in Treg cells has been found to differ significantly between

murine models of sporadic and inflammation-associated CRC.

Inflammatory factors are important in diseases’ development and

progression (65–68). In inflammation-related CRC, IL-23R

signaling in Tregs suppresses carcinogenesis, whereas in sporadic

CRC, it facilitates tumor development. These findings underscore

the importance of the underlying etiological factors in CRC, which

may have distinct impacts on the disease’s progression (69).

Despite the fact that the immunosuppressive role facilitates

tumor cell evasion of anti-tumor immunity (70–73), some studies

suggest that, at least in the early stages of inflammation-associated

tumorigenesis, Treg cells may inhibit tumor progression by

suppressing inflammatory responses (74). However, the impact of

FoxP3+ Tregs on CRC prognosis remains controversial. Some

studies indicate a correlation between Treg infiltration and

favorable prognosis (75), while others suggest an association with

poor prognosis (76–78). Saito et al. (76) reported that this
Frontiers in Immunology 03
discrepancy might be due to the existence of different FoxP3+ T

cell subsets, namely eTregs and non-Tregs, which are difficult to

distinguish through immunohistochemistry. Compared to CRC

dominated by non-Treg infiltration, CRC patients with high

eTreg infiltration exhibit worse prognosis.

CRC cells and the TME further regulate Treg accumulation by

secreting chemokines and cytokines (79). Focal adhesion kinase

(FAK) in CRC cells enhances Treg recruitment (80). While the

signaling of TNF receptor superfamily member 11a (TNFRSF11a,

RANK) and its ligand TNF receptor superfamily member 11

(TNFRSF11, RANKL) induces CRC cells to produce CC motif

chemokine ligand 20 (CCL20), leading to Treg recruitment through

CCL20-CCR6 pathway and promoting tumor stemness and

malignant progression (81). IL-17 directly activates Tregs,

enhancing their maturation and functionality. This signaling

mechanism forms a negative feedback loop that regulates

inflammation, which contributes to cancer progression in CRC

(82). Furthermore, gut microbiota may participate in immune

suppression by promoting Treg accumulation (83) (Figure 1).
5 Targeting Treg cells in CRC
immunotherapy

Peripheral immune tolerance mediated by Treg cells presents a

significant challenge in immunotherapy. Therefore, to eliminate the

immunosuppressive activity of Tregs during treatment, strategies

such as depleting or inhibiting Tregs are often considered. These

approaches aim to enhance the activity and accumulation of effector

T cells, thereby achieving the therapeutic goal of immunotherapy.

Studies have indicated that since the 20th century, researchers have

attempted to treat cancer through Treg depletion, using low-dose

cyclophosphamide or targeting specific surface markers such as

CD25 (36). Immune checkpoint inhibitors have emerged as a

prominent area of research in recent years, demonstrating

substantial efficacy in various cancers, including metastatic MSI-

H/dMMR CRC (84, 85). It has been confirmed that Tregs can

express several surface markers, including CTLA-4, PD-1, and its

ligand PD-L1, further highlighting the importance of targeting

Tregs in immunotherapy (86). Moreover, combinatorial therapies

targeting Treg surface receptors, such as glycoprotein A repetitions

predominant (GARP), are under investigation (87, 88).
5.1 Immune checkpoint inhibitors

ICIs, such as CTLA-4 and PD-1/PD-L1 inhibitors, are widely

used in cancer treatment, with MSI-H/dMMR identified as a

biomarker for their efficacy. CTLA-4, expressed on activated T

cells, inhibits T cell activation by competing with CD28 for CD80/

CD86 binding, thereby promoting tumor cell survival. Anti-CTLA-

4 therapy, like ipilimumab and temelimumab, induces Treg

depletion through antibody-dependent cytotoxicity, enhancing T

cell proliferation and antitumor immunity (58). These inhibitors are

primarily used for metastatic melanoma, non-small cell lung cancer,
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renal, and bladder cancers, and in CRC, they are often combined

with PD-1/PD-L1 inhibitors (86, 89).

PD-1, interacting with its ligands PD-L1 and PD-L2, suppresses

T cell function, contributing to T cell exhaustion (36, 90, 91). PD-1/

PD-L1 inhibitors, including pembrolizumab, nivolumab,

durvalumab, atezolizumab, and avelumab, can restore effector T

cell function and increase the CD8+ Treg ratio to negatively regulate

Treg numbers (86). Recent clinical studies have shown that

metastatic MSI-H/dMMR CRC is more likely to benefit from PD-

1 inhibitors, whereas microsatellite stable (MSS)/mismatch repair

proficient (pMMR) CRC shows minimal response (84). Andre et al.

(92) evaluated pembrolizumab as a first-line treatment compared

with standard chemotherapy in metastatic dMMR CRC, showing

that pembrolizumab improved median progression-free survival

(PFS), with fewer grade 3-5 drug-related adverse events than

standard chemotherapy. In CRC, targeting LAG-3 or TIM-3 in

combination with PD-1 or CTLA-4 blockade could potentially

synergize to overcome Treg-mediated immunosuppression,

thereby enhancing antitumor immunity (86, 93). These newer

checkpoint molecules represent promising targets for

combination immunotherapies aiming to modulate Tregs in

the TME.

Several clinical studies have investigated low-dose ipilimumab

combined with nivolumab in metastatic MSI-H/dMMR CRC,

reporting objective response rates of 55-69%, with improved PFS

and overall survival (OS) compared to PD-1 inhibitors alone (87, 94).

The combination of low-dose ipilimumab and nivolumab has

demonstrated robust and durable clinical benefits, potentially

providing a new first-line treatment option for metastatic MSI-H/

dMMR CRC patients. Additionally, combining PD-1 inhibitors with
Frontiers in Immunology 04
vascular endothelial growth factor receptor (VEGFR) inhibitors offers

another therapeutic option for CRC. Activation of VEGF and its

receptor VEGFR is associated with the immunosuppressive tumor

microenvironment, contributing to tumor immune evasion by

upregulating inhibitory immune checkpoint expression and

recruiting immunosuppressive cells, including Tregs and myeloid-

derived suppressor cells (95). A retrospective study on the use of

VEGFR inhibitor regorafenib combined with PD-1 inhibitors in

MSS/pMMR CRC patients revealed that while no objective

responses were observed, the disease control rate was 78.3% (96).

PLCG2 is an important oncogene and prognostic biomarker (97).

Targeting PLCG2 can inhibit tumor progression, regulate the tumor

immune microenvironment, and enhance immune checkpoint

blockade therapy in CRC (98). Elevated TNF-a levels in the CRC

tumor microenvironment promote the upregulation of CCR8 on

Tregs via the TNFR2/NF-kB signaling pathway and FOXP3

transcription factor activity. Inhibition or depletion of TNFR2

significantly reduces the infiltration of CCR8+ Tregs, which in turn

suppresses tumor progression and improves the efficacy of anti-PD1

therapy (99). In recent clinical trials (NCT04126733), regorafenib

plus nivolumab have shown encouraging activity in CRC

patients (100).
5.2 Photodynamic immunotherapy
combined with IDO1 inhibition

To achieve efficient immunotherapy, Hu et al. designed a

supramolecular prodrug nanocarrier for multiple immune

modulators. By integrating photosensitizers, such as hyaluronic
FIGURE 1

Regulatory T cells activation and expansion within tumor metabolic environment in CRC.
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acid, magnesium phthalocyanine A, and indoleamine 2,3-

dioxygenase 1 (IDO1) inhibitor NLC919 into the nanocarrier, the

combination of photodynamic immunotherapy and IDO1 blockade

led to a reduction in Treg numbers and inhibited tumor growth in a

CRC mouse model (CT26), extending survival (101, 102). Further

studies are needed to explore whether this nanoplatform can

improve the efficacy of other immune modulators.
5.3 Targeting Treg surface receptors and
markers

Glycoprotein A repetitions predominant (GARP) is expressed

on the surface of activated Tregs, where it binds and activates TGF-

b, playing a role in disease progression and immune evasion. Salem

et al. (88) observed that Tregs lacking GARP had a reduced ability

to suppress inflammation, leading to improved antitumor

immunity and slower tumor progression in a colitis-associated

colorectal cancer model. However, a study by Vermeersch et al.

(103) in a murine colorectal cancer model showed that knocking

out GARP did not delay tumor growth, suggesting that the absence

of GARP is insufficient to affect Treg-mediated immunosuppressive

activity. The potential of GARP inhibitors as a therapeutic target in

CRC requires further investigation. Endoglin, an auxiliary receptor

for TGF-b, is highly expressed on endothelial cells and cancer-

associated fibroblasts. Schoonderwoerd et al. (104) reported that

endoglin is highly expressed on Tregs in both murine and human

CRC tissues, but absent from conventional CD4+ T cells. Anti-

endoglin antibody (TRC105) has shown inhibition of angiogenesis

and tumor metastasis in animal models of breast cancer (105). In

CRC animal models, TRC105 treatment reduced Treg numbers in

tumors, and the combination of TRC105 with PD-1 inhibitors

significantly enhanced the efficacy of PD-1 inhibitors in CRC

models (subcutaneous, orthotopic, and chemically induced) (104).

The chemokine receptor CCR8 is selectively expressed on tumor-

infiltrating Tregs. CCR8+ Tregs play a crucial role in the immune-

suppressive tumor microenvironment in CRC by inhibiting the

function of CD4+ Th and CD8+ T cells. Anti-CCR8 antibody

therapy, targeting tumor-infiltrating CCR8+ Tregs, has the

potential to restore the function of CD4+ Th and CD8+ T cells in

CRC, thereby inducing antitumor immunity (106). Aspirin as an

antitumor agent, influence key processes such as apoptosis,

proliferation, metastasis, and senescence in cancer cells (107).

Aspirin may help prevent colorectal cancer by modulating the

levels of Enterococcus cecorum and TIGIT+ Treg cells,

highlighting its potential therapeutic value in CRC treatment

(108) (Table 1).
6 Conclusion

Treg cells play a pivotal role in the immune landscape of CRC,

facilitating tumor progression by suppressing anti-tumor immune

responses and promoting tumor immune evasion. Their

accumulation within the TME is driven by various factors,
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including chemokine signaling, cytokine modulation, and

interactions with CRC cells. While Treg cells may offer protective

effects in the early stages of inflammation-associated tumorigenesis,

their overall contribution to CRC progression is largely detrimental.

The dual nature of Treg cell functions, including both immune

suppression and regulation of inflammatory responses, underscores

the complexity of targeting Tregs in CRC therapy. Future research is

urgently required to disentangle how Tregs switch from an anti-

inflammatory role to a predominantly pro-tumor function over the

course of CRC development. Elucidating the molecular and cellular

underpinnings of this transition could pave the way for innovative

immunotherapies that selectively counteract the immunosuppressive

properties of Tregs while preserving their beneficial impacts on early-

stage inflammation. Such targeted strategies hold the promise of

improving clinical outcomes and advancing precision medicine in

CRC. Besides, the development of therapies aimed at selectively

depleting or inhibiting Treg cells within the TME, while preserving

their peripheral functions, holds great promise for enhancing the

efficacy of immunotherapy in CRC. Future research should focus on

identifying specific Treg cell subsets, optimizing therapeutic

strategies, and understanding the interplay between Treg cells and

other immune components in the TME to achieve better clinical

outcomes for CRC patients.
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