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Background: Ferroptosis is an iron-dependent form of regulated cell death

associated with cancer. However, the characteristics of ferroptosis in small cell

lung cancer (SCLC) are still uncertain. This study aimed to explore the application

value of ferroptosis-related genes (FRGs) classification in prognosis and

characteristics prediction to provide clues for targeted SCLC therapy.

Method: We systematically characterized mRNA expression and genetic

alterations of FRGs in SCLC, evaluating their expression pattern in 181 samples

from 3 datasets. Unsupervised clustering analysis was performed to identify the

molecular subtypes based on FRGs. We then conducted association analyses

between FRG subtypes and various tumor microenvironment (TME)

characteristics, traditional key transcript factor subtypes, clinical features,

transcriptional and post-transcriptional regulation, drug response, and the

efficacy of immunotherapy. Furthermore, the novel classification was validated

in an independent cohort of 34 samples from Beijing.

Result: In this study, we identified three distinct ferroptosis subtypes in SCLC: S1,

S2, and S3. We found that patients in S2 had the poorest prognosis. The FRG

classification was correlated with the NOTCH pathway, MYC pathway,

Neuroendocrine (NE), and epithelial-to-mesenchymal transition (EMT) process.

Additionally, the FRG classification was strongly associated with TME 4 subtypes.

To validate the classification, we employed an independent cohort. The FRG

classification could also help to guide the prediction of chemical drugs. Finally,

the heatmap showed the landscape of FRG subtypes, TME subtypes, NE

subtypes, key transcription subtypes, age, gender, and stage.
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Conclusion:Our identification of new SCLC subtypes provides novel insights into

tumor biology and has potential clinical implications for the management

of SCLC.
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1 Introduction

Small cell lung cancer (SCLC) is an aggressive and highly lethal

type of lung cancer characterized by rapid growth, early metastasis,

and resistance to therapy (1). Converging evidence from primary

tumors, patient-derived xenografts, cell lines, and genetically

engineered mouse models has led to the identification of a novel

SCLC subtype classification based on the differential expression of

four key transcription factors: ASCL1, NeuroD1, Yap1, and

POU2F3 (2). Gay et al. (3) redefined SCLC into four subgroups

according to the ASCL1, NEUROD1, POU2F3, and immune-

related genes, naming these four subgroups. The SCLC-A and

SCLC-N were classified as neuroendocrine subtypes. Conversely,

the non-neuroendocrine subtypes encompassed the SCLC-P,

SCLC-Y, and SCLC-I. Although the newly characterized SCLC-L

subtype has shown potential therapeutic benefit when treated with

atezolizumab in combination with chemotherapy, it represents a

small fraction of SCLC cases. Therefore, the development of novel

and more effective combinatorial therapeutic strategies remains

critical to improving the prognostic outcomes of SCLC patients

(4, 5).

In recent years, ferroptosis induction has become a promising

treatment alternative to trigger cancer cell death, especially for those

aggressive malignant tumors resistant to traditional therapies (6, 7).

Ferroptosis can be induced through extrinsic or intrinsic pathways

(8). The extrinsic pathway is initiated through the regulation of

transporters or circular RNA (9). In contrast, the intrinsic pathway

is mainly caused by blocking the expression or activity of

intracellular antioxidant enzymes, such as glutathione peroxidase

4 (GPX4). The antioxidant enzyme GPX4 can directly reduce

phospholipid hydroperoxide to a hydroxy phospholipid, thus

acting as a central repressor of ferroptosis in cancer cells (10).

Recent studies have reported that shikonin could induce ferroptosis

in SCLC and effectively trigger suppressed cell proliferation,
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apoptosis, migration, invasion, and colony formation (11).

Sulforaphane also induced SCLC cell death mediated by

ferroptosis (12). Previous studies demonstrated that models based

on ferroptosis genes and associated regulatory networks can predict

the prognosis and clinical benefit of different treatments in various

cancers (13–17). Furthermore, multi-omics analysis facilitates the

exploration of the process (18).

Nevertheless, previous research has mainly used cellular and

animal experiments to investigate the role of ferroptosis in SCLC,

with minimal exploration in human tumor samples. In this study,

221 samples were divided into three subtypes based on 14 FRGs

integrating transcriptome and genome. The survival outcomes and

various characteristics, such as immune infiltration differences,

genomic hallmarks, and drug response across these subtypes,

were then explored. Additionally, we employed an independent

Beijing cohort to validate the efficacy of FRG-based classification.

The findings indicate that FRG-based classification could be a

valuable tool for supporting clinical decision-making in oncology.
2 Materials and methods

2.1 Public cohorts and data process

We collected several publicly available information on

transcriptomics, genomics, and clinical data in small cell lung

cancer (SCLC). First, we downloaded transcriptomic expression,

somatic mutation, and clinical data of SCLC from George et al. (18)

(n=81, RNA-seq). The RNA-seq data (Illumina TruSeq) were

transformed by log2(FPKM+1). Second, we extracted the

expression profile and clinical data of SCLC in GSE60052 (19)

(n=79, RNA-seq) and GSE30219 (20) (n=21, Affymetrix) from

Gene Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/

geo/) and Supplementary Materials of papers. Meanwhile, the

normal samples were gathered from GSE30219 (n=14).

Furthermore, we obtained the expression of genes in SCLC lines

from Genomics of Drug Sensitivity in Cancer (GDSC, https://

www.cancerrxgene.org) (n=61). Gene expression was illustrated

by plotting the median expression value when the genes were

with one more probe. The intersect genes present in George’s

Cohort, GSE60052, GSE30219, and SCLC lines in GDSC were

combined into an overall dataset. Batch effects from non-

biological technical biases were corrected using the “ComBat”
frontiersin.org
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algorithm of the “sva” package (21). Furthermore, genes with more

than 50% equal to 0 value were deleted. The copy number variation

(CNV) data of SCLC lines were retrieved from the Broad Institute

Cancer Cell Line Encyclopedia (https://depmap.org/portal/

download/) (22). Copy number data were log2 transformed with

a pseudo-count of 1. A total of 56 SCLC cell lines were overlapped

between GDSC and CCLE for further CNV analysis. We used<0.5

as the threshold for copy number loss, and >1.5 as the threshold for

copy number gain (23).
2.2 Patient selection and recruitment

The study protocol conformed to the ethical guidelines of the

Declaration of Helsinki (as revised in 2013). The study protocol and

informed consent in this study were reviewed and approved by The

Medical Ethics Committee of Cancer Hospital, Chinese Academy of

Medical Sciences (approval no. 23/020-3759) and individual

consent for this retrospective analysis was waived.

We retrospectively collected surgically resected, formalin-fixed,

paraffin-embedded SCLC samples from the biobank of the National

Cancer Center/National Clinical Research Center for Cancer/

Cancer Hospital in Chinese Academy of Medical Sciences and

Peking Union Medical College (Beijing, China). Thirty-four

pathologically and clinically diagnosed SCLC patients were

recruited from 2010 to 2013 as an independent cohort and the

clinical data were obtained by reviewing the patients' medical

histories, which are summarized in Supplementary Table S1.
2.3 RNA extraction and sequencing

Sequencing was performed using a NovaSeq 6000 S4 following

Illumina-provided protocols for 2x150 paired-end sequencing in

Mingma Technologies (Shanghai, China). After FFPE sample

sections were scalpeled into 1.5 mL micro centrifuge tube,

deparaffinization solution was used to remove paraffin. Then

Maxwell 16 LEV RNA FFPE kit (Promega) was used to extract

FFPE RNA according the protocol’s instructions. The captured

coding regions of the transcriptome from total RNA were prepared

using TruSeq® RNA Exome Library preparation Kit. The cDNA

was generated from the input RNA fragments using random

priming during first and second strand synthesis and sequencing

adapters were ligated to the resulting double-stranded cDNA

fragments. The coding regions of the transcriptome were then

captured from this library using sequence-specific probes to

create the final library. After the library was constructed, Qubit

2.0 fluorometer dsDNA HS Assay (Thermo Fisher Scientific) was

used to quantify concentration of the resulting sequencing libraries,

while the size distribution was analyzed using Agilent BioAnalyzer

2100 (Agilent). The RNA-seq data (Illumina TruSeq) were

transformed log2(FPKM+1) and gene expression was illustrated

by plotting the median expression value when the genes were with

one more probe.
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2.4 Ferroptosis-related consensus
clustering analysis

We gathered 266 ferroptosis genes from FerrDb (http://

www.zhounan.org/ferrdb/) (24) and recently published research

(25, 26) (Supplementary Table S2), and a total of 221 overlapped

genes from different detection platforms were extracted by

combined with public cohorts for further analysis. Unsupervised

clustering analysis was conducted to identify distinct ferroptosis-

subtypes based on the expression profiles of 221 ferroptosis-based

genes in batch correction dataset. Before unsupervised clustering,

the correction dataset was preprocessed by median centering. The

“ConsensuClusterPlus R package (27) was applied to execute the

consensus clustering via hierarchical cluster, 1,000 times repetitions

and resample rate of 80% were performed for stable clustering.

Furthermore, we compared the SCLC subtypes defined by relative

expression of four transcription regulators proposed by Rudin et al.

(2) and ferroptosis subtypes to profile and supplement SCLC

characteristics. NCC Cohort was used to validate the

characteristics of ferroptosis subtypes.
2.5 Identification of differentially expressed
genes associated with ferroptosis subtypes
and enrichment analysis

The differentially expressed genes (DEGs) and differentially

expressed ferroptosis-related genes (DEFGs) among ferroptosis

subtypes were screened out using the R package “limma” (28).

The absolute value of log2 fold change (FC) larger than 1 and

Benjamini–Hochberg (BH) adj P-value< 0.05 were taken as

significance criteria. To further infer the biological functions and

signals involving the DEGs, the enrichment analysis of the Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathway and Gene

Ontology (GO) function were performed by “clusterProfiler” (29) R

package, with the cutoff value of BH adj P< 0.05. To investigate the

important functional phenotypes among different ferroptosis

subtypes, we performed gene set variation analysis (GSVA) (30)

and gene set enrichment analysis (GSEA) (31). The “h.all.v7.5.

symbols.gmt” gene set was used as the reference gene sets and

obtained from the MSigDB database (https://www.gsea-

msigdb.org/gsea/msigdb/). In GSEA, normalized enrichment

score (NES) > 1.5 and false discovery rate (FDR) P< 0.05 were

regarded as significant enrichment.
2.6 Estimation of the tumor
microenvironment in SCLC

TME plays as a significant role in clinical outcomes and

response to therapy. We described the relative abundance of 29

functional gene expression signatures in SCLC by introducing the

single sample gene set enrichment analysis (ssGSEA) algorithm.

The signatures were derived from the study of Bagaev.A et al. (32).
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The enrichment score derived from ssGSEA reflects the relative

degree of TME in each patient.
2.7 The quantification of EMT score

The epithelial-to-mesenchymal transition (EMT) is a critical

cell biological process that occurs during cancer development. In

our study, we assessed EMT gene signature, including 25 epithelial

and 52 mesenchymal marker genes (33, 34). The EMT score of each

sample was calculated with formulaoN
i
Mi

N
−on

j
Ej

n
. Here, M and

E represent the expression of mesenchymal and epithelial marker

genes, N and .. represent the gene number of mesenchymal marker

and epithelial marker, respectively.
2.8 The quantification of NE score

SCLC is a high grade neuroendocrine (NE) tumor, while a

subset of SCLC has been described “variant” due to the loss of NE

characteristics and exhibited more aggressive growth. Using the 50

gene NE signature to quantify the NE score, ranging from -1 to 1,

with a more positive score indicating higher NE properties (35). NE

score was generated by the formula: NEscore  =  ðcorrel 
NE� correl non� NEÞ=2 , where correl NE (or non-NE) is the

Pearson correlation coefficient between expression of the 50 genes

in the test sample and expression of these genes in the NE (or non-

NE) cell line group.
2.9 Evaluation of key characteristics and
immunecheckpoint

We extracted tumor cell characteristics and subclonal

architecture of SCLC in George’s Cohort (12), including purity,

ploidy, cancer cell fraction (CCF) per read values, and CCF First

Subclone. Intratumor heterogeneity (ITH) was estimated by MATH

score (36, 37). In our study, we obtained “Allelic_Fraction_Tumor”

and calculated MATH score in George’s Cohort. And tumor

mutational burden (TMB) was quantified by mutation count

(excluding nonsense mutation) in samples, and transformed by

log2. Estimation of Stromal and Immune cells in Malignant Tumors

using Expression data (ESTIMATE) (38) was applied to quantify

the infiltration of stromal and immune components in tumor,

reflecting the tumor microenvironment. Tumor Immune

Dysfunction and Exclusion (TIDE, http://tide.dfci.harvard.edu/), a

computational method to predict immune checkpoint blockade

response, was developed by Jiang et al. (39). TIDE integrates

tumor immune evasion mechanisms including T cell dysfunction

and T cell exclusion, and has shown superior predicted

performance of immunotherapy response. Furthermore, the
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mRNA expression of immune checkpoints was analyzed in

different ferroptosis subtypes.
2.10 Drug sensitivity prediction

To discover potentially sensitive drugs, the chemotherapeutic

response among ferroptosis subtypes was calculated in GDSC SCLC

lines. Comparison among ferroptosis subtypes was analysis by

Kruskal-Wallis in half-maximal inhibitory concentration (IC50) to

each chemotherapy drug. To predict the response of ferroptosis

subtypes to immunotherapy in SCLC, the subclass mapping

(SubMap) algorithm was employed for further verification (40).

The analysis estimated the similarity of gene expression profiles

between SCLC subgroups and a cohort of 47 melanoma patients

treated with anti-PD-1 and anti-CTLA-4 immune therapy (41). If the

gene expression profiles showed significant similarity, patients in the

subtype were inferred to be likely sensitive to immunotherapy.
2.11 Statistical analysis

In this study, all data processing was done in the R-3.6.0

software. Continuous variables were summarized as mean ± SD

and categorized variables were described by frequency (n) and

proportion (%). Comparison between two groups was calculated

using Wilcoxon rank-sum test, while three group comparison was

estimated by Kruskal-Wallis test. Principal component analysis

(PCA) was performed to visualize the difference of ferroptosis-

related genes between tumor and normal samples. Kaplan-Meier

curve analysis to generate the survival curves and determined the

significance of the differences via the log-rank test. Multivariate Cox

regression analysis was used to assess the independent prognostic

factor. The “GenVisR” (42). R package was used to depict the

mutation and CNV landscape. All statistical test was two-side and

P< 0.05 was considered statistically significant. NS: not significant;

*P< 0.05; **P< 0.01; ***P< 0.001.
3 Results

3.1 Landscape of genetic variation of FRGs
in SCLC

A total of 221 FRGs were identified in this study and the

workflow of this research was shown in Supplementary Figure S1.

First, we summarized the incidence of copy number variations

(CNVs) and somatic mutations of 30 FRGs in SCLC. Among 181

samples, 110 mutations of FRGs were revealed with a frequency of

60.8% (Figure 1A). Based on the expression of these 221 FRGs, we

were able to completely distinguish SCLC samples from normal

samples (Figure 1B). The CNV locations of FRGs on chromosomes
frontiersin.org
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are shown in Figure 1C. Analysis of CNV alteration frequencies

revealed widespread CNV alterations in 21 regulators, most of

which involved amplifications in copy number. However, SAT1,

CYBB, TSC22D1, and LAMP2 exhibited frequent CNV deletions

(Figure 1D). The analyses presented herein demonstrate the
Frontiers in Immunology 05
heterogeneity of the genetic and expressional alteration

landscape in ferroptosis-related genes between normal and

SCLC samples, indicating that the expression imbalance of

ferroptosis plays a crucial role in the occurrence and

progression of SCLC.
FIGURE 1

Landscape of genetic and transcriptional characteristics of FRGs in SCLC. (A) Waterfall plot shows the mutation distributions of FRGs in SCLC
patients from public cohort. Each column represented individual patients. The upper bar plots showed overall number of somatic mutations. The
below stacked bar plots displayed the type and fractions of base-pair substitutions of each sample. The numbers on the right indicated the mutation
frequency in each gene. The right bar plot showed the proportion of each variant type. (B) Principal component analysis showed the tumors were
well distinguished from normal samples based on the expression profiles of 211 FRGs. Tumors were marked with blue and normal samples with
yellow, respectively. (C) The location of CNVs alterations of FRGs on chromosomes. (D) The distribution of CNVs of FRGs. The height of the column
indicates ed the alteration frequency. Red dot indicates CNV gain, and blue dot CNV loss.
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3.2 Ferroptosis medicated patterns were
constructed by FRGs

Unsupervised clustering of 221 ferroptosis-related genes (FRGs)

in the SCLC cohort classified patients into three distinct molecular

patterns: S1, S2, and S3. The ferroptosis profiles of these subtypes

were significantly different (Figure 2A). S1 exhibited low expression

of FRGs, S2 showed high expression of RGS4, SLC12A2, GPX2, and

GCH1, while S3 was characterized by increased expression of most

FRGs (Figure 2A). The ferroptosis subtypes were classified
Frontiers in Immunology 06
according to the traditional subtypes defined by four key

transcription regulators, including ASCL1, NEUROD1, POU2F3,

and Yap1. To further investigate the expression patterns of these

regulators within the distinct subtypes, we conducted an

independent evaluation (Figure 2B-E). Our findings revealed that

ASCL1 exhibited high expression in S2, while POU2F3 and Yap1

demonstrated high expression in S3. Furthermore, survival analysis

revealed significant differences in prognosis among the three

ferroptosis subtypes, with S3 showing significant survival

advantages (Figure 2F). To evaluate whether ferroptosis subtypes
FIGURE 2

Ferroptosis-related molecular patterns with distinct prognosis, biological characteristics in SCLC. (A) Differential expression of NMF-selected genes.
(B-E) the expression of ASCL1, NEUROD1, POU2F3 and YAP1 across 3 subtypes. (F) Survival analysis of three ferroptosis subtypes in all patients,
Kaplan-Meier survival curve showed significant differences among the three subtypes (P =0.016, Log-rank test). (G) Multivariate Cox regression
analysis of clinicopathological factors and ferroptosis subtypes for overall survival in patients across multiple centers.
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could serve as independent prognostic factors, we performed

multivariate Cox regression analysis, adjusting for clinical

characteristics such as age, gender, and TNM status. The results

revealed that ferroptosis subtypes were robust, independent

prognostic biomarkers for assessing patient outcomes

(Figure 2G). The FRG-based molecular subtyping effectively

predicted patient outcomes in the SCLC cohort.
3.3 Diverse characteristics of FRGs
subtypes

Our study showed that the characteristic genes in the NOTCH

pathway (including NOTCH1, NOTCH2, NOTCH3, and REST)

and NOTCH ligands (including DLK1, DLL1, DLL3, and JAG1)

were associated with the FRG subtypes (Figures 3A, B).

Additionally, the MYC and MYCN genes, which are in the MYC

pathway, were identified as being correlated with FRG subtypes

(Figure 3C). To further explore the expression of these genes, we

calculated the activity of the MYC pathway using ssGSEA, which

suggested that the MYC pathway could effectively distinguish the

subtypes (Figure 3D). A heatmap visualizing the GSVA and GSEA

enrichment analysis of representative Hallmark pathways shows the

activation states of biological pathways in distinct FRG subtypes

(Figure 3E). Both GSEA and GSVA revealed similar activated

pathways in S3. Meanwhile, the NOTCH pathway was

significantly upregulated in S3, while the NOTCH ligands

pathway was not (Figures 3F, G). Neuroendocrine (NE)

differentiation has been recognized as a specific characteristic of

SCLC. We calculated the NE score and found it to be lower in S3

(Figure 3H) and the activity of the epithelial-mesenchymal

transition (EMT) process was the highest (Figure 3I). The genes

involved in the EMT process are shown in the boxplot, which is

consistent with the previous results (Figure 3J). These findings

indicated that the FRG classification was correlated with the

NOTCH pathway, MYC pathway, NE differentiation, and the

EMT process.
3.4 The FRGs classification is tightly
correlated with TME 4 subtypes

The tumor microenvironment (TME) plays a significant role in

clinical outcomes and response to therapy. According to the

previous study, we divided the patients into 4 TME subtypes:

immune-enriched, fibrotic (IE/F), immune-enriched, non-fibrotic

(IE), fibrotic (F), and immune-depleted(D) subtypes (32). We

described the relative abundance of 29 functional gene expression

signatures in SCLC by heatmap across these patients (Figure 4A).

Meanwhile, the gene expression of co-stimulator, co-inhibitor,

ligand, receptor, cell adhesion, antigen presentation, and others

are also presented by TME subtypes (Figure 4B). Sankey diagram

shows FRGs subtypes, TME subtypes, NE groups, and key
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transcription subtypes (Figure 4C). Comparisons of 11 immune

checkpoint genes expression, including CD274, CD80, CD86,

CTLA4, HAVCR2, IDO1, LAG3, PDCD1, PDCD1LG2, TIGHT,

and TNFRSF9, in different ferroptosis subtypes also well distinguish

the classification (Figure 4D). In conclusion, the FRGs classification

is tightly correlated with TME 4 subtypes.
3.5 The FRGs classification is validated in
an independent cohort

To validate the accuracy of the classification method, we re-

clustered the ferroptosis-related molecular patterns in our

independent Beijing cohort of SCLC patients. We then

demonstrated the correlation between the subtypes and prognosis,

biological processes, and immune cell infiltration characteristics. As

observed previously, the heatmap illustrates the FRGs in our data

(Figure 5A). Kaplan-Meier survival curves of patients showed

significant differences across the three subtypes (P = 0.048, Log-

rank test, Figure 5B). Three out of four key transcription factors,

including ASCL1, POU2F3, and YAP1, showed significant

differences among the FRG subtypes, while NEUROD1 did not

(Figures 5C-F). The differences in EMT score and NE score across the

three subtypes remained consistent in our cohort (Figures 5G, H).

The heatmap further demonstrates variations in the activities of

pathways across the four TME subtypes (Figure 5I). We analyzed the

immune cell infiltration of three subtypes simultaneously. The levels

of macrophages M1, CD4+T and CD8+T were found to be

significantly higher in S3 than in the other subtypes, which

suggested that S3 had a strong immune infiltration similar to that

of "hot tumors" (Supplementary Figure S2). This finding was

consistent with Figure 5I. Consequently, the results indicated that

S3 may benefit from immunotherapy. Survival analysis revealed

differences in outcomes among the four TME groups (Figure 5J).

We also explored the tissue content using the ESTIMATE algorithm,

which showed significant differences in the Stromal score (Figure 5K),

Immune score (Figure 5L), and Estimate score (Figure 5M). To

investigate the potential for immunotherapy response, we used the

TIDE method to assess the likelihood of response, as shown by the

TIDE score (Figure 5N). In conclusion, although the limited number

of our validation cohort, these results suggested the same

characteristics in the public cohort and Beijing cohort based on the

FRGs classification.

The heatmap depicted the correlation between gene subtypes

and various clinicopathological features. Ferroptosis subtypes, TME

subtypes, ANPY subtypes, tumor stage, neuroendocrine state, age,

and gender were used as patient annotations in the public cohort

(Figure 6A). Similarly, the distribution of immune and molecular

subtypes, along with different clinicopathological features, was

analyzed in the Beijing cohort (Figure 6B). These heatmaps

demonstrate the consistency between the public and independent

cohorts, highlighting the stability and potential applicability of the

FRG classification.
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FIGURE 3

Diverse characteristics of FRGs subtypes. (A) The expression of NOTCH1, NOTCH2, NOTCH3 and REST across subtypes. (B) The expression of
NOTCH ligands, including DLK1, DLL1, DLL3 and JAG1 across subtypes. (C) The expression of MYC family, including MYC, MYCN across subtypes.
(D) MYC pathway score was calculated by ssGSEA across subtypes. (E) A heatmap visualizing the GSVA and GSEA enrichment analysis of
representative Hallmark pathways shows the activation states of biological pathways in distinct ferroptosis clusters. Red represented activated
pathways, and blue represented inhibited pathways. (F, G) NOTCH score and NOTCH ligands score across subtypes. (H) NE score across subtypes.
(I) EMT score across subtypes. (J) The mRNA expression of EMT genes, including CDH1, CDH2, FN1, SNAI1, SNAI2, TJP1, TWIST1 and VIM.
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3.6 The characteristics of chemical drug
prediction in FRGs subtypes

Cancer presents a range of hallmarks that offer new dimensions

to describe key tumor characteristics (43). Initially, we acquired
Frontiers in Immunology 09
data from the GDSC database to explore potential chemical drugs.

These drugs primarily target multiple pathways, including

apoptosis regulation (Figure 7A). Previous studies have

demonstrated that immune components, tumor heterogeneity,

mutation burden, tumor purity, and subclonal architectures may
FIGURE 4

The FRGs classification is tightly correlated with TME 4 subtypes. (A) Heatmap shows the relative abundance of 29 functional gene expression
signatures in SCLC by introducing ssGSEA algorithm. (B) The expression of 79 genes annotated by co-stimulator, co-inhibitor, ligand, receptor, cell
adhesion, antigen presentation, others are also presented by TME subtypes. (C) Sankey plot shows the correlation among subtypes, TME subtypes,
NE status and key transcription regulators subtypes. (D) Comparisons of immune checkpoint genes expression in different ferroptosis subtypes. The
statistical difference of three gene clusters were compared through the Kruskal-Wallis test.
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predict therapeutic responses. To investigate potential

immunotherapy responses in SCLC subtypes, we performed

SubMap analysis by comparative gene expression profiling

between a publicly available cohort of 47 melanoma patients

treated with anti-PD-1 and anti-CTLA-4 and the SCLC
Frontiers in Immunology 10
ferroptosis subtype. The S3 subgroup exhibited significant

similarity to melanoma responders, suggesting a promising

likelihood of sensitivity to anti-PD-1 therapy (Bonferroni-

corrected p = 0.048, Supplementary Figure S3 A; nominal p =

0.004, Supplementary Figure S3B). These findings suggested a
FIGURE 5

The FRGs classification is validated in an independent cohort. (A) Heatmap shows differential expression of NMF-selected genes. (B) Kaplan-Meier
survival curves of SCLC patients in the three FRGs subtypes (P =0.048, Log-rank test). (C-F) The expression of four key transcription regulators.
(G) The difference of EMT scores. (H) NE score across 3 subtypes in independent cohort. (I) 29 conventional pathways presenting the components
in the tumor microenvironment. (J) Kaplan-Meier survival curves of SCLC patients in the four TME subtypes (P =0.0017, Log-rank test).
(K-M) Stromal score, Immune score and ESTIMATE score were calculating by ESTIMATE algorithm. (N) TIDE score was compared across three
ferroptosis subtypes and four TME subtypes.
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potential mechanistic role for ferroptosis-related mRNAs in

modulating immunotherapy efficacy. To assess these factors, we

compared the ESTIMATE score, immune score, and stromal score

across the three FRG subtypes and four TME subtypes, revealing

significant differences (Figures 7B-D). However, no differences were

observed in the TIDE score across the three FRG subtypes,

suggesting that the FRGs do not correlate with immunotherapy

response (Figure 7E). Next, we explored intra-tumor heterogeneity

in the cohort using MATH (Figure 7F) and also examined mutation

burden (Figure 7G). Neither heterogeneity nor mutation burden

showed a correlation with FRG classification. In terms of tumor

purity, we found differences across the FRG and TME subgroups

(Figure 7H). Furthermore, we investigated various subclonal

architectures of SCLC, such as ploidy and cancer cell fraction

(CCF). We observed that ploidy was higher in S1 (Figure 7I).

However, there were no significant differences in the association
Frontiers in Immunology 11
between FRG subtypes and the heterogeneity mutation score (Het

Mut Score), CCF first score, or CCF per read (Figures 7J-L). In

conclusion, the FRG subtypes hold significant potential for guiding

drug selection in SCLC therapy.
4 Discussion

SCLC accounts for approximately 15% of all lung cancers. It is

characterized by an exceptionally high proliferative rate, a strong

predisposition for early metastasis, and poor prognosis, highlighting

the urgent need for more effective therapies. Rudin et al. constructs

a novel model of SCLC subtypes defined by differential expression

of four key transcription regulators: ASCL1, NeuroD1, YAP1, and

POU2F3 according to SCLC primary human tumors, patient-

derived xenografts, cancer cell lines, and genetically engineered
FIGURE 6

The distribution of diverse classifications in 2 cohorts. (A, B) Heatmap depicted the correlation between the gene subtypes and different
clinicopathological features. The ferroptosis subtypes, TME subtypes, ANPY subtypes, tumor stage, Neuroendocrine state, age, gender, and age were
used as patient annotations in public cohort and validation cohort.
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mouse models (2). Meanwhile, Bagaev et al. identified four TME

subtypes that were conserved across various cancers and correlated

with immunotherapy responses, including in SCLC (32). However,

there are still some limitations that both studies in this issue found

some inconsistencies in the findings of the proposed molecular

subtypes. That shows one essential need for novel classification.
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In the past decade, ferroptosis, an iron-dependent form of

regulated cell death driven by excessive lipid peroxidation, has

been implicated in the development and therapeutic responses of

various types of tumors. However, as an important biological

behavior in cell death, ferroptosis has never been linked to SCLC

progression. In this study, we develop a model of distinct subtypes
FIGURE 7

The characteristics of chemical drugs prediction in FRGs classification. (A) The IC50 of diverse drugs across 3 subtypes. (B-D) Stroma score, Immune
score and ESTIMATE score across three ferroptosis subtypes and four TME subtypes. (E) TIDE score was compared across three ferroptosis subtypes
and four TME subtypes. (F) The intra tumor heterogeneity is calculated by MATH. (G-L) Mutation burden, purity, ploidy, het mut score, CCF first
score and CCF per read across 3 subtypes.
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defined by the relative expression of FRGs. The landscape of genetic

variation presented the high heterogeneity of genetic and

expressional alteration landscape in ferroptosis-related genes

between normal and SCLC samples, indicating that the

expression imbalance of ferroptosis played a crucial role in the

SCLC occurrence and progression. We determined three distinct

FRG subtypes in SCLC according to the expression of FRGs. The

three FRG subtypes presented significant survival differences.

Previous studies reveal that the activating Notch signaling

tumor cells are slowly growing and often chemo-resistant.

Accordingly, the Notch is considered a tumor suppressor in

SCLC (44). Based on the inhibitory activity of DLL3 on the

Notch pathway or the inactivating mutations in Notch pathway

genes, Notch is frequently inactivated in SCLCs with a high NE

expression profile. Meanwhile, the activation of Notch signaling in a

preclinical SCLC mouse model strikingly reduced the number of

tumors and extended the survival of the mutant mice (18). In

neuroendocrine cells, MYC activates Notch to dedifferentiate tumor

cells, promoting a temporal shift in SCLC from ASCL1+ to

NEUROD1+ to YAP1+ states (45). Interestingly, we found that

the activity of the notch pathway, notch ligand pathway, and MYC

pathway were different in diverse subtypes. Given that the majority

of tumors express a neuroendocrine program that integrates neural

and endocrine properties, we tried to find the connection between

our classification and the characteristics of neuroendocrine. The

activity of NE was also well distinguished in the different clusters.

Furthermore, the EMT score also showed a specific level among

these subtypes. The above findings indicated a pronounced

divergence in the subtypes based on the expression of FRGs.

The TME subtypes correlate with patient response to

immunotherapy in multiple cancers, with patients possessing

immune-favorable TME subtypes benefiting the most from

immunotherapy (9, 46).In particular, cell-to-cell communication

in the TME has a major impact on the efficacy of immunotherapy

and prognosis (47). Regarding the inclusion of malignant and

microenvironment components, TME subtypes act as a

generalized immunotherapy biomarker across many cancer types,

including SCLC. Therefore, we also tried to describe the distribution

of TME subtypes in our cohort. Then, the expression of Immune

checkpoint genes is explored in the TME subtypes and key

transcription subtypes. In summary, we found that the FRGs-

based classification is tightly correlated with TME 4 clusters,

indicating the FRGs classification might be indicating the

important role of tumor microenvironment. To validate the

findings, we adopted one new independent cohort in Beijing

including 34 SCLC patients. Most of the FRGs were

predominantly expressed in the S3 subtype which had the best

prognosis. The expression of four key transcription regulators was

well distinguished in the 3 subtypes. Meanwhile, the EMT score and

NE score are different. Interestingly, the proposition of the TME

component in the Beijing cohort is similar to the public cohort.

Survival analysis in the TME classification is significant. At the same

time, stromal score, immune score, and ESTIMATE score are
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different in FRGs subtypes. In summary, we find the

characteristics in the validation cohort are similar in the training set.

Next, we explored the relationship between the IC50 values of

various drugs and the classification using the GDSC database.

Interestingly, the IC50 values were higher in the S2 subtype,

suggesting lower sensitivity to chemical therapies and indicating

worse outcomes in this group. We also evaluated the immune score,

stromal score, and ESTIMATE score in the training set, finding

significant differences across subtypes. However, no differences

were observed in the TIDE score, which is typically used to

evaluate immunotherapy response based on RNA sequencing

data. Previous studies have shown that tumor heterogeneity

serves as a biomarker for therapy efficiency, as it fuels resistance.

Therefore, an accurate assessment of tumor heterogeneity is

essential for developing effective therapies (48). To explore this,

we assessed intra-tumor heterogeneity using the MATH score (37).

SCLCs are prone to acquiring diverse genetic alterations as they

undergo evolution. Genomic profiling of SCLC reveals extensive

chromosomal rearrangements and a substantial mutation burden

(49). Our findings indicated no disparities in heterogeneity and

mutation burden. Dvir Aran et al. demonstrate that lower-purity

samples can hinder the efficacy of precision medicine by influencing

genomic data (50). Additionally, we calculated the purity across the

samples and found significant differences between groups.

Aneuploidy is a ubiquitous feature of human tumors and may

function as an under-explored cause of therapy failure (51, 52).

While, the characteristic and subclonal architecture of cancer,

including het mut score, CCF first score, and CCF per read are

not significant. At present, extensive-stage SCLC is treated with

immunotherapy combination in the first-line treatment, but the

proportion of effective long-term survival is low. FRG subtype may

be effective in aiding the identification of patients for long-term

benefit. In addition, a heterogeneous strategy to improve survival

may be available for those S2 patients with poor prognosis.

Our study has some limitations. The results were validated in the

independent Beijing cohort, but the sample size was limited, and a

larger cohort is needed in the future. The treatment information of

patients in both the public and Beijing cohorts was unknown, which

may have impacted the accuracy of the subtypes and prognosis

prediction. It is imperative to restrict enrollment in an independent

cohort, particularly to predict the benefit of immunotherapy using

FRGs-based subtypes. Furthermore, we perform a drug sensitivity

analysis, but more in-depth ex vivo and in vivo research is necessary.
5 Conclusion

This was the first characterization of the landscape of ferroptosis

regulators—including their molecular characteristics, immuno-

oncology features, and clinical relevance. Our data highlight the

importance of FRGs on cancer pathogenesis and shaping of TME

and lay a rational foundation and buttress for developing therapeutic

strategies for targeting ferroptosis in patients with SCLC.
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