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Spinal cord injury (SCI) is a traumatic disease of the central nervous system that

can result in significant tissue damage and neurological dysfunction. The

pathophysiological process of SCI encompasses both primary and secondary

injuries, involving various pathological mechanisms such as oxidative stress,

inflammation, autophagy, ferroptosis, and mitochondrial dysfunction. Nuclear

factor erythroid 2-related factor 2 (Nrf2) is a neuroprotective transcription factor

intricately linked to these pathological processes. Upon exposure to external

stimuli, Nrf2 undergoes increased nuclear transcription, regulating the

expression of various antioxidant genes and directly modulating genes

associated with the aforementioned pathological mechanisms to counteract

the resultant alterations. Substantial evidence suggests that Nrf2 may be a

potential therapeutic target for SCI. Activation of the Nrf2-related signaling

pathway effectively inhibits neuronal death following SCI and promotes the

recovery of multiple neurological functions. This review provides an overview

of recent research on SCI, examines the physiological roles and mechanisms of

Nrf2 in SCI, and explores therapeutic strategies targeting this signaling pathway,

including non-coding RNAs, natural and synthetic compounds, and other

treatments for SCI.
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1 Introduction

Spinal cord injury is a debilitating condition of the central nervous system caused by

either traumatic or non-traumatic factors. It often results in profound motor, sensory, and

autonomic dysfunction (1). SCI and its complications impose considerable long-term

physical, mental, and economic burdens on patients and their families (2). It is estimated
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that the global incidence of SCI ranges from 250,000 to 500,000

cases annually. With the rise in extreme sports and traffic accidents,

both morbidity and mortality associated with SCI have been

increasing, further straining the healthcare system (3–5).

Pathophysiologically, SCI is categorized into two distinct stages:

primary injury and secondary injury (6). The former, resulting from

the initial trauma to the spinal cord, leads directly to structural

damage and nerve tissue loss (7). In contrast, the latter involves a

cascade of biological events—including immune cell infiltration,

oxidative stress, inflammation, apoptosis, accumulation of

excitotoxic neurotransmitters (such as glutamate), disruption of

ion homeostasis, and mitochondrial dysfunction—which

collectively exacerbate the extent of neuronal damage and

promote further neuronal apoptosis (8). Among these

mechanisms, immune cell infiltration, inflammatory responses,

and oxidative stress play pivotal roles in the progression of SCI.

Following the primary injury, vascular damage induces hemorrhage

within the spinal cord, which is subsequently followed by the

infiltration of peripheral immune cells—such as monocytes,

neutrophils, and macrophages—into the spinal tissue (9). These

immune cells facilitate the release of inflammatory cytokines,

including tumor necrosis factor-a (TNF-a), interleukin-6 (IL-6),

and interleukin-1b (IL-1b) (10). The combined effects of immune

cell infiltration and cytokine release promote neuroinflammation

(11). Although inflammation initially contributes to debris

clearance and tissue repair, excessive or prolonged inflammation

can result in neuronal apoptosis and further tissue damage (12).

Additionally, the destruction of microvessels and the release of

hemoglobin from lysed red blood cells lead to the overproduction of

reactive oxygen species (ROS), inducing oxidative stress (13).

Elevated ROS levels can cause lipid peroxidation, DNA damage,

and mitochondrial dysfunction, ultimately triggering iron

dysregulation and neuronal apoptosis (14). The interplay between

inflammation and oxidative stress further worsens the pathological

process, creating a vicious cycle of tissue damage (12). The primary

injury occurs immediately upon trauma, resulting in irreversible

damage to the affected site. However, the molecular and cellular

pathological changes associated with secondary injury are reversible

(15). Consequently, the optimal treatment for SCI focuses on

inhibiting secondary injury while promoting the recovery of

neurological function (16). Current management strategies

include surgery, pharmacological interventions, electrical

stimulation, cell transplantation, and rehabilitation. However,

their effectiveness is limited due to the complex pathophysiology

of SCI (17, 18). Therefore, developing effective strategies for treating

SCI with secondary injury remains a major challenge.

Nuclear factor erythroid 2-related factor 2 (Nrf2) is a key member

of the transcription factor family, ubiquitously expressed across

various cell types (19). It reduces cellular damage caused by

external stimuli by regulating the transcription of defense genes,

playing a crucial role in maintaining intracellular homeostasis (20).

Extensive evidence underscores the critical role of Nrf2 in regulating

redox homeostasis (21). Under normal conditions, Nrf2 interacts

with the E3 ubiquitin ligase complex formed by kelch-like

epichlorohydrin-associated protein 1 (Keap1) in the cytoplasm,
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leading to its ubiquitination and subsequent degradation (22). In

response to oxidative stress, Nrf2 is released and translocates to the

nucleus, where it binds to the enhancer region of antioxidant

response elements (ARE), promoting the expression of antioxidant

genes and thereby counteracting oxidative damage (23, 24). Aside

from its role in the antioxidant response, Nrf2 is involved in various

cellular processes, including inflammation, iron metabolism, DNA

repair, autophagy, and mitochondrial membrane integrity (18).

Dysregulation of the Nrf2-related signaling pathway can contribute

to the onset and progression of multiple pathological conditions,

including neurodegenerative disorders, cardiovascular conditions,

and cancer (25–27). For example, in Parkinson’s disease,

dysregulation of the Nrf2 signaling pathway may exacerbate

oxidative stress and neuroinflammation, leading to neuronal

damage and cell death (28). Nrf2 activity is intricately regulated

through complex transcriptional and post-translational mechanisms,

enabling it to coordinate cellular responses and adaptations to

diverse pathological stresses and maintain homeostasis (29). In

recent years, an increasing number of studies have demonstrated

that activation of the Nrf2-related signaling pathway can significantly

promote the recovery and improvement of spinal cord nerve function

after SCI (30–35).

Nrf2 plays a crucial role in secondary injury after SCI (36),

numerous studies have demonstrated that Nrf2 enhances the

expression of several protective genes such as heme oxygenase-1

(HO-1), superoxide dismutases (SOD), glutathione peroxidase

(GPX), catalase (CAT), and NADPH quinone oxidoreductase 1

(NQO1). This action helps mitigate injury and promotes nerve

repair after SCI (37–39). Additionally, several non-coding RNAs

(ncRNAs), biological macromolecules, and natural or synthetic

compounds have been identified as activators of Nrf2 (40–42). These

agents regulate the aforementioned pathological changes by activating

the Nrf2-related signaling pathway, providing neuroprotective effects.

Consequently, Nrf2 may serve as a promising therapeutic target for

SCI. This review offers an in-depth analysis of Nrf2’s structure and

regulation, while summarizing its mechanisms in SCI (Figure 1).

Additionally, it explores the potential of ncRNAs, natural or

synthetic compounds, biological macromolecules, and other

therapeutic strategies to target this signaling pathway for effective

SCI treatment.
2 The structure of Nrf2 and its
upstream regulation in SCI

Nrf2 is a member of the Cap’n’Collar (CNC) family of basic-

region leucine zipper (bZIP) transcription factors and is widely

expressed across various mammalian cell types (43). The Nrf2

protein, which consists of 605 amino acids, contains seven highly

conserved regions known as Nrf2-ECH homology (Neh) domains,

labeled Neh1 through Neh7. These domains are crucial for its

function in cellular stress responses, particularly in regulating the

expression of genes involved in antioxidant defense and

detoxification (44). Neh1 includes the CNC-bZIP region, which

forms a heterodimer with the leucine zipper motif of the small
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musculoaponeurotic fibrosarcoma (sMaf) proteins in the nucleus.

This heterodimer is responsible for recognizing and binding to the

DNA gene sequence on ARE, thereby activating the transcription of

target genes and regulating the expression of downstream

antioxidant proteins (45). Neh2 interacts with Keap1 via its DLG

and ETGE binding units, suppressing Nrf2’s transcriptional activity

and promoting its degradation (46). The Neh3 domain, located at

the carboxyl terminus of Nrf2, serves as a transactivation domain

that interacts with chromodomain helicase DNA-binding protein 6

(CHD6) to sustain Nrf2 transcriptional activity (47). Neh4 and

Neh5 domains are independent activation regions that regulate

Nrf2 transcription through interactions with the cAMP response

element-binding protein (CREB) binding protein (CBP) (48). Neh6

contains DSGIS and DSAPGS motifs that can bind with b-
transducin repeat-containing protein (b-TrCP), playing a role in

maintaining Nrf2 stability (49). Furthermore, glycogen synthase

kinase-3 (GSK-3) enhances Nrf2 ubiquitination and degradation by

phosphorylating DSGIS, facilitating the binding of Nrf2 to b-TrCP
(50). Neh7 inhibits Nrf2 activity by binding to retinoic X receptor a
(RXRa) (51) (Figure 2A).

In SCI, the upstream regulatory mechanisms of Nrf2 involve

several complexes signaling pathways and molecular interactions.

These mechanisms are critical for enabling Nrf2 to exert its

cytoprotective effects, as they govern its activation and regulation

in response to pathological and physiological changes such as

oxidative stress, inflammation, and autophagy induced by SCI

(52). The classical activation pathway of Nrf2 is primarily

regulated by Keap1, a negative regulator of Nrf2 (45). Under

physiological conditions, Keap1 in the cytoplasm binds to the
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ETGE and DLG motifs of Nrf2 and subsequently interacts with

Cul3 via the Neh6 domain of Nrf2, promoting its ubiquitination

and rapid degradation by the 26S proteasome (53, 54). Upon

stimulation by oxidative stress or electrophiles, cysteine residues

within Keap1 undergo oxidation and conformational changes.

These alterations lead to an unstable association between Nrf2

and Keap1, thereby inhibiting the ubiquitination and degradation of

Nrf2 (55, 56). As a result, Nrf2 is released and translocates into the

nucleus, where it heterodimerizes with sMaf. This complex

ultimately binds to ARE, inducing transcriptional expression of

genes encoding antioxidant enzymes and phase II detoxification

enzymes (57). After SCI, Nrf2 is predominantly activated through

this classical pathway, exerting a cytoprotective role (58).

Following SCI, in addition to the classical Keap1-Nrf2-ARE

pathway for Nrf2 activation, Keap1-independent pathways exist that

do not rely on the oxidation of cysteine residues in Keap1 (59). These

pathways involve the phosphorylation and deacetylation of Nrf2

through the direct interaction of other proteins with Keap1, leading

to the release and activation of Nrf2. Sequestosome 1 (P62/SQSTM1) is

a multifunctional protein that binds to microtubule-associated protein

light chain 3 (LC3) to guide damaged substrates to autophagosomes for

ubiquitination and degradation (60). Notably, P62 and Nrf2 share

similar amino acid sequences. When autophagy is impaired following

SCI, P62 competes with Nrf2 to bind Keap1, thereby preventing

Keap1-mediated degradation of Nrf2 and promoting its nuclear

translocation (61, 62). In addition to competitively binding Keap1,

P62 can directly promote the degradation of Keap1 through selective

autophagy, further activating Nrf2 (63). Sulfiredoxin-1 (Srxn1) is an

endogenous antioxidant protein that can directly interact with Nrf2
FIGURE 1

Summary of reported molecular mechanisms of Nrf2 in SCI. The number of papers by reported molecular mechanisms of Nrf2 in SCI are shown.
Some papers report multiple molecular mechanisms.
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and facilitate its translocation to the nucleus, thereby increasing its

nuclear expression levels (64). Following SCI, this activity of Srxn1

helps to enhance Nrf2 function, improving the cellular response to

oxidative stress. In addition, several kinases also phosphorylate Nrf2

and regulate its activity. For instance, protein kinase R (PKR)-like

endoplasmic reticulum kinase (PERK) and extracellular regulated

kinases (ERK) phosphorylate Nrf2 following SCI and promote its

translocation to the nucleus (56, 65–68). Conversely, phosphorylation

of Nrf2 by GSK-3b and p38 mitogen-activated protein kinase (MAPK)

promotes its degradation (69). Additionally, Sirtuin 1 (SIRT1), a highly

conserved NAD+-dependent deacetylase, can directly deacetylate Nrf2,

promoting its nuclear translocation and enhancing its ability to bind to

DNA, thereby increasing Nrf2 transcriptional activity following SCI

(70) (Figure 2B). The upstream regulation of Nrf2 in SCI is

multifaceted, involving protein-protein interactions, post-translational

modifications, and transcriptional control. These regulatory

mechanisms contribute to the sustained activation of Nrf2 following

SCI. Activated Nrf2 performs multiple protective functions: it

upregulates the expression of antioxidant enzymes, thereby

mitigating oxidative stress-induced neuronal damage, and suppresses

the expression of pro-inflammatory factors, consequently attenuating

inflammatory responses (70, 71). Additionally, Nrf2 regulates iron
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metabolism, reducing the risk of ferroptosis (32). It also promotes a

microenvironment conducive to neural tissue repair by maintaining

mitochondrial integrity and enhancing autophagy (72). Collectively,

these mechanisms underscore the potential of Nrf2 as a key therapeutic

target in SCI.
3 The role of Nrf2 in spinal cord injury

In the previous section, we discussed the complex structure of

Nrf2 and its diverse and tightly regulated mechanisms of action.

Many studies have confirmed that the activation of Nrf2-related

signaling pathways plays a key role after SCI (73–75). In addition to

directly regulating the oxidative stress response, Nrf2 also affects

several other pathophysiological processes associated with SCI,

such as inflammation, autophagy, iron metabolism, axon

regeneration, and mitochondrial function. Given that the

genes regulated by Nrf2 are involved in multiple dimensions of

SCI pathology, its role in SCI is likely to be complex and

multifactorial (75, 76). Therefore, we subsequently summarize the

functional contributions of Nrf2 in SCI based on current

research findings.
FIGURE 2

The structure of Nrf2 and its upstream regulation in SCI. (A) The domain structure of Nrf2, (B) Activation and Degradation of Nrf2.
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3.1 Nrf2 regulates oxidative stress

Primary injury of SCI leads to microvascular rupture, resulting in

the destruction and lysis of numerous red blood cells and hemoglobin.

Hypoxia and the accumulation of free iron in the injured area stimulate

the production of excessive ROS (77). Under normal conditions, ROS

are essential for regulating cellular functions such as neuronal activity

and cell signaling pathways. However, excessive ROS can lead to lipid

peroxidation, DNA damage, inflammation, and cell death, ultimately

resulting in severe neurological dysfunction (78).

Nrf2 regulates the antioxidant system throughmultiple pathways,

effectively lowering ROS levels following SCI. First, Nrf2 facilitates the

breakdown of superoxide and hydrogen peroxide by regulating the

activities of SOD, GPX, CAT, and NQO1. For instance, several

studies have demonstrated that Nrf2 activation in SCI rat neuronal

cells increases the expression of SOD, GPX, CAT, and glutathione

(GSH), inhibitingmalondialdehyde production and functioning as an

antioxidant (79–81). Activation of the Nrf2 pathway also stimulates

NQO1 expression. NQO1 catalyzes the reduction of quinones to

hydroquinones, facilitating their clearance and preventing ROS

generation from quinones via a single-step, double-electron

reduction (38, 82). Nrf2 can reduce oxidative stress by boosting the

expression of reducing factors. Upon activation, Nrf2 enhances the
Frontiers in Immunology 05
expression of the glutamate-cysteine ligase catalytic (GCLC) subunit,

which plays a key role in regulating GSH synthesis (83). Additionally,

Nrf2 helps inhibit oxidative reactions by promoting the regeneration

of oxidative cofactors and proteins (42). Furthermore, Nrf2 can

directly stimulate the production of antioxidant proteins. For

instance, salidroside activates Nrf2, which in turn promotes the

expression of thioredoxin 1 (Trx1). This activation inhibits

thioredoxin-interacting proteins, thereby exerting an antioxidant

effect (84). Experiments have also confirmed that activation of Nrf2

signaling directly targets the ARE elements in the HO-1 and NQO1

genes, regulating their transcriptional activity and inducing the

expression of antioxidant proteins (85–87) (Figure 3). In summary,

Nrf2 mitigates oxidative stress injury after spinal cord injury (SCI) by

regulating the expression of various antioxidant enzymes,

demonstrating significant potential in reducing lipid peroxidation

and preserving cell membrane integrity.
3.2 Nrf2 regulates inflammation and
immune cell infiltration

In addition to oxidative stress, inflammatory responses

mediated by immune cells and inflammatory factors play a
FIGURE 3

Schematic representation of the multifaceted role of Nrf2 in SCI. The target molecules of Nrf2 (marked in red) are involved in oxidative stress,
mitochondrial function, autophagy, inflammation and ferroptosis.
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critical role in secondary injury following SCI. Local trauma

resulting from SCI disrupts the blood-spinal cord barrier (BSCB)

and the local microenvironment, leading to the infiltration of

monocytes, neutrophils, macrophages, and lymphocytes, as well

as the release of inflammatory mediators at the injury site (88).

These immune cells promote the secretion of pro-inflammatory

cytokines such as TNF-a, IL-1a, IL-1b, and IL-6. Ultimately, the

interplay between various immune cells and cytokines results in a

severe inflammatory response (15). While inflammation plays a

beneficial role in the early stages after SCI, such as debris clearance

and tissue repair, excessive immune cell infiltration remains a major

contributor to neurological dysfunction (11, 89). After SCI, Nrf2

activation can mitigate the inflammatory response and protect

nerve cells by regulating the activity of microglia, monocytes, and

macrophages. Studies have demonstrated that activation of Nrf2

can inhibit microglial activation and reduce the expression of

inflammatory cytokines, including TNF-a, IL-6, and IL-1b (70,

81, 90). Additionally, Various stimuli following SCI activate

inflammasomes, leading to the release of inflammatory factors

and subsequent cellular damage. Nrf2 also exerts an inhibitory

effect on inflammasome activity. For example, an experiment

demonstrated that activation of the Nrf2-related signaling

inhibited the production of NLRP3 inflammasomes and increased

neuronal survival (91). Notably, Nrf2 also exerts regulatory effects

on immune cells such as lymphocytes and neutrophils in other

disease models (69, 92, 93). However, there is currently no direct

evidence that Nrf2 plays a similar regulatory role in SCI models;

therefore, further research is required to confirm this hypothesis.

In addition, Nrf2 participates in neuro-immune interactions by

regulating communication between the nervous system and immune

cells, which is essential for coordinating inflammation and oxidative

stress after SCI. Following SCI, Nrf2 activation in injured neurons

and astrocytes promotes the release of neurotrophic factors and

antioxidants (94, 95). These neuromodulators act directly on

immune cells to inhibit their excessive activation (96).

Furthermore, studies have shown that Nrf2 activation in injured

neurons reduces oxidative stress and inflammation, thereby

decreasing the permeability of the blood-spinal cord barrier (97,

98). Notably, maintaining the integrity of the blood-spinal cord

barrier limits the abnormal infiltration of peripheral immune cells

and suppresses their pro-inflammatory effects (99). Therefore, it is

reasonable to speculate that Nrf2-mediated neuro-immune

interaction constitutes a positive feedback loop associated with

anti-inflammation and is important for the recovery of neurological

function. Additionally, Nrf2 activation in microglia promotes

macrophage polarization from the M1 to the M2 phenotype, and

M2 macrophages secrete the anti-inflammatory factor interleukin-10

(IL-10), thereby exerting an anti-inflammatory effect during spinal

cord repair (86, 100, 101). Conversely, in immune cells, Nrf2

activation can inhibit the NF-kB signaling pathway, thus reducing

the release of inflammatory mediators and alleviating inflammatory

damage to neurons (102–104) (Figure 3). While Nrf2 mechanisms in

SCI have been extensively studied, neuro-immune interactions

remain underexplored despite their dual role as both drivers of

secondary injury and therapeutic targets for neural repair. In-depth
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may facilitate the identification of new therapeutic targets and

strategies, thereby improving the prognosis and quality of life of

patients with spinal cord injury.
3.3 Nrf2 regulates mitochondrial function

Mitochondrial dysfunction represents another critical

pathological process in SCI. Mitochondria, which contain their

own unique DNA (mtDNA), are essential for the life activities of

nerve cells. They act as the energy powerhouses of the cell and play a

key role in regulating fatty acid oxidation, amino acid metabolism,

neurogenesis, ROS production, apoptosis, and calcium ion

homeostasis (105, 106). Studies have shown that mitochondrial

dysfunction is closely associated with the pathological processes

after SCI (35, 75, 107). During the acute phase of SCI, substantial

changes in mitochondrial morphology and function occur,

including mitochondrial swelling, loss of cristae structure, and a

more relaxed endoplasmic reticulum. These alterations lead to

increased ROS production and reduced ATP synthesis, causing

oxidative damage to lipids and DNA, and ultimately triggering

neuronal apoptosis (108–111).

Studies have demonstrated that Nrf2 plays a protective role in

mitochondrial dysfunction after SCI through various regulatory

mechanisms (112, 113). The activation of Nrf2 can induce the

expression of multiple antioxidant enzymes and mitigate oxidative

stress, thereby safeguarding mitochondria from damage.

Experiments have confirmed that Nrf2 activation can promote

the production of antioxidant enzymes such as HO-1, SOD2,

NQO1, and GSH, thereby protecting mitochondria (100, 114). In

nerve cells, Nrf2 can also regulate mitochondrial respiration and

NADPH oxidase activity, thereby influencing ROS production

(115). In addition to regulating oxidative stress, Nrf2 mitigates

mitochondrial damage by regulating apoptosis following SCI.

Mitochondrial disruption and membrane potential disorder

represent irreversible points in the apoptosis cascade (116). In

vitro model of spinal cord ischemia/reperfusion injury,

researchers found that Nrf2 maintained the stability of

mitochondrial membrane potential and prevented mitochondrial

swelling and rupture by enhancing mitochondrial permeability

transition pore (mPTP) activity and ATP levels (117). Another

study has shown that Nrf2 can also maintain membrane potential

and mitochondrial membrane stability by increasing anti-apoptotic

protein expression and inhibiting pro-apoptotic protein expression,

thereby reducing neuronal apoptosis (118). Additionally, Nrf2

activates PINK1/Parkin-mediated mitophagy, promoting the

recovery of mitochondrial function (119) (Figure 3). As the

primary source of cellular energy, mitochondria are essential for

most physiological activities (120). Further research is required to

determine whether there is a synergistic effect between Nrf2-

mediated improvement of mitochondrial dysfunction and other

pathophysiological processes, such as oxidative stress and

inflammation. Elucidating such interactions may reveal novel

therapeutic targets to improve outcomes in SCI management.
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3.4 Nrf2 regulates ferroptosis

Ferroptosis is also a significant component of the pathogenesis

of SCI, further exacerbating neuronal death and dysfunction (121).

Ferroptosis is a newly discovered form of iron-dependent

programmed cell death, the primary mechanism involves iron

metabolism dysregulation and ROS production, leading to PUFA

lipid peroxidation, membrane damage, and cell death (122, 123).

Glutathione peroxidase 4 (GPX4), a lipid repair enzyme, converts

toxic lipid hydroperoxides (L-OOH) to non-toxic lipid alcohols (L-

OH) on the cell membrane, thereby mitigating the effects of

ferroptosis (124, 125). Additionally, System Xc- (a cystine/

glutamate antiporter system) increases cellular uptake of cystine,

promoting the synthesis of GSH, which is essential for maintaining

GPX4 activity (126–128). Solute carrier family 7 member 11

(SLC7A11/xCT) is a critical subunit of the system Xc- and plays a

significant transport role (129). Therefore, GPX4 and its upstream

regulators are critical determinants in modulating ferroptosis.

Recent research indicates that ferroptosis is closely related to the

pathophysiological process of SCI (121). Following SCI, tissue

necrosis and red blood cell destruction at the injury site led to

increased local iron ion and ROS levels, resulting in elevated lipid

peroxide production and, ultimately, ferroptosis (130). Studies have

confirmed that Nrf2 activation promotes the expression of GPX4

and its upstream regulators, thereby reducing lipid peroxide

accumulation, inhibiting ferroptosis, promoting neuronal survival,

and alleviating SCI symptoms (32, 131). Furthermore, studies

revealed that Nrf2 also upregulates GSH and SLC7A11

expression, further inhibiting ferroptosis after SCI (131, 132). In

addition, the activation of Nrf2 lowers the levels of free iron ions

and boosts the expression of ferroportin (FPN) and ferritin heavy

chain 1 (FTH1), which helps to mitigate ferroptosis-related damage

following SCI (133). Notably, Nrf2 also inhibited the expression and

activity of Alox15B, a lipoxygenase responsible for catalyzing the

production of lipid peroxides from polyunsaturated fatty acids in

membrane phospholipids, thereby leading to ferroptosis (134). In

addition to these mechanisms, Nrf2 promotes the expression of

antioxidant enzymes such as SOD, GSH, HO-1, and GPX, thereby

reducing oxidative stress and inhibiting ferroptosis (135, 136).

Furthermore, Nrf2 activates the GTP cyclohydroxylase 1 (GCH1)/

tetrahydrobiopterin (BH4) signaling pathway, reducing oxidative

stress and inhibiting ferroptosis. A recent study found that Nrf2

enhances the expression of GCH1, a key enzyme in the synthesis of

BH4, which plays a key role in producing superoxide radicals (137–

139) (Figure 3). Current evidence indicates that Nrf2 activation

mitigates ferroptosis and ameliorates SCI through multiple

mechanisms. However, systematic investigations into precise

mechanisms and potential interactions or synergistic effects

among these pathways remain insufficient.
3.5 Nrf2 regulates autophagy

Autophagy is an intracellular catabolic process that facilitates

the degradation and recycling of damaged proteins, organelles, and
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other cellular components (140). This process can be broadly

categorized into three types: macroautophagy, microautophagy,

and chaperone-mediated autophagy, with macroautophagy being

the most extensively studied form (141). In response to stimuli such

as hypoxia or stress, phagosomes are formed through membrane

extensions from the endoplasmic reticulum, Golgi apparatus, and

other organelles. These phagosomes encapsulate damaged proteins

and organelles to create autophagosomes. Subsequently,

autophagosomes fuse with lysosomes to form autolysosomes

where the degradation and recycling of damaged proteins and

organelles occur (142–144). Autophagy serves as a critical defense

mechanism within the body and plays a significant role in the

pathophysiological processes of SCI. Most studies suggest that

moderate autophagy following SCI helps remove damaged

organelles and proteins, maintaining cellular homeostasis and

promoting cell survival (145–147). However, other studies

indicate that excessive activation or dysregulation of autophagy

may have adverse effects, leading to autophagic cell death and

exacerbating nerve damage (145, 148). This indicates that

investigations of autophagy should extend beyond its

cytoprotective functions to include its potential adverse effects.

Specifically, it is critical to examine the mechanisms underlying

the transition of autophagy from a protective to a harmful role,

including abnormal activation of signaling pathways and failures in

feedback regulation.

Studies have shown that activation of Nrf2 enhanced the

expression of autophagy-related proteins, including P62, LC3, and

Beclin-1, thereby promoting autophagy and ultimately exerting a

neuroprotective effect (33, 72, 119). Notably, as previously

mentioned, P62 can compete with Nrf2 for binding to Keap1,

leading to the release and nuclear translocation of Nrf2. Thus,

this reciprocal regulation between P62 and Nrf2 forms a positive

feedback loop that is significant for cytoprotection. Furthermore,

other studies have shown that mitophagy, a specialized form of

autophagy, plays a key role in SCI (119, 147). Mitophagy removes

damaged or excess mitochondria through autophagy, maintaining

mitochondrial number stability and energy metabolism (149)

(Figure 3). This finding underscores the therapeutic potential of

mitophagy in the treatment of spinal cord injuries, as it may protect

neurons by modulating mitochondrial quality and energy

metabolism. However, the mechanisms underlying the interaction

between mitophagy and other cellular processes require

further investigation.
3.6 Nrf2-mediated protective effects on
neuronal populations

Beyond the previously described neuroprotective molecular

mechanisms, Nrf2 may also influence specific neuronal

populations within the central nervous system (CNS). Neuronal

populations refer to collections of neurons within the CNS

categorized by characteristics such as origin, function, projection

pathways, or molecular features (150). These populations are

broadly classified into afferent (sensory) neurons, efferent (motor)
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neurons, and intrinsic spinal cord neurons. Key efferent populations

originating from the brain and brainstem include corticospinal tract

(CST), rubrospinal tract (RST), and vestibulospinal tract (VST)

neurons (151). Afferent populations encompass sensory neurons,

notably those within the dorsal root ganglia (DRG) cells (152).

Collectively, these neuronal groups form essential circuits for

sensory perception, information integration, and motor execution,

thereby mediating the spinal cord’s role in sensorimotor function

and adaptation. SCI induces neuronal damage through direct

mechanical trauma and secondary injury mechanisms (99).

Mechanical injury causes axonal disruption, neuronal cell body

damage, and the breakdown of neural networks. Secondary

pathological processes—including immune cell infiltration,

inflammatory responses, and oxidative stress—exacerbate

neuronal death and dysfunction (153). These cascades impair

neuronal survival, disrupt synaptic signaling, and perpetuate long-

term neurological deficits (13).

As previously mentioned, the activation of Nrf2 can facilitate

the recovery of neuronal activity and function following spinal cord

injury by modulating immune cells, inflammation, oxidative stress,

mitochondrial function, ferroptosis, and autophagy (82, 97, 119).

Nrf2 contributes to the survival of neuronal populations and

enhances axonal regeneration, partly through mechanisms

involving the upregulation of brain-derived neurotrophic factor

(BDNF). Consistent with this, research in SCI rat models indicates

that Nrf2 activation elevates BDNF expression, correlating with

enhanced neuronal plasticity and improved motor function

recovery (154, 155). Furthermore, gene network analyses further

identify Nrf2 as a critical regulator of axon regeneration-associated

genes integral to axonal regeneration, a process fundamental to

neurological restoration after traumatic injury (156). Experimental

evidence confirms that Nrf2 activation enhances neurological

recovery in rodent SCI models by promoting axonal regrowth

(34). Mechanistically, Nrf2 upregulates Microtubule-Associated

Protein 1B (MAP1B) transcription, a key driver of axon

regeneration. MAP1B overexpression and phosphorylation

facilitate axonal elongation, while Nrf2-mediated mitochondrial

enhancement provides metabolic support for regeneration (157).

Concurrently, Nrf2 bolsters neuronal oxidative stress tolerance,

improving survival at injury sites (113). Collectively, these

mechanisms contribute to functional restoration post-SCI.

Although numerous studies underscore the beneficial impact of

Nrf2 activation on neuronal populations post-SCI, the specific

subpopulations affected and the precise underlying molecular

mechanisms warrant further investigation.
4 Therapeutic potential of targeting
Nrf2 signaling in SCI

Nrf2 is a classical signaling pathway involved in response to

oxidative stress, playing a critical role in secondary injury following

SCI (18). Aside from its antioxidant functions, Nrf2 also modulates

various pathological processes such as inflammation, mitochondrial

function, iron metabolism, autophagy, glial scar formation, and
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axon regeneration after SCI. These actions are essential for the

recovery of nerve function post-injury. Consequently, Nrf2 may

serve as a potential therapeutic target for SCI. In recent years,

numerous studies have demonstrated that various non-coding

RNAs, biomolecules, and drugs can activate the Nrf2-related

signaling pathway, promoting the recovery of neurological

function post-SCI (158, 159).
4.1 Non‐coding RNA

Non-coding RNA (ncRNA) refers to a class of RNA molecules

that do not encode proteins, including microRNA (miRNA), long

non-coding RNA (lncRNA), circular RNA (circRNA), and others

(160). These molecules play crucial roles in the regulation of gene

expression, chromatin remodeling, RNA processing modifications,

and various other biological processes (161). Studies have shown

that many miRNAs and lncRNAs regulate the pathophysiological

processes of spinal cord injury by activating or inhibiting the Nrf2-

related signaling pathway. For instance, previous studies have

confirmed that miR-429 is highly expressed in SCI rats, and its

inhibition can reduce oxidative stress and inflammation by

activating the Nrf2 pathway (159). Additionally, overexpression of

lncRNA metastasis-associated lung adenocarcinoma transcript 1

(MALAT1) has been shown to activate Nrf2, promote autophagy,

and inhibit neuronal apoptosis (33). Notably, MALAT1 exhibits a

contrasting regulatory role in certain tumors (162). However,

whether its activation of Nrf2 in SCI could contribute to

uncontrolled cell proliferation requires further investigation.

According to reports, the expression of lncRNA OIP5-AS1 is

decreased in SCI rats, and its overexpression can inhibit

ferroptosis and mitochondrial dysfunction, thereby effectively

improving SCI (163). Furthermore, other ncRNAs, such as

CASC9, MiR-200a, MiR-337, and MiR-101, also contribute to

alleviating spinal cord injury by regulating oxidative stress

responses, autophagy mechanisms, inflammatory reactions,

ferroptosis pathways, and mitochondrial functions (98, 164–

166) (Table 1).
4.2 Natural or synthetic compounds

In recent years, numerous studies have demonstrated that various

natural and synthetic compounds derived from plants can exert

neuroprotective effects following SCI by activating the Nrf2-related

signaling pathway (80, 97, 119, 167, 168). These compounds not only

inhibit oxidative stress, inflammation, and ferroptosis, but also reduce

glial scar formation, improve mitochondrial function, restore the

integrity of the blood-brain barrier, and promote autophagy and

axonal regeneration. For example, sulforaphane, an organic sulfide

extracted from cruciferous vegetables, exhibits antioxidant and anti-

inflammatory effects (169). In SCI rat models, treatment with

sulforaphane was shown to mitigate oxidative stress and

inflammatory responses by activating Nrf2, thereby playing a

crucial neuroprotective role (71). Polydatin is a natural compound
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with antioxidant effects (170). According to reports, it could alleviate

neuronal cell damage induced by mitochondrial dysfunction by

activating the Nrf2/ARE pathway after SCI (117). Additionally,

Zinc is a trace element in the human body that is essential for

neurodevelopment, neurotransmission, and sensory processing

(171). Several studies have indicated that zinc enhances Nrf2

expression after SCI, thereby reducing oxidative stress and

ferroptosis (32). Ezetimibe is a medication commonly used to treat

hypercholesterolemia. Recent research has demonstrated that

ezetimibe can upregulate Nrf2 expression post-SCI while inhibiting

oxidative stress, inflammatory responses, and glial scar formation

(172). Ezetimibe, a drug used to treat hypercholesterolemia, has

recently been shown to upregulate Nrf2 expression following spinal

cord injury (SCI), thereby reducing oxidative stress, attenuating

inflammatory responses, and suppressing glial scar formation [137].

While this finding highlights the potential for repurposing traditional

drugs, the specific mechanisms underlying ezetimibe’s protective

effects on spinal cord white matter integrity require further

investigation. Furthermore, various compounds can activate the

Nrf2-related signaling pathway to alleviate SCI (97, 103, 112, 113,

119, 167, 168, 173–185) (Table 2).
4.3 Biomolecules

Biomolecules are a class of proteins with a wide range

of biological activities and significant potential in treating spinal

cord injury (186). For example, recombinant human erythropoietin

(rhEPO) is a protein hormone generated through genetic
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recombination technology. Beyond its role in stimulating the

production of pre-red blood cells, erythropoietin (EPO) also

possesses neuroprotective properties (187). According to reports,

rhEPO can increase the expression of NQO1 and glutathione S-

transferases (GST) by activating Nrf2, thereby reducing oxidative

stress and spinal cord edema (39). Melatonin, a hormone secreted

by the human pineal gland, exerts neuroprotective effects on various

nervous system diseases (188). Studies have shown that melatonin

inhibits the NLRP3 inflammasome by stimulating the Nrf2/ARE

pathway, thereby reducing inflammatory responses and mitigating

mitochondrial dysfunction (189). SET8 is currently the only lysine

methyltransferase identified that can specifically monomethylate

the lysine 20 position of histone H4. This modification plays crucial

roles in transcription regulation, cell cycle control, and DNA

damage repair (190). Overexpression of SET8 can alleviate

oxidative stress and reduce glial scar formation by activating the

Keap1/Nrf2/ARE pathway (191). Synoviolin 1 (SYVN1) is an E3

ubiquitin ligase involved in various cellular biological processes

(192). Experiments have confirmed that SYVN1 overexpression

could enhance the activation of the Nrf2/HO-1 signaling pathway

and inhibit ferroptosis in a rat model of spinal cord ischemia-

reperfusion injury (193). Although this study provides preliminary

evidence supporting the potential therapeutic application of SYVN1

in SCI treatment, it does not fully elucidate the regulatory

mechanisms through which SYVN1 overexpression modulates

ferroptosis-related proteins such as GPX4 and ferroportin.

Furthermore, as SYVN1 functions as an E3 ubiquitin ligase, its

role in regulating protein homeostasis may be intricately linked to

the pathophysiology of SCI. Additional investigations are

required to validate these hypotheses and elucidate the

underlying mechanisms. Furthermore, we summarized other

biomacromolecules that attenuate SCI by activating Nrf2-related

signaling pathway (194–197) (Table 3).
4.4 Stem cells, exosomes, and a ketogenic
diet

In addition to ncRNAs, compounds, and biological

macromolecules, several studies have found that stem cell

transplantation, exosomes, and a ketogenic diet can also target Nrf2

and alleviate SCI. For instance, bone mesenchymal stem cells

(BMSCs) are multilineage cells capable of self-renewal and

differentiation into various cell types, and they are widely found in

bone marrow and other tissues (198). Studies have confirmed that the

combined treatment of BMSCs and plumbagin could alleviate SCI

through the activation of antioxidant, anti-inflammatory, and Nrf2-

related signaling pathway (199). In addition, exosomes are vesicles

secreted by cells into the extracellular space and are considered

potential drug candidates for treating various diseases (200).

Studies have found that microglia-derived exosomes (MG-Exos)

can induce the expression of downstream antioxidant-related genes

such as NQO1, GCLC, and CAT by activating the Nrf2-related

signaling pathway, thereby promoting angiogenesis and

neurological function recovery after SCI (201). Furthermore, the
TABLE 1 Non-coding RNAs affect SCI by regulating Nrf2
signaling pathways.

NcRNA Overexpression/
inhibition

Function Reference

MALAT 1 Overexpression Promote
autophagy

(33)

OIP5-AS1 Overexpression Inhibit ferroptosis
and ameliorating

(163)

CASC 9 Overexpression Inhibit oxidative
stress and
inflammation

(164)

MiR-200 a Overexpression Inhibit
oxidative stress

(165)

MiR-337 Inhibition Inhibit oxidative
stress
and inflammation

(166)

MiR-429 Inhibition Inhibit oxidative
stress and
inflammation

(159)

MiR-101 Overexpression Repair blood-
spinal cord barrier

(98)

MiR-219-5p Overexpression Inhibit ferroptosis (135)

MiR-25 Overexpression Inhibit
oxidative stress

(40)
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ketogenic diet is a dietary pattern characterized by high fat, low

carbohydrate, and moderate protein intake, which simulates a state of

human starvation and uses ketone bodies produced by fat

metabolism as an energy source (202). Studies have shown that the

ketogenic diet induced Nrf2 activation and reduced oxidative stress

and inflammation (203).
5 Conclusion

The primary injury in SCI is usually irreversible, whereas the

pathological process of the secondary injury can be reversed.

Therefore, the treatment strategy for SCI should focus on blocking

the progression of the latter and promoting nerve regeneration and

functional recovery. Nrf2 can play a neuroprotective role by

regulating various pathways. In this review, we provide an in-depth

analysis of Nrf2’s structure and regulation, summarize its

mechanisms in SCI, and explore the therapeutic potential of

targeting this signaling pathway. Activation of the Nrf2-related
TABLE 2 Natural/synthetic compounds affect SCI by regulating Nrf2
signaling pathways.

Compound Function Reference

Sodium
hydrosulphide

Inhibit oxidative stress (167)

Resveratrol Inhibit oxidative stress (173)

Curculigoside Inhibit oxidative stress (82)

2-BFI Inhibit oxidative stress (80)

Notoginsenoside
R1

Inhibit oxidative stress and inflammation (174)

Biochanin A Inhibit oxidative stress and inflammation (72)

Sulforaphane Inhibit oxidative stress and inflammation (71)

Albiflorin Inhibit oxidative stress and inflammation (175)

Ginsenoside Rg1 Inhibit oxidative stress and inflammation (79)

Hesperetin Inhibit oxidative stress and inflammation (81)

Acacetin Inhibit oxidative stress and inflammation (30)

Curcumin Inhibit oxidative stress and inflammation (102)

Sinomenine Inhibit oxidative stress and inflammation (176)

Rosmarinic acid Inhibit oxidative stress and inflammation (104)

Plumbagin Inhibit oxidative stress and inflammation (177)

Asiatic acid Inhibit oxidative stress and inflammation (178)

Luteolin Inhibit oxidative stress and inflammation (179)

Oxyresveratrol Inhibit oxidative stress and inflammation (180)

Allicin Inhibit oxidative stress and inflammation (181)

Lithium Inhibit oxidative stress and inflammation (182)

Perillaldehyde Inhibit oxidative stress and inflammation (183)

Isorhamnetin promote microglia M1 into
M2 phenotypen

(168)

Gastrodin Inhibit inflammation and repair blood-
spinal cord barrier

(97)

Polydatin Reduce oxidative stress and
mitochondrial disfunction

(117)

Calycosin Reduce oxidative stress, inflammation and
mitochondrial disfunction

(112)

Maltol Inhibit oxidative stress and
promote mitophagy

(119)

Acteoside Promote autophagy (184)

Betulinic acid Promote autophagy (147)

Berberine Inhibit ferroptosis (136)

Trehalose Inhibit oxidative stress and ferroptosis (185)

Zinc Inhibit oxidative stress and (32)

Celastro Reduce Lipid ROS inhibits ferroptosis (131)

Ezetimibe Reduce inflammation and glial
scar formation

(172)

(Continued)
TABLE 2 Continued

Compound Function Reference

Forsythoside B Reduce glial scar formation (103)

Metformin Improve Mitochondrial function and
axon regeneration

(113)

Morin Promote axon regeneration (34)
TABLE 3 Biomolecule affect SCI by regulating Nrf2 signaling pathways.

Biomolecule Function Reference

RhEPO Improve oxidative stress and spinal
cord edema

(39)

HSP70 Inhibit oxidative stress (37)

Teriparatide Inhibit oxidative stress (194)

Apoprotein E Inhibit oxidative stress and
inflammation

(195)

Pregnane X
receptor

PXR deficiency inhibits oxidative
stress, inflammation

(196)

SET8 Inhibit oxidative stress and reduce glial
scar formation

(191)

MST1 Improve mitochondrial function (114)

Melatonin Reduce inflammation and improve
mitochondrial function

(189)

Phosphoglycerate
mutase 5

Reduce inflammation and improve
mitochondrial function

(35)

FUNDC1 Promote autophagy and improve
mitochondrial function

(149)

SYVN1 Inhibit ferroptosis (193)

GDF15 Inhibit oxidative stress-
dependent ferroptosis

(197)
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signaling pathway is beneficial for reducing tissue damage and

promoting neurological function recovery after SCI. This involves

mechanisms such as antioxidative stress, anti-inflammation,

regulation of mitochondrial function, activation of autophagy, and

inhibition of ferroptosis. Therefore, we propose that Nrf2 is a valuable

therapeutic target. Despite the fundamental understanding of the

relationship between the complex pathophysiological mechanisms of

SCI and Nrf2-related signaling pathway, some deficiencies and

challenges remain that need to be addressed by future studies. First,

the pathophysiological changes in SCI are a dynamic process, and

different therapeutic strategies may be required to target different

stages after injury. Further studies are essential to elucidate the role

and regulatory mechanisms of the Nrf2-related signaling pathway at

various stages of SCI. Additionally, while numerous natural and

synthetic compounds have been identified that target the activation of

the Nrf2-related signaling pathway and mitigate SCI in animal or

cellular models, current research seldom addresses the long-term

effects and potential side effects associated with Nrf2 activation. These

factors must be considered for future clinical applications.

Furthermore, Collaboration among neuroscientists, molecular

biologists, pharmacologists, and clinicians will facilitate the

translation of Nrf2-related therapeutics from laboratory settings

to clinical practice. Finally, ncRNAs and stem cell therapies have

demonstrated promise in treating SCI, however, more comprehensive

investigations are required to unravel their complex mechanisms of

action and to expand targeted therapeutic options for SCI.
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