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Multi-omics reveals immune
features in immune and non-
immune cells, an IFN-g/IFN-
a-B2M positive feedback loop,
and targeted metabolic
therapy in multiple myeloma
Chen Li 1,2†, Yaping Liao1†, Lingyun Xu2 and Yan Chen1*

1Department of Hematology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China,
2Department of Hematology, Fuyang People’s Hospital (The Affiliated Fuyang People’s Hospital of
Anhui Medical University), Fuyang, China
Multiple myeloma (MM) is highly heterogeneous, with relapse occurring in the

majority of cases, and recent advancements in single-cell RNA sequencing

(scRNA-seq), sc-metabolism profiling, and bulk RNA-seq have facilitated the

identification of cell subpopulations and metabolic reprogramming at the single-

cell level, uncovering novel molecular mechanisms. This study aims to establish a

multi-omics atlas of MM, characterizing the cell subpopulations and signaling

pathways that drive immune evasion and disease progression. Additionally, sc-

metabolic profiling identifies reprogramming patterns and informs therapeutic

screening. We integrated scRNA-seq and bulk RNA-seq data using R to analyze

immune and non-immune cell features and pathways in MM. Metabolic

reprogramming was assessed via sc-metabolic profiling, and drug candidates

were screened through multi-omics integration, with efficacy evaluated in vitro

using CCK-8 assays, flow cytometry, Western blotting, and CalcuSyn software.

Novel MM subpopulations were identified, including myeloma-activated

hematopoietic stem cells and ISG15+ B cells, which correlated with survival

and were validated by multiplex immunofluorescence. IFN-g is primarily secreted

by effector memory CD8+T cells, and IFN-a is primarily secreted by non-

classical monocytes, driving an IFN-g/a-B2M feedback loop. Multi-omics

identified four drug candidates, each demonstrating anti-tumor effects against

myeloma cell lines.
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1 Introduction

Multiple myeloma (MM) remains an incurable malignancy with a

high risk of recurrence, despite advancements in therapeutic strategies

(1, 2). Current treatments, including proteasome inhibitors,

immunomodulatory regimens, and haematopoietic cell transplants,

have led to significant improvements in patient outcomes. However,

challenges such as relapse, drug resistance, and treatment-associated

toxicity continue to limit long-term efficacy (1–3). Consequently, a

deeper understanding of the tumor microenvironment (TME) and the

underlying pathogenesis of MM is essential for the discovery of novel

and more effective treatment approaches.

Recent breakthroughs in high-throughput technologies, such as

single-cell RNA sequencing (scRNA-seq), bulk RNA sequencing

(RNA-seq), and single-cell metabolic profiling, have revolutionized

our ability to investigate MM at unprecedented resolution. ScRNA-

seq enables detailed transcriptomic analysis at the single-cell level,

allowing for the identification of heterogeneous cell populations

within the TME. Bulk RNA-seq, in contrast, provides robust

survival data and gene expression profiles, while single-cell

metabolism profiling offers critical insights into the metabolic

alterations that underpin tumor progression. The integration of

these powerful technologies facilitates the creation of a

comprehensive multi-omics atlas, which provides a more nuanced

understanding of MM at single-cell resolution.

Despite the wealth of knowledge generated by previous scRNA-

seq studies on MM, these investigations have primarily focused on

specific disease stages or isolated cell populations. MM, however, is a

highly heterogeneous disease characterized by clonal evolution, which

necessitates a broader approach to fully understand its complexities.

To address this, the current study integrates four datasets comprising

113 participants, including healthy controls and individuals at various

stages of disease progression. This analysis represents the largest

single-cell multi-omics study of MM to date.

Through this multi-omics approach, we identified and validated

novel subpopulations within the MM TME. These findings were

corroborated by multiplex immunofluorescence, offering new insights

into the TME’s role in disease progression. Furthermore, this study

provides potential therapeutic targets, advancing our understanding of

MM and opening the door for future therapeutic strategies.
2 Materials and methods

Complete details are in Supplementary File 1. scRNA-seq

datasets were integrated, quality-controlled, and analyzed for

clustering, annotation, cell-cell communication, and pseudo-time

dynamics. Functional enrichment and transcription factor networks

identified key biological pathways. Metabolic activity was quantified

using scMetabolism R and visualized with heatmaps/nomograms.

GSEA and GSVA revealed pathways related to plasma cell

malignancy, and key enzyme expression in glucose, lipid, and

glutamine metabolism was assessed. Bulk RNA-seq analysis used

CIBERSORTx for cell abundance quantification, with KM survival

analysis. mIF on tissue sections validated cell subpopulations. Drug
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screening identified galloflavin, CB-839, NAC, and EGCG

inhibitors, with effects on KM3 cell proliferation assessed through

CCK-8 assays, flow cytometry, andWestern blotting. The validation

cohort consisted of MM patients and healthy controls, with data on

b-2M, Ferritin, serum Fe, TF, TSAT, IFN-g, IL-6, and CRP.
3 Results

3.1 Integrated multi-omics analysis

A total of 113 participants were included (Figure 1A), with

111,640 cells identified (82,078 PCs, 29,562 non-PCs). Cell clusters

were annotated using canonical markers (4–6), including pro-B,

CD4+ T, CD8+ T, gd T, immature B, macrophages, memory B,

naïve B, PCs, EPCs (early/intermediate/late), fibroblasts, and HSCs

(Figure 1B). There are marked differences in enzymatic activity of

distinct metabolic pathways between cell types (Figure 1E). Bubble

maps visualized clusters (Figure 1F). Cell-cell communication was

analyzed using iTALK, revealing ligand-receptor pairs in the TME

(Figures 1C, D).

3.1.1 HSCs
HSCs were classified into four clusters: H1 (IGFBP3+S100A11+),

H2 (BAG3+DNAJB1+), H3 (MAFB+S100A10+), and H4

(IGHG1+IGKC+) (Figures 2A, B). Pseudo-time analysis (Figure 2C)

revealed two differentiation pathways: H4/H3 and H4/H1/H2. H4

upregulated IFN-a, inflammation, and angiogenesis, while H1/H2

showed MYC, mTOR, and NOTCH signaling (Supplementary

Figure S2B). Distinct TF regulation was observed (Supplementary

Figure S2C). Survival analysis showed a negative correlation between

H1/H2/H4 abundance and patient survival (Figures 2D–G). H1/H2/

H4 were involved in tumor-immune crosstalk, unlike H3

(Supplementary Figures S10A, B).

3.1.2 EPCs
EPCs were divided into three clusters: early EPCs (E2, TSPO2+),

intermediate EPCs (E1, CD36+), and late EPCs (E3, IFIT1B+)

(Figures 2H, I, Supplementary S2D). Pseudo-time analysis (Figure 2J)

showed E2, E1, and E3 in early, mid, and late stages. E2 cells expressed

myeloid markers and immune checkpoints (Figures 2L, N) and

were central in cell communication (Figures 1C, Supplementary

Figure S10A). E2 cells, termed MEPCs, showed upregulated MYC

and angiogenic pathways with enhanced glycolysis. E1/E3 were

regulated by GATA1/RUNX2, while E2 was regulated by MYC,

NR2C2, and USF1. Survival analysis showed correlation between

EPCs abundance and survival (Figures 2K, M, O). MEPCs were

confirmed by mIF staining (Supplementary Figure S10C) and were

more abundant during relapse (Supplementary Figure S10J).

3.1.3 Erythroblasts
Erythroblasts were classified into Ery1 (MPO+), Ery2 (CCND1+),

and Ery3 (LYZ+) (Figures 3A, Supplementary Figure S3A). Pseudo-

time analysis (Figure 3B) showed Ery3, Ery1, and Ery2 in early,

middle, and late stages. Ery1 and Ery3 expressed myeloid markers and

immune checkpoint genes (Figures 3C, D) (7). Ery3 showed
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upregulated angiogenesis (Supplementary Figure S3B). Ery2

abundance correlated with poorer survival, while Ery3 was linked to

better outcomes (Figures 3G, H). The survival analysis of Erythroblast

and Ery1 showed no statistical significance (Figures 3E, F).

3.1.4 Myeloid
Myeloid were categorized into Ma0/Mon (CD14+FCGR3A±),

Ma1/Nmo (FCGR3A+CD14low+C1QA+C1QB), Ma2/Neu
Frontiers in Immunology 03
(S100A8+S100A9+CEACAM8+), and Ma3/M2 (CD68+CD163+)

(Figures 3I, J). M2 cells had high CD14, CD33, and low HLA-DRA

expression (Figure 3K) also, as MDSC [myeloid-derived suppressor

cells (MDSCs)], and overexpressed immune checkpoints

(Figure 3L). These cells correlated with survival (Figure 3Q). mIF

confirmed M2/MDSC cells (Supplementary Figures S10D, E), with

lower abundance during relapse compared to diagnosis

(Supplementary Figure S10J).
FIGURE 1

Single-cell sequencing atlas of MM. (A) Study workflow. (B) MM single-cell sequencing atlas. (C) Cellular interactions in the TME of MM. (D) Overview
of ligand–receptor interactions. (E) Enzyme expression heatmap for major metabolic pathways. (F) Normalized expression of cell type-specific genes
in 16 MM populations.
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3.1.5 CD8+ T cells, CD4 T cells, and gd T cells
CD8+ T cells were divided into four clusters: GZMB+ (Tem),

GZMK+ (Tc), CCR7+ (Tn), and HAVCR2+ (Tex) (Figures 4A,

C). Pseudo-time analysis (Figure 4B) showed HAVCR2+ CD8+

T cells as exhausted (Tex), expressing HAVCR2, BTLA, and
Frontiers in Immunology 04
TIGIT (8). CCR7+ T cells were naive (Tn) (8), while GZMB+ and

GZMK+ T cells were Tem and Tc (8). Tem and Tc expressed

PDCD1 and CTLA4; Tex cells expressed HAVCR2, BTLA,

TIGIT, and CD27 (Figure 4D). CD4 T cells and gd T cells were

not further classified due to low proportions (Figure 4I). CD4 T
FIGURE 2

Single-cell sequencing profile of HSCs and EPCs. (A) tSNE for HSCs. (B) Gene expression dot plot for HSC clusters. (C) Pseudo-time analysis of HSC
clusters. (D) Correlation between H1 abundance and overall survival (OS) using CIBERSORTx. (E) Correlation between H2 abundance and OS using
CIBERSORTx. (F) Correlation between H3 abundance and OS using CIBERSORTx. (G) Correlation between H4 abundance and OS using
CIBERSORTx. (H) tSNE for EPCs. (I) Gene expression dot plot for EPC clusters. (J) Pseudo-time analysis of EPC clusters. (K) Correlation between
early EPC abundance and OS using CIBERSORTx. (L) Expression of myeloid-related genes in EPC clusters. (M) Correlation between intermediate EPC
abundance and OS using CIBERSORTx. (N) Immune checkpoint expression in EPC clusters. (O) Correlation between late EPC abundance and OS
using CIBERSORTx.
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cells expressed CCR7; gd T cells expressed TRGC2, TRGV9,

GZMK, and GZMB (Supplementary Figure S4D). gd T cells

showed elevated expression of immunosuppressive checkpoints

(Figure 4J). The abundance of Tex, Tem, and gd T cells
Frontiers in Immunology 05
negatively correlated with survival (Figures 4F, G, L). mIF

staining confirmed Tex and gd T cells (Supplementary Figures

S10F, G), with increased levels during relapse (Supplementary

Figure S10J).
FIGURE 3

Single-cell sequencing profile of erythroblasts and macrophages. (A) tSNE for erythroblasts. (B) Pseudo-time analysis of erythroblast clusters. (C)
Expression of immune checkpoints in erythroblast clusters. (D) Expression of myeloid-related genes in erythroblast clusters. (E) Correlation between
erythroblast abundance and OS using CIBERSORTx. (F) Correlation between Ery1 abundance and OS using CIBERSORTx. (G) Correlation between Ery2
abundance and OS using CIBERSORTx. (H) Correlation between Ery3 abundance and OS using CIBERSORTx. (I) tSNE for myeloid. (J) Gene expression
dot plot for myeloid clusters. (K) Expression of myeloid-related genes in myeloid clusters. (L) Expression of immune checkpoints in myeloid clusters.
(M) Pseudo-time analysis of myeloid clusters. (N) Correlation between Neu abundance and OS using CIBERSORTx. (O) Correlation between Nmo
abundance and OS using CIBERSORTx. (P) Correlation between Mono abundance and OS using CIBERSORTx. (Q) Correlation between M2 abundance
and OS using CIBERSORTx.
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3.1.6 B cells (excluding plasma cells)
B cells were classified into seven clusters (Figure 5A): B1 (IGLJ3+),

B2 (WFDC2+), B3 (EDNRB+), B4 (HIST1H4C+), B5 (MYCL+), B6

(ISG15+), and B7 (CCL3+) (Supplementary Figure S5A). B4 cells

were CD34+ pro-B cells, B2 and B5 as naive B cells, B1 and B6 as
Frontiers in Immunology 06
memory B cells, and B3 and B7 as immature B cells (Figure 5B).

Pseudo-time analysis (Figure 5D) showed B4 in early differentiation,

with B1 and B6 at opposite ends.

B6 cells upregulated pathways linked to IFN-a, IFN-g, protein
secretion, UPR, P53, PI3K/AKT/MTOR, EMT, angiogenesis, and
FIGURE 4

Single-cell sequencing profile of T cells. (A) tSNE for CD8+ T cells. (B) Pseudo-time analysis of CD8+ T cell clusters. (C) Gene expression heatmap
for CD8+ T cells. (D) Expression of immune checkpoints in CD8+ T cells. (E)Correlation between Tex abundance and OS using CIBERSORTx. (F) Correlation
between Tem abundance andOS using CIBERSORTx. (G)Correlation between Tc abundance andOS using CIBERSORTx. (H)Correlation between Tn abundance
andOS using CIBERSORTx. (I) tSNE for CD4+ T and gd T cells. (J) Expression of markers and immune checkpoints in CD4+ and gd T cells. (K)Correlation between
CD4+ T cell abundance andOS using CIBERSORTx. (L)Correlation between gd T cell abundance and OS using CIBERSORTx.
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FIGURE 5

Single-cell sequencing profile of B cells and fibroblasts. (A) tSNE for B cells. (B) Gene expression dot plot for B cell clusters. (C) Expression of
interferon-stimulated and antigen-presenting genes in B cells. (D) Pseudo-time analysis of B cell clusters. (E) Expression of immune checkpoints in B
cells. (F) Correlation between immature B1 abundance and OS using CIBERSORTx. (G) Correlation between immature B2 abundance and OS using
CIBERSORTx. (H) Correlation between naïve B1 abundance and OS using CIBERSORTx. (I) Correlation between naïve B2 abundance and OS using
CIBERSORTx. (J) Correlation between memory B1 abundance and OS using CIBERSORTx. (K) Correlation between memory B2 abundance and OS
using CIBERSORTx. (L) Correlation between CD34+ ProB abundance and OS using CIBERSORTx. (M) tSNE for fibroblasts. (N) Gene expression dot
plot for fibroblast clusters. (O) Pseudo-time analysis of fibroblast clusters. (P) Correlation between FPC abundance and OS using CIBERSORTx.
(Q) Correlation between fibroblast abundance and OS using CIBERSORTx.
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TNFA signaling (Supplementary Figure S5B). High expression of

ISGs, antigen-presenting genes (B2M, TAP1), and immune

checkpoints (PD-L1, HHLA2, TNFRSF14, CEACAM1, LGALS9)

was observed in B6 cells (Figure 5C). B6 cells were regulated by

IRF9 and STAT2 (Supplementary Figure S5C).

Survival analysis showed positive correlation with B1 and B4

cells, and negative with B7, B6, B5, and B2 cells (Figures 5F–L). mIF

staining confirmed ISG15+ B cells (Supplementary Figure S10H),

with elevated levels during relapse and initial diagnosis

(Supplementary Figure S10J).

3.1.7 Plasma cells
PCs were categorized into 23 clusters (Figure 6A), each with

unique gene, TF, mutation, and immunophenotypic profiles

(Supplementary Figures S6A, C, E). Clusters were named based on

mutations, TFs, and signature genes (Figure 6A). Normal plasma cells

(NCs) and MM cells (MMCs) were differentiated by (1): MMC-

specific mutations (MYC, CCND1/CCND3, FGFR3/MMSET, MAF/

MAFB) (9, 10) (2); karyotypic changes (17p-, 13q14-, t (11, 12) /IgH-

FGFR3, t (8, 12) /IgH-CCND1, etc.) (12, 13) (3); immunophenotype

(CD38dimCD138+CD19-CD20+CD56+CD28+CD27- and

CD38+CD138+CD19+CD20-CD56-CD28-CD27+ NCs) (14).

Clusters P1-P4, P6-P8, P10-P17, P19, P21, P22 (malignant PCs)

and P5, P9, P12, P18, P20, P23 (NCs) were identified (Figures 6A,

Supplementary Figure S6C). MMCs showed high CCND1 and CCL3

expression, while NCs expressed IGHG1 and IGHG2 (Figures 6E, F).

Malignant PCs exhibited high JUND, IRF1, and YY1

expression, while NCs showed elevated ATF6 (Figure 6B).

Pseudo-time analysis suggested similar development for normal

and malignant PCs (Figures 6G, H, J). GSVA revealed

downregulation of apoptosis in MMCs, with upregulation in

OXPHOS, angiogenesis, MYC signaling, E2F, DNA repair, fatty

acid metabolism, bile acid metabolism, and glycolysis

(Supplementary Figure S6D). GSEA confirmed glycolysis

upregulation in MMCs (Figure 6K), supported by metabolic

analysis (Supplementary Figure S1B).

Survival analysis revealed positive correlations between Plasma-C4,

Plasma-C8, CCND1+KIT+SULF2+Magli, andMAF+REL+IGKV1_5+

Magli cells and patient survival (Figures 6C, D, Supplementary Figure

S7M, R). Negative correlations were observed between various

malignant plasma cell subpopulations (e.g., RB1+TFDP1+RRM2+

Magli, CCDN3+IRF9+ISG15+ Magli, etc.) and patient survival

(Supplementary Figures S7D–S).

3.1.8 stromal cells
Fibroblasts and fibroblast progenitor cells (FPCs) were classified

into four clusters (Figure 5M): F0 (LAMP5+), F1 (CXCL12+), F2

(BIRC3+), and F3 (CCL3+) (Supplementary Figure S5D). F1 cells

expressed CAF-related markers (COL1A1, COL3A1, CXCL12,

MMP2) (Figures 5N, Supplementary Figure S5D) and were

identified as CAFs (15). Pseudo-time analysis (Figure 5O) showed

F0, F1, F2 and F3 in early, mid, and late stages. Upregulated pathways

in F1 cells included IL6/JAK/STAT3 and IFN-g signaling

(Supplementary Figure S5E). Survival analysis indicated a negative

correlation between FPC abundance and patient survival (Figure 5P).
Frontiers in Immunology 08
CAF presence was confirmed by mIF staining (Supplementary Figure

S10I), with increased abundance during relapse compared to initial

diagnosis (Supplementary Figure S10J).

3.1.9 Survival analysis
CIBERSORTx evaluated the abundance of cell clusters in the

MMRF cohort (bulk RNA-seq) using deconvolution. Kaplan-

Meier (KM) analysis examined the correlation between cell

cluster abundance and patient survival (Figures 2D–G, K, M, O,

3E–H, N–Q, 4E–H, K, L, 5F–L, P–Q, 6C, D, Supplementary

Figures S7A–T). A negative correlation (P<0.05) was found

between survival and the abundance of immature B2 cells, memory

B1, naive B1/B2 cells, CD8+ Tem/Tex cells, late/early EPCs, gdT cells,

HSC-C29/C17/C14 cells, FPCs, Ery2 cells, and multiple Magli cell

clusters (Supplementary Figures S7D–S). A positive correlation

(P<0.05) was found between survival and the abundance of CD34+

pro-B cells, immature B1 cells, Hy1/Hy2 cells, M1/M2 macrophages,

Ery3 cells, C4/C8 PCs, and several Magli cell clusters.
3.2 Enhanced IFN-g and IFN-a signaling

Cell-cell communication analysis (Supplementary Figure S10A)

identified four major cell types: hematopoietic stem cells, B cells,

tumor cells, and erythroid cells. Among these populations, we

identified significantly upregulated pathways: KRAS, IFN-g, IFN-
a, IL6-JAK-STAT3, PI3K-AKT-MTOR and MYC targets

(Supplementary Figure S8A). Notably, IFN-g and IFN-a signaling

pathways were particularly upregulated— a novel finding that will

be discussed in detail later (Section 3.2).
3.3 Validation cohort

Retrospective analysis showed elevated levels of IFN-g, IL-6,
CRP, b-2M, and ferritin in MM patients compared to controls.

Serum Fe, TF, and TSAT were reduced in the myeloma cohort

(Supplementary Figure S8G).
3.4 Sc-metabolism profiling analysis

A comparison of five major metabolic pathways in individual

cells is shown in Supplementary Figure S1B. Malignant PCs exhibited

elevated glycolysis compared to normal PCs (Supplementary Figure

S1B). GSEA confirmed glycolytic pathway upregulation in MMCs

(Figure 6K). Enzymes involved in glycolysis and glutamine

metabolism (LDHA, ENO1, GAPDH, TPI1, PKM, SLC1A5) were

higher in malignant PCs (Figure 6I). The OXPHOS pathway was

upregulated in malignant PCs (Supplementary Figure S6D).
3.5 In vitro drug screening

As shown by scMetabolism (Supplementary Figure S1B), GSVA

(Supplementary Figure S6D), and GSEA (Figure 6K), glycolysis was
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elevated in malignant plasma cells (PCs) vs normal PCs. Enzymes

involved in glycolysis and glutamine metabolism were upregulated

in malignant PCs (Figure 6I), and the OXPHOS pathway was also

elevated (Supplementary Figure S6D).
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We selected galloflavin (LDHA inhibitor), CB839 (GLS1

inhibitor), NAC (OXPHOS inhibitor), and EGCG (multi-target

inhibitor of glycolysis, glutaminolysis/GDH, and OXPHOS).

Meanwhile, two combination regimens targeting metabolic
FIGURE 6

Single-cell sequencing profile of MM cells (including MMCs and NCs). (A) tSNE for MM cells. (B) Upregulated and downregulated TFs of malignant
and normal plasma. (C) Correlation between Plasma-C4 abundance and OS using CIBERSORTx. (D) Correlation between Plasma-C8 abundance and
OS using CIBERSORTx. (E) tSNE for normal and malignant PCs. (F) Differential gene expression between normal and malignant PCs. (G) Pseudo-time
analysis of MM cells by cluster. (H) Pseudo-time analysis of MM cells by pseudotime. (I) Gene expression dot plot for enzymes related to major
metabolic pathways. (J) Higher glycolytic activity in malignant PCs than in normal PCs. (K) Enrichment plot for KEGG glycolysis/gluconeogenesis
pathway, this figure shows the normal plasma cells.
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reprogramming were designed: CB839 + EGCG and galloflavin +

NAC. CCK8 assays showed significant inhibition of KM3 cell

proliferation by these compounds (P<0.05) (Supplementary Figures

S9A–C). For drug combinations, galloflavin (20–100 mmol/L) was

paired with NAC (2–10 mmol/L), and CB839 (1.25–5 mmol/L) was

combined with EGCG (40–120 mmol/L). CCK8 assays assessed effects

on cell proliferation. Galloflavin-NAC combinations had no CI <1,

indicating no synergy. Among CB839-EGCG combinations, the

CB839 (5 mmol/L) + EGCG (120 mmol/L) combination had the

lowest CI, suggesting the strongest synergy. This combination was

selected for subsequent experiments (Supplementary Figure S9D).

Flow cytometry confirmed that the G2-phase proportion significantly

increased (P<0.05), and the G1-phase proportion decreased (P<0.05)

in the combined treatment group vs controls. Apoptotic rate was also

higher in the combined treatment group (P<0.05) (Supplementary

Figures S9E–J). Western blotting showed lower Bax (P<0.05) and

higher Bcl-2 (P<0.05) expression in the blank group compared to the

combined treatment group. The Bax/Bcl-2 ratio was higher in the

combined treatment group (P<0.05) (Supplementary Figures S9E, F).
4 Discussion

Multi-omics, including single-cell transcriptomics and sc-

Metabolism, overcome bulk sequencing limitations, enabling

precise characterization of pathogenesis and metabolic

reprogramming. Cell–cell communication analysis identified

critical pathways (IFN-g/IFN-a signaling, B2M-TFRC), leading to

a novel MM pathogenesis model. We also explored single-cell

metabolic reprogramming and screened for therapeutic agents.

4.1 Disrupted TME

In this study, we identified several key features of hematopoietic

stem cells (HSCs), endothelial progenitor cells (EPCs), erythrocytes,

macrophages, lymphocytes, and malignant plasma cells (PCs) within

the multiple myeloma (MM) tumor microenvironment (TME). Some

of these have not been mentioned in previous studies and are worthy

of further research in the future. HSCs, particularly MAHSCs

(IGHG1+, BAG3+, IGFBP3+), play a crucial role in MM

pathogenesis, with a negative correlation between their abundance

and patient survival (Figures 2G, E, D). Cell–cell communication

analysis further revealed that these HSCs upregulated cell

proliferation and angiogenesis, with significant pathways such as

IL2/STAT5, IL6/JAK/STAT3, IFN-a, and IFN-g in H4 cells

(Supplementary Figure S3B). EPCs, especially early EPCs (E2),

were critical in the TME, showing high expression of myeloid

markers and immune checkpoints, and correlating with poor

prognosis (Figures 1C, 2N, Supplementary Figure S10B). Survival

analysis showed that EPCs, including intermediate and late EPCs,

play a central role in immunosuppression, with high expression of

cancer-driving genes and immune checkpoint ligands (Figure 2N,

Supplementary Figure S2F). Erythroblasts (Ery1 and Ery2) mediated

immunosuppression, whereas Ery3 promoted immune-mediated

tumor killing, with survival analysis revealing positive correlations
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for Ery3 abundance (Figures 3F–H). Macrophages, including the M2

subset and MDSCs, showed upregulation of immunosuppressive

markers (Figures 3J, 3L) (16–18), consistent with the study by

Favaloro J (17). M2 macrophages expressed both co-stimulatory

and immunosuppressive molecules (e.g., CD28 and CD274),

suggesting an advantage for the CD28 pathway, while MDSCs also

played a significant role in immunosuppression and were confirmed

by mIF staining (Supplementary Figures S10D, E). T lymphocytes,

including CD4+ and gd T cells, exhibited exhaustion markers such as

PD-1 and CTLA4, limiting their tumor-killing capacity, with

CIBERSORTx showing no correlation between T cell subsets and

survival (Figures 4E–L). The expression of immune checkpoints such

as PD-1 and HAVCR2 across T cell subsets suggests these as

combined targets for MM immunotherapy (Figures 4D, J), similar

to the study by Lv J (19). ISG15+ B cells, which differentiate from B

cells, showed upregulation of pathways related to protein secretion

and immune suppression and correlated with poor prognosis

(Supplementary Figures S5B, 5C, K) (20). Their elevated expression

of PD-L1 and enrichment in interferon genes further supports their

role in immune evasion (Figures 5C, E). These viewpoints have been

confirmed by the studies of Dubrot J and Zhao R (21, 22). Malignant

PCs exhibited substantial genetic heterogeneity, with mutations in

cyclin D1, cyclin D2/D3, and MAF, contributing to abnormal gene

expression patterns and correlating with poor survival outcomes

(Supplementary Figures S7D–S). Finally, cancer-associated

fibroblasts (CAFs), identified by their high expression of CAF

markers, interacted with EPCs and CD34+ Pro-B cells via

CXCL12/CXCR4, promoting tumor progression and angiogenesis

(Figures 1D, Supplementary Figures S10I, S5D, N), as found in many

tumor studies where CAFs promote tumor invasion via CXCL12/

CXCR (23–29). These findings provide a comprehensive view of the

TME in MM, highlighting the interactions between various cell types

that contribute to disease progression and offering potential

therapeutic targets for intervention.

4.2 Cellular communication and novel
mechanisms in MM

Using iTALK, early EPCs were the central hub in the network,

with memory B2 (B6) and MMCs also central (Supplementary

Figure S10A). EPCs play a pivotal role in MM. Three key ligand-

receptor pairs (B2M-TFRC, CXCL12-CXCR4, CXCL12-ITGB1)

were identified, with B2M-TFRC being the most significant

(Figure 1D). This is the first report showing that B2M-TFRC

dominates cellular communication in MM TME. Our analysis

identified four major cellular subsets and showed activation of

both IFN-g and IFN-a signaling (Supplementary Figure S8A).

Tem cells expressed IFNG (Figure 7B), mediating IFN-g secretion.
Non-classical monocytes and ISG15+ B cells (B6) had increased

IFNGR1 expression (Supplementary Figure S8B, Figure 7C). Non-

classical monocytes and monocytes had increased IFNGR2

expression (Figure 7C). IFN-g/IFNGR binding activated JAK1/

STAT1 and IRF1, expressed in H4 and ISG15+ MMCs.

Activated IRF1 drove IFN-a transcription in non-classical

monocytes (Figure 7A), upregulating IRF9, which complexes with
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STAT2 to form ISGF3 (IRF9/STAT2). This complex activates B2M

expression, an IFN-responsive gene with a super-enhancer (30),

enhancing TFR1 (TFRC)expression, activates IL6-STAT3 (31, 32).

IRF1 transactivates B2M, part of MHC class I. MHC I upregulates

the antigen presentation capacity of Antigen-Presenting Cells

(APCs), which in turn stimulates the secretion of IFN-g and IFN-

a. IFN-a also binds with the overexpressed IFNGR2 on Tex and

HASP5+ MMCs. Overactivation of IFN-a/IFNAR2 binding

promoted the worsening of Tex exhaustion and the resistance of
Frontiers in Immunology 11
HSPA5+ malignant tumor cells to IFN-a. The overactivated IFN-g
and IFN-a axes converge to drive pathological antigen presentation

and reactivation of the pathways, creating a vicious cycle that

sustains downstream targets (STAT, MYC, Bcl-2, Bcl-xL),

facilitating tumor cell proliferation, migration, and drug

resistance. JAK1/STAT1(in T cells) and IL-2/STAT5 are also

involved (Figure 8).

We propose a cascading reaction model of the IFN-g/IFN-a-
B2M positive feedback loop:
FIGURE 7

Cellular Expression of IFN-g/IFN-a Pathways in Multiple Myeloma (MM) Cells. (A) IFN-a is predominantly expressed in non-classical monocytes.
(B) IFN-g is predominantly expressed in Tem cells. (C) Non-classical monocytes show significantly increased expression of both IFNGR1 and IFNGR2,
with ISG15+ B cells showing elevated IFNGR1 expression and monocytes showing elevated IFNGR2 expression.
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Primary cascade:

IFNg/IFNGR1
(Tem/Nmono,mono,ISG15+B)

↓
IFNa/IFNAR

(Nmono/HSPA5+MMC,Tex)

↓
ISGF3(IRF9/STAT2)

(HSCs,ISG15+B cells,ISG15+MMC).

Secondary cascade:

ISGF3(IRF9/STAT2)

(HSCs,ISG15+B cells,ISG15+MMC)

↓
B2M-TFRC

(HSCs,ISG15+B cells,ISG15+MMC,EPCs,erythrocytes)

↓
IL6/JAK/STAT and IFNg/IFNa.

This pathway highlights IFN-g/IFN-a signaling and B2M-

TFRC in driving MM progression via interferon crosstalk and

inflammatory signaling. Our clinical cohort confirmed elevated

IFN-g, IL-6, CRP, b-2M, and ferritin in MM patients, with

increased b-2M triggering hepcidin secretion, suppressing TRFC-

mediated iron uptake, and reducing TF synthesis. This leads to

hypoferremia and decreased TSAT, consistent with reduced serum

iron, TF, and TSAT in our cohort (Supplementary Figure S8G).

And, TFRC and B2M are involved in ferroptosis, linking MM and

ferroptosis. Iron chelators inhibit MM cell proliferation in vitro

(33). Ferroptosis and MM is an emerging research direction.
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4.3 Targeting metabolic reprogramming in
multiple myeloma

Malignant plasma cells exhibited significant metabolic

reprogramming, with enhanced glycolysis, OXPHOS activity, and

overexpression of glycolytic/glutaminolytic enzymes compared to

normal cells (Supplementary Figures S6D, 6I, K, S1A, B) (section

2.3). Glucose is metabolized via glycolysis and OXPHOS, the

primary ATP pathways.

Metabolic inhibitors used: galloflavin (LDHA), CB-839 (GLS1),

NAC (OXPHOS), EGCG (glycolysis, glutaminolysis, OXPHOS).

Both NAC and galloflavin inhibited MM cell proliferation

(Supplementary Figures S9A–C). LDHA inhibition reduces pyruvate-

to-lactate conversion, halting ATP supply (34). Galloflavin non-

selectively inhibits LDHA with antitumor activity and low toxicity to

normal cells (35). NAC, an antioxidant, showed no significant synergistic

effects when combined with galloflavin, possibly due to pharmacological

antagonism. Combination inhibits glycolysis/OXPHOS, reducing ATP

and triggering negative feedback via mTOR (36, 37).

Glutamine (Gln) is a critical energy substrate for tumor cell

proliferation, converted by GLS to a-ketoglutarate for the TCA cycle.

MM cells show marked Gln dependence, consuming more Gln and

producing more NH4
+ than normal CD138+ cells (38). CB-839, a

GLS1 inhibitor, has clinical efficacy in renal carcinoma and refractory

tumors (39, 40). EGCG targets glycolytic enzymes (HK, PFK), HIF-1a/
GLUT1, and modulates Gln metabolism through GDH inhibition (41–

43). The CB-839/EGCG combination inhibited KM3 cell proliferation,

with synergistic effects likely mediated through GLS1/GDH, HK/PFK/

LDHA, HIF-1a/GLUT1, and OXPHOS blockade.
FIGURE 8

An IFN-g/IFNa-B2M positive feedback loop.
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Tumor cell metabolism is central to oncogenesis and progression

(44). Disrupting glycolysis and glutaminolysis impairs protein/DNA

synthesis, induces cell cycle arrest, and promotes apoptosis (45). CB-

839/EGCG combination induced G2-phase arrest and enhanced

apoptosis in KM3 cells, with increased Bax expression and elevated

Bax/Bcl-2 ratios, modulating the intrinsic apoptotic pathway.
4.4 Limitation

This study has several limitations, including sample heterogeneity,

data sparsity, and assumptions inherent to single-cell transcriptomic

analysis. Variations in patient samples, such as disease stage and

treatment history, may limit the generalizability of our findings. The

sparsity of single-cell data may also lead to underrepresentation of rare

immune cell populations, and algorithmic assumptions could influence

the interpretation of immune cell features. Additionally, the reliance on

retrospective data from a single cohort, coupled with the limitations of

in vitro models, may not fully capture the complexities of the MM

microenvironment in vivo. While multi-omics integration provides

valuable insights, further clinical validation and preclinical studies are

necessary to refine and validate these findings.

5 Conclusion

Our study generates one of the largest multi-omics MM atlases

to date, providing insights into immune evasion mechanisms

involving both non-immune and immune cells, newly defined

cellular subpopulations, and a potential IFN-g/IFN-a-B2M
feedback loop. Integrated metabolic analysis identified four agents

with efficacy against MM, including a superior efficacy combination

regimen showing pro-apoptotic and anti-proliferative effects. Above

all, this study offers a comprehensive resource for MM progression

mechanisms and immunotherapeutic targets.
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