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Background: Lung adenocarcinoma is the most prevalent type of small-cell

carcinoma, with a poor prognosis. For advanced-stage patients, the efficacy of

immunotherapy is suboptimal. The STING signaling pathway plays a pivotal role

in the immunotherapy of lung adenocarcinoma; therefore, further investigation

into the relationship between the STING pathway and lung adenocarcinoma

is warranted.

Methods: We conducted a comprehensive analysis integrating single-cell RNA

sequencing (scRNA-seq) data with bulk transcriptomic profiles from public

databases (GEO, TCGA). STING pathway-related genes were identified through

Genecard database. Advanced bioinformatics analyses using R packages (Seurat,

CellChat) revealed transcriptomic heterogeneity, intercellular communication

networks, and immune landscape characteristics. We developed a STING

pathway-related signature (STINGsig) using 101 machine learning frameworks.

The functional significance of ERRFI1, a key component of STINGsig, was

validated through mouse models and multicolor flow cytometry, particularly

examining its role in enhancing antitumor immunity and potential synergy with

a-PD1 therapy.

Results: Our single-cell analysis identified and characterized 15 distinct cell

populations, including epithelial cells, macrophages, fibroblasts, T cells, B cells,

and endothelial cells, each with unique marker gene profiles. STING pathway

activity scoring revealed elevated activation in neutrophils, epithelial cells, B cells,

and T cells, contrasting with lower activity in inflammatory macrophages. Cell-

cell communication analysis demonstrated enhanced interaction networks in

high-STING-score cells, particularly evident in fibroblasts and endothelial cells.

The developed STINGsig showed robust prognostic value and revealed distinct

immune microenvironment characteristics between risk groups. Notably, ERRFI1
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knockdown experiments confirmed its significant role in modulating antitumor

immunity and enhancing a-PD1 therapy response.

Conclusion: The STING-related pathway exhibited distinct expression levels

across 15 cell populations, with high-score cells showing enhanced tumor-

promoting pathways, active immune interactions, and enrichment in fibroblasts

and IFI27+ inflammatory macrophages. In contrast, low-score cells were

associated with epithelial phenotypes and reduced immune activity. We

developed a robust STING pathway-related signature (STINGsig), which

ident ified key prognost ic genes and was l inked to the immune

microenvironment. Through in vivo experiments, we confirmed that

knockdown of ERRFI1, a critical gene within the STINGsig, significantly

enhances antitumor immunity and synergizes with a-PD1 therapy in a lung

cancer model, underscoring its therapeutic potential in modulating

immune responses.
KEYWORDS

non-small cell lung cancer, lung adenocarcinoma, single-cell RNA sequencing,
prognosis signature, machine learning
1 Introduction

Lung cancer is the most prevalent form of cancer within the

respiratory system and represent the leading cause of cancer-related

mortality among both genders (1–3). Based on histological

classification, lung cancer can be divided into non-small cell lung

cancer (NSCLC) and small cell lung cancer (SCLC), with NSCLC

accounting for over 80% of lung cancer cases (4, 5). NSCLC primarily

consists of adenocarcinoma (LUAD) and squamous cell carcinoma

(LUSC), with lung adenocarcinoma being the most common

histological type of NSCLC, comprising approximately 40% of all

lung cancer cases (6–8). Currently, for early-stage lung

adenocarcinoma, surgical intervention remains the most effective

therapeutic approach (9). However, for patients with advanced lung

adenocarcinoma, platinum-based adjuvant chemotherapy has shown

limited efficacy in improving prognosis, with a 5-year survival rate of

only 5% (10). The emergence of immune checkpoint inhibitors has

significantly improved clinical outcomes for patients, although

prognosis remains suboptimal (11–13). This can be attributed to the

highly heterogeneous nature of LUAD (14, 15). Therefore, there is an

urgent need to elucidate the underlying mechanisms contributing to

poor prognosis in lung adenocarcinoma patients and to develop

predictive scoring models for immune therapy outcomes, thereby

providing personalized treatment strategies for these patients.

The emergence of immunotherapy, particularly immune

checkpoint inhibitors (ICIs) (16–20), has brought revolutionary

breakthroughs in the treatment of lung adenocarcinoma. PD-1/PD-

L1 inhibitors, which block key pathways through which tumor cells

evade immune surveillance and reactivate the body’s antitumor
02
immune response, have become a crucial treatment option for

advanced NSCLC. However, clinical practice has shown that only

approximately 20-30% of patients demonstrate durable responses to

immune checkpoint inhibitor therapy, with most patients developing

primary or acquired resistance (21, 22). This heterogeneity in treatment

response has prompted researchers to explore biomarkers and

signaling pathways that can predict immunotherapy efficacy and

improve treatment efficiency (23). STING (Stimulator of Interferon

Genes) is a critical innate immune signaling pathway responsible for

detecting endogenous and exogenous DNA damage and triggering

immune protective responses within the body, while also playing a vital

role in maintaining tissue homeostasis (24). The STING pathway plays

an essential role in cancer biology (25). Abnormal DNA fragments in

tumor cells can activate the STING pathway, thereby promoting

dendritic cell maturation and enhancing their functionality, which in

turn facilitates T-cell-mediated tumor eradication (26). Previous

studies have indicated that rocaglamide can activate the cGAS-

STING pathway in non-small cell lung cancer, thereby enhancing

the cytotoxicity of NK cells against tumor cells (27). Inhibition of DNA

damage response and subsequent activation of the STING pathway can

induce the activation of cytotoxic T lymphocytes (28). Recently, the

STING signaling pathway has garnered increasing attention in the

context of lung adenocarcinoma research, with the potential to

improve the prognosis of patients undergoing immune therapy (29–

31). Therefore, a more comprehensive understanding of the

relationship between immune therapy and the STING signaling

pathway in lung adenocarcinoma is essential.

With advancements in high-throughput sequencing techniques,

particularly single-cell RNA sequencing (scRNA-seq), researchers
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can now explore the complex mechanisms underlying lung

adenocarcinoma with unprecedented resolution (32). This study

focuses on the role of the STING signaling pathway in lung

adenocarcinoma, aiming to investigate its contribution to

tumorigenesis and progression. Through bioinformatic analysis of

publicly available data, the study seeks to identify potential

pathways associated with the STING signaling pathway that could

improve prognosis and provide valuable insights for the treatment

of lung adenocarcinoma patients. Additionally, our in vivo

experiments confirmed that knockdown of ERRFI1, a key gene

within the STING signature (STINGsig), significantly enhances

antitumor immunity and synergizes with a-PD1 therapy in a

lung cancer model. Compared to monotherapy or control groups,

the combination of shERRFI1 and a-PD1 treatment markedly

reduced tumor burden in mice. Kaplan-Meier survival analysis

revealed that the combination therapy conferred the greatest

survival benefit, significantly prolonging survival compared to

either monotherapy or control groups. Furthermore, the

combination treatment significantly increased the frequencies of

TNF-a+ and GZMB+ CD8+ T cells, indicating enhanced activation

of cytotoxic T cells.
2 Methods

2.1 Preparation and preprocessing of
single-cell RNA sequencing data

We conducted an extensive analysis of single-cell RNA

sequencing data from 11 lung adenocarcinoma samples within

the HRA005794 dataset. Utilizing the Seurat R package (33), we

implemented an integrated computational workflow for single-cell

transcriptomic data analysis. The expression data were normalized

using the LogNormalize method, with a scaling factor set at 10,000.

Subsequently, 2,000 highly variable genes were identified, and the

expression intensities of these genes were preprocessed before

performing principal component analysis (PCA). Batch effect

correction was systematically applied using the Harmony R

package (34). Our analytical strategy combined the advanced

functionalities of Seurat and Harmony, including NormalizeData,

FindVariableFeatures, ScaleData, RunPCA, FindNeighbors,

FindClusters, and RunUMAP, to achieve comprehensive

molecular characterization (35).
2.2 Global RNA sequencing data analysis

Transcriptomic data and clinical annotations for lung

adenocarcinoma were obtained from The Cancer Genome Atlas

(TCGA) database (https://portal.gdc.cancer.gov), encompassing

extensive RNA sequencing data, mutation landscapes, and long-

term survival information. To enhance model validation, six

independent cohorts were supplemented from the Gene

Expression Omnibus (GEO) database (http://www.ncbi.nlm.

nih.gov/geo).
Frontiers in Immunology 03
To standardize data preprocessing, all datasets underwent

logarithmic transformation. Batch effects were mitigated using the

combat function from the sva R package, ensuring analytical

consistency and minimizing technical variation.
2.3 Investigation of potential mechanisms
and pathways

To elucidate underlying mechanisms, we performed Gene Set

Variation Analysis (GSVA) for a comprehensive exploration of

potential biological processes (36). Our analytical approach

leveraged curated gene sets derived from the Molecular Signatures

Database (MSigDB), facilitating an extensive pathway analysis.
2.4 Cell-cell communication

We integrated gene expression profiles to systematically dissect

cell-cell communication dynamics using the CellChat framework

(37). The CellChatDB ligand-receptor database served as our

reference framework, and the established CellChat analysis protocol

was strictly adhered to. Through meticulous computational analysis,

we identified cell-type-specific interactions and detected ligands and

receptors highly expressed in distinct cell populations. This

methodology allowed for precise inference of intercellular

communication networks, with a particular focus on ligand-

receptor interactions exhibiting elevated expression.
2.5 Construction of prognostic signatures

A comprehensive univariate Cox regression analysis was

performed to systematically assess the prognostic impact of

individual genes in lung adenocarcinoma patients. Using a

rigorous 10-fold cross-validation approach, we evaluated 101

distinct machine learning algorithm combinations encompassing

a broad range of predictive methods, including stepwise Cox

regression, Lasso, Ridge, partial least squares Cox regression

(plsRcox), CoxBoost, random survival forests (RSF), generalized

boosted regression modeling (GBM), elastic net (Enet), supervised

principal components (SuperPC), and survival support vector

machines (survival-SVM). The primary objective was to construct

a robust STING pathway-related signature (STINGsig) and

quantify its optimal predictive performance using the highest

concordance index (C-index). To validate the diagnostic accuracy

of the signature, we conducted comprehensive assessments using

receiver operating characteristic (ROC) curve analysis and

multidimensional principal component analysis (PCA).
2.6 Cell culture

The murine lung cancer cell line M109 was obtained from the

American Type Culture Collection (ATCC). The cells were cultured
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in high-glucose Dulbecco’s Modified Eagle Medium (DMEM)

supplemented with 10% fetal bovine serum (FBS) and 1%

penicillin-streptomycin (P/S). Cultures were maintained in a

humidified incubator at 37°C with 5% CO2.
2.7 shRNA knockdown cell line
construction

To generate M109 cells with ERRF1 knockdown, lentiviral particles

were produced by co-transfecting HEK293T cells with the ERRF1

shRNA plasmid (targeting sequence: 5’-GGACAUCAAGAAGC

UGUUA-3’)), packaging plasmid (psPAX2), and envelope plasmid

(pMD2.G). Viral supernatants were harvested after 48 hours, filtered,

and used to transduce M109 cells in the presence of polybrene (8 µg/

mL). Stable M109-Luc-ERRF1 knockdown cells were selected using

puromycin (2 µg/mL) for 7–10 days, and knockdown efficiency was

validated by qPCR and/or Western blot analysis.
2.8 Lung cancer model construction and
IVIS imaging

M109-Luc cells (luciferase-labeled) were injected into the tail

vein of 6–8-week-old Balb/c mice (3 × 10^5 cells per mouse) to

establish a lung cancer model. Tumor development was monitored

weekly using an IVIS Lumina III imaging system. Mice were

intraperitoneally injected with D-luciferin (150 mg/kg) 10

minutes before imaging to ensure maximum luminescence signal.

Luciferase activity was quantified as photons/second/cm2/steradian

(p/s/cm2/sr) using Living Image software. Tumor growth was

analyzed over time, and histopathological confirmation of lung

metastases was performed at study endpoint.
2.9 Flow cytometry analysis of lung tumor
tissue

Fresh lung tumor tissue was minced and enzymatically digested

using collagenase IV (1mg/mL) and DNase I (0.1mg/mL) at 37°C for

30 minutes. The resulting cell suspension was filtered to obtain a

single-cell suspension, followed by red blood cell lysis and

resuspension in flow cytometry staining buffer. To block Fc

receptors, cells were incubated with anti-CD16/32 antibody at 4°C

for 10 minutes. Subsequently, cells were stained with a viability dye

(e.g., Zombie Aqua or PI) at 4°C for 15 minutes in the dark to exclude

dead cells. After washing with PBS, surface staining was performed by

incubating cells with anti-CD45 (APC-A750), anti-CD3(PC7) and

anti-CD8 (FITC) antibodies at 4°C for 30 minutes in the dark.

Following fixation and permeabilization, intracellular staining was

carried out using anti-GZMB (PerCP-Cy5.5) and anti-TNF-a (ECD)

antibodies at 4°C for 30 minutes in the dark. Flow cytometry analysis

was conducted with the following gating strategy: firstly, lymphocytes

were gated based on forward scatter (FSC) and side scatter (SSC);

secondly, live cells were gated within the viability dye-negative
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population; thirdly, CD45+ leukocytes were gated within the

CD45-positive population. From this, CD8+ T cells were further

identified based on CD8 positivity, and the proportions of GZMB+

and TNFA+ subsets were analyzed. Data were processed using

FlowJo software to calculate the percentages of each subset and

their fluorescence intensities, followed by statistical analysis.
2.10 Statistical analysis

All data processing, statistical analysis, and visualization were

performed using R software (version 4.2.0). Survival characteristics

of molecular subtypes were rigorously evaluated through Kaplan-

Meier survival analysis and Log-rank statistical tests. Comparative

analysis of continuous variables between groups was performed

using appropriate parametric tests (t-test) or non-parametric tests

(Wilcoxon), while associations between categorical variables were

systematically assessed via chi-square or Fisher’s exact tests. To

mitigate the issue of multiple testing, p-values were adjusted using

the false discovery rate (FDR) method. Inter-variable relationships

were explored through Pearson correlation analysis. All statistical

tests were two-tailed, with statistical significance defined as p < 0.05.
3 Results

3.1 Sample integration, cell clustering, and
annotation

This study utilized 11 single-cell RNA sequencing samples from

the HRA005794 dataset, all derived from human lung cancer

tissues. Initially, Seurat was employed to identify 18 distinct cell

clusters within these 11 sequencing samples (Figure 1A).

Subsequently, the Harmony algorithm was applied to integrate

these samples into a unified dataset (Figure 1B). To better

characterize these clusters, the expression of 18 commonly

recognized marker genes was examined, including SFTPC, MRC1,

SCGB3A2, IL7R, GZMB, MS4A1, HLA-DQB1, DNAH12, S100A8,

SCGB1A1, TPSB2, CD3D, NAPSA, RSPH1, CCDC26, DCN,

MARCO, and VWF.

Marker genes for type II alveolar epithelial cells, such as SFTPC

and NAPSA, were predominantly expressed in clusters 0, 10, and

12; while epithelial markers SCGB3A2 and SCGB1A1 were mainly

expressed in clusters 0, 2, 4, 9, 12, and 13. The endothelial marker

VWF was primarily observed in cluster 17, and fibroblast marker

DCN was mainly expressed in cluster 15. Monocyte marker S100A8

showed elevated expression in clusters 1, 6, and 8, whereas

macrophage markers MRC1 and MARCO were expressed in

clusters 0, 1, 2, 6, 7, 13, and 14. Mast cell marker TPSB2 was

predominantly found in cluster 10. Ciliated cell markers DNAH12

and RSPH1 were primarily expressed in clusters 7, 13, and 14. For

NK and cytotoxic T cells, the marker gene GZMB was

predominantly expressed in cluster 4, while mature B cell marker

MS4A1 was most evident in cluster 5. T cell marker CD3D was

highly expressed in clusters 3, 4, and 11 (Supplementary Figure 1).
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Ultimately, these clusters were categorized as epithelial cells, APOE

+ macrophages (tissue-resident), fibroblasts, CD8+ cytotoxic T cells,

endothelial cells, B cells, CD4+ helper T cells, ciliated cells, dendritic

cells, mesenchymal stem cells, neutrophils, mast cells, secretory cells,

IFI27+ inflammatory macrophages, and CD8+ effector memory T cells

(Figure 1C). Figure 1D shows the expression of STING pathway-

related genes in different cell types, where XRCC5 is widely expressed

across cells, particularly with the strongest expression in B cells, while

PRKDC is most abundantly expressed in neutrophils.
3.2 STING pathway activity scoring

Cells were scored for their STING pathway activity using genes

associated with the STING pathway from the Genecard database

(https://www.gsea-msigdb.org/gsea/index.jsp). The results

indicated that neutrophils, epithelial cells, B cells, and T cells had
Frontiers in Immunology 05
higher scores, suggesting active expression of STING pathway-

related genes in these cells, while inflammatory macrophages

showed lower scores (Figures 1E, F).
3.3 Differential cell-cell communication
between high-score and low-score groups

Cells were divided into high-score (Hight-score) and low-score

(Low-score) groups based on median scores. Among all cell

subtypes, fibroblasts exhibited the highest outward interactions in

the Hight-score cells, whereas IFI27+ inflammatory macrophages

displayed the highest inward interactions. Fibroblasts had strong

interactions with 14 other cell types, predominantly interacting with

mesenchymal stem cells, secretory cells, APOE+ macrophages

(tissue-resident), ciliated cells, and CD8+ cytotoxic T cells. These

interactions were more pronounced in the Hight-score group
FIGURE 1

Cell clustering and score of STING Pathway. (A) Cell clustering by Seurat. (B) Integration of 11 samples from lung adenocarcinoma. (C) Annotation of
cell clusters. (D) The expression of 14 marker genes in cell clusters. (E) The distribution of high-score cells and low-score cells. (F) Scores of STING
Pathway distribution in clusters.
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compared to the Low-score group. Endothelial cells also showed

active interactions with mesenchymal stem cells and CD4+ helper T

cells (Figures 2A, B).

To further investigate the differences in cell-cell communication

between the two groups, cell communication analysis was
Frontiers in Immunology 06
conducted. The results revealed that both the number and

strength of cell-cell interactions in the Hight-score group were

significantly higher than those in the Low-score group (Figure 2C).

In the Hight-score group, all 15 cell subtypes displayed enhanced

communication, indicating more active intercellular interactions.
FIGURE 2

Cell-cell communication analysis between Hight-score and Low-score cells. (A) Number of interactions in Low-score cells. (B) Number of
interactions in Hight-score cells. (C) Number of inferred interactions and interaction strength in Hight-score and Low-score cells. (D) Interaction
strength of 15 cell clusters in Hight-score and Low-score cells. (E) Differences of Cell-Cell Communication.
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Both outward and inward interactions were higher in the Hight-

score group compared to the Low-score group (Figure 2D).

A heatmap further revealed differences in communication

patterns. Compared to the Low-score group, endothelial and

epithelial cells in the Hight-score group exhibited enhanced

interactions with other cell types, while fibroblasts showed

stronger interactions with all other cell types, except for B cells

(Figure 2E). Subsequent heatmaps displayed significantly enhanced

pathways in the Hight-score group, including ANNEXIN, CLEC,

CD99, LAMININ, and GRN (Supplementary Figure 2).
3.4 Transcriptional similarity and
differences between high-score and low-
score cells

To explore the differences between Hight-score and Low-score

cells, correlation analysis and clustering were performed, followed by

the generation of a heatmap. The results revealed that among all cell

subtypes, endothelial cells and fibroblasts, as well as CD8+ effector

memory T cells and IFI27+ inflammatory macrophages, exhibited

high transcriptional correlation (P<0.01). Moderate correlations were

observed between CD4+ helper T cells and CD8+ cytotoxic T cells,

ciliated cells and CD8+ effector memory T cells, and ciliated cells and

IFI27+ inflammatory macrophages (P<0.05). No significant

correlations were found between other cell types (Figure 3A).

In the Hight-score group, high transcriptional correlation was

observed between CD8+ effector memory T cells and IFI27+

inflammatory macrophages, APOE+ tissue-resident macrophages

and CD8+ effector memory T cells, as well as APOE+ tissue-resident

macrophages and IFI27+ inflammatory macrophages (P<0.01).

Moderate correlations were found between CD4+ helper T cells and

CD8+ cytotoxic T cells, endothelial cells and fibroblasts, neutrophils

and dendritic cells, fibroblasts and mast cells, ciliated cells and CD8+

effector memory T cells, and ciliated cells and IFI27+ inflammatory

macrophages (P<0.05). In the Low-score cells, high correlation was

observed between neutrophils and CD8+ cytotoxic T cells (P<0.01),

while moderate correlations were found between APOE+ tissue-

resident macrophages and IFI27+ inflammatory macrophages, APOE

+ tissue-resident macrophages and CD8+ effector memory T cells,

dendritic cells andmast cells, fibroblasts andmast cells, neutrophils and

dendritic cells, and neutrophils and mast cells (P<0.05) (Figures 3B, C).

Differential gene expression between Hight-score and Low-

score cells was calculated using findMarkers. To mitigate potential

batch effects, seven datasets (GSE13213, GSE26939, GSE29016,

GSE30219, GSE31210, GSE42127, TCGA) were batch-corrected

using the ‘sva’ package. Post-correction, no significant batch

effects were observed (Figure 3D).
3.5 Large-scale transcriptomic analysis and
prognostic signature construction

Univariate Cox regression analysis of the TCGA dataset

identified 20 prognostic genes with significant differences, including
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4 genes associated with poor prognosis (ERRFI1, IL32, PPARG, and

INPP4B) and 16 genes linked to favorable prognosis (such as

PTPN13, EPAS1, and DOCK1) (Supplementary Figure 3A).

To construct the STING pathway-related signature (STINGsig),

101 machine learning algorithms were used to evaluate the 20

prognostic genes. The TCGA dataset served as the training set,

while six other datasets from GEODE were used as validation sets. A

10-fold cross-validation approach was applied to construct 101

predictive models, and the C-index for both the training and

validation sets was calculated (Figure 4A). Among these models,

the Lasso+CoxBoost model performed the best, demonstrating

strong performance in both the training and validation sets.

Survival analysis across all seven datasets, using median risk

scores as a threshold, showed that high-risk patients had significantly

poorer prognoses compared to low-risk patients, with statistical

significance (Figures 4B–G). The predictive performance of the

model was assessed using ROC curves (Figure 5A). Overall, the

model exhibited strong predictive capability in certain validation

datasets (such as GSE13213 and GSE30219), with AUC values

exceeding 0.7 for 1-year, 3-year, and 5-year survival predictions.

Based on the results from all seven datasets, it can be concluded that

the model has excellent prognostic predictive value.
3.6 Immune microenvironment and
STINGsig

Using the STINGsig, samples were divided into high-risk and

lowrisk groups, and PCA analysis was conducted to observe

expression differences. The high-risk and low-risk groups were

distinctly separated in datasets such as GSE13213, GSE31210, and

GSE42127 (Figure 5B). To explore differences in the immune

microenvironment between high and low-risk groups, seven

immune infiltration algorithms from the TCGA dataset were

employed (CIBERSORT, CIBERSORT-ABS, XCELL, EPIC,

MCPCOUNTER, TIMER, and QUANTISEQ) (Figure 6A). The

results indicated that cancer-associated fibroblasts, neutrophils,

plasmacytoid dendritic cells (pDCs), and CD4+ Th1 and Th2 T

cells were more abundant in high-risk samples, while NK cells, M2

macrophages, B cells, CD4+ T cells, CD8+ T cells, CD4+ central

memory T cells, CD4+ memory resting cells, and activated mast cells

were significantly increased in the low-risk group. Furthermore,

correlation analysis of STINGsig with cancer-related immune

therapeutic pathways and immune cycle steps (Figure 6B) revealed

its functional mechanism: STINGsig showed significant positive

correlations with cell proliferation pathways such as cell cycle and

DNA repair, while negatively correlating with cancer antigen release

and B cell and T cell recruitment, reflecting its complex role in tumor

immune regulation. Based on TCIA analysis, the low-risk group

demonstrated significantly higher immunotherapy scores than the

high-risk group (Figure 6C), suggesting that low-risk patients possess

immune characteristics more favorable for immunotherapy. These

findings further illustrate the important regulatory role of STINGsig in

the immune microenvironment and immunotherapy, providing new

evidence for optimizing immunotherapy strategies.
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3.7 ERRFI1 loss enhances anti-tumor
immunity and synergizes with a-PD1
therapy in lung cancer model

Subsequently, we conducted a more in-depth analysis of ERRFI1, a

key gene within the STING signature. In a lung cancer model, the

combination of ERRFI1 knockdown (shERRFI1) and anti-PD1 (a-PD1)
therapy significantly reduced tumor burden (p < 0.0001) and improved

survival rates, demonstrating a synergistic effect compared to
Frontiers in Immunology 08
monotherapy or the control group (Figures 7A–D). Flow cytometry

analysis revealed that the combination treatment significantly enhanced

the infiltration of CD45+ leukocytes (p < 0.05, Figure 7E) and markedly

increased the proportion of CD8+ T cells among CD45+ cells (p < 0.001,

Figure 7F). Furthermore, the combination therapy significantly elevated

the frequencies of TNF-a+ and GZMB+ CD8+ T cells (p < 0.0001,

Figures 7G,H), indicating enhanced activation of cytotoxic T cells. These

findings suggest that the loss of ERRFI1 potentiates antitumor immunity

and synergizes with a-PD1 therapy to promote tumor control.
FIGURE 3

Similarities and differences between Hight-score and Low-score cells. (A) The difference of GSVA scores. The correlation of cell clusters in all cells.
(B) The correlation of cell clusters in Hight-score cells. (C) The correlation of cell clusters in Low-score cells. (D) Sample distribution across datasets.
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4 Discussion

Lung cancer are among the most common forms of cancer and

are one of the leading causes of cancer-related mortality worldwide

(38, 39). The majority of patients are diagnosed at advanced stages

with metastasis, resulting in a poor prognosis (40). While immune

checkpoint inhibitors have revolutionized lung cancer treatment,

only a subset of patients responds to these therapies. This study

identifies differential activity in the STING signaling pathway,

revealing significant heterogeneity in lung cancer and its potential

impact on immunotherapy response. The STING pathway, as a

crucial mediator of innate immunity and T cell priming, plays a
Frontiers in Immunology 09
vital role in antitumor immune responses. Notably, high STING

scores are associated with enhanced tumor-promoting pathways,

active immune interactions, and enrichment in fibroblasts and

IFI27+ inflammatory macrophages. In contrast, low scores

correlate with an epithelial phenotype and reduced immune

activity. The prognostic risk signature based on this scoring

model demonstrates clinical predictive value and potential utility

in patient stratification for immunotherapy.

Consistent with previous research, this study successfully identified

15 cell types, including epithelial cells, APOE+ macrophages (tissue-

resident), fibroblasts, CD8+ cytotoxic T cells, endothelial cells, B cells,

CD4+ helper T cells, ciliated cells, dendritic cells, mesenchymal stem
FIGURE 4

Development of a prognostic signature. (A) A consensus deubiquitination-related signature, by 101 machine-learning algorithms. (B–G) Survival
curve of high-risk samples and low-risk samples across 6 datasets.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1575084
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Ding et al. 10.3389/fimmu.2025.1575084
cells, neutrophils, mast cells, secretory cells, IFI27+ inflammatory

macrophages, and CD8+ effector memory T cells. The expression

variations of these cell types across populations provide a solid

foundation for subsequent analysis (41–43). Furthermore, the study

reveals that pathways associated with tumor cell growth, metastasis,

immune suppression, and immune evasion are upregulated in the

high-score group. These pathways are closely linked with various

immune cells, including T cells, B cells, dendritic cells, and NK cells

(44–47). This suggests that the high-score group exists in an immune-

suppressive microenvironment, indicating that the STING signaling

pathway may be related to immune evasion and immune killing
Frontiers in Immunology 10
mechanisms in lung malignancies, making it a potential therapeutic

target for the disease. Intercellular interaction analysis shows that both

the quantity and intensity of cell interactions are enhanced in the high-

score group, suggesting that these cells exhibit more active intercellular

communication, and that the STING pathway may be involved in

augmented cell-to-cell communication.

Through univariate Cox analysis, the study identifies 20

prognostic genes with significant differences, involving critical

cellular processes such as immune response, cell proliferation,

migration, apoptosis, metabolism, transcriptional regulation, and

signal transduction. Among these genes, ERRFI1 (EGFR Repressor
FIGURE 5

Prediction value and immune microenvironment. (A) ROC curve for 1-year, 3-year, and 5-year survival predictions. (B) PCA of high-risk samples and
low-risk samples across 8 datasets.
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Protein 1) functions as a negative regulator in cellular signaling (48).

As a tumor suppressor, ERRFI1 directly interacts with EGFR to

inhibit its activation, thereby suppressing tumor cell proliferation and

metastasis (49). In this study, ERRFI1 is negatively correlated with

prognosis and holds potential as a target for tumor immunotherapy,
Frontiers in Immunology 11
warranting further investigation. Interleukin-32 (IL-32), a pro-

inflammatory cytokine produced by various immune cells, plays a

pivotal role in the tumor immune microenvironment by promoting

tumor-related inflammatory responses, enhancing tumor cell

survival, migration, and invasiveness, and aiding immune evasion
FIGURE 6

Construction and validation of STINGsig using machine learning. (A) Immune infiltration analysis of high-risk samples and low-risk samples. (B)
Evaluation of the correlation between cancer immune cycle, immunotherapy pathways, and PIS using GSVA. (C) Prediction of IPS for TCGA-LUAD
patients using The Cancer Immunome Atlas, consistently indicating higher IPS and greater sensitivity to immunotherapy in the low-risk group. LUAD,
lung adenocarcinoma; IPS, immunophenoscore; TCGA, The Cancer Genome Atlas. *** indicates statistical significance with p < 0.001. NS indicates
“not significant” (no statistical significance).
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FIGURE 7

ERRFI1 loss enhances anti-tumor immunity and synergizes with a-PD1 therapy in lung cancer model. (A) Schematic of the experimental design. Mice
were intravenously injected with M109-Luc cells (3×10^5) on day 0, followed by treatments (Veh., shERRFI1, a-PD1, or Comb.) from day 7 to day 15.
Analysis was performed on day 18. (B) Kaplan-Meier survival curves show enhanced survival in mice treated with shERRFI1, a-PD1, or the
combination, with the greatest survival benefit observed in the combination group. (C, D) Tumor burden assessed by bioluminescence imaging
(photoflux) on day 18. The combination of shERRFI1 and a-PD1 significantly reduced tumor burden compared to individual treatments or vehicle
control (****P < 0.0001). (E–H) Flow cytometry analysis of immune cell infiltration in the tumor microenvironment. (E) Percentage of CD45+
leukocytes. (F) Percentage of CD8+ T cells among CD45+ cells. (G) Percentage of TNF-a+ cells among CD8+ T cells. (H) Percentage of GZMB+
cells among CD8+ T cells. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001.
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through the production of immunosuppressive cytokines (50, 51).

PTPN13 (also known as FAP-1, Fas-associated phosphatase-1), a

non-receptor protein tyrosine phosphatase, primarily inhibits pro-

tumor signaling pathways such as PI3K/Akt and MAPK, thereby

suppressing tumor cell proliferation and survival (52–54). Endothelial

PAS domain-containing protein 1 (EPAS1), a member of the

hypoxia-inducible factor (HIF) family, has been shown to promote

proliferation, invasion, and migration in HeLa and SiHa cells (55).

However, in thyroid malignancies, EPAS1 acts as a tumor suppressor

(56). In this study, EPAS1 is also associated with a favorable

prognosis, highlighting its potential clinical significance. Dedicator

of Cytokinesis 1 (DOCK1), an important GTPase-activating protein,

influences T cell migration, activation, and immune response by

regulating the small GTPase Rac1 (57). In this study, DOCK1 is

associated with a favorable prognosis, suggesting that T cell activation

may enhance immune killing in LUAD. However, the role of T cells

in tumorigenesis remains controversial, thus warranting further

investigation. This underscores the necessity for a deeper

exploration of immune functions in lung malignancies.

The STINGsig demonstrated robust predictive performance and

serves as a valuable tool for assessing patient prognosis in lung

malignancies, providing powerful insights for personalized treatment

planning. This signature is particularly relevant in the context of

immunotherapy, as it reflects the underlying immune status of the

tumor microenvironment. Furthermore, it can aid in identifying

high-risk patients, enabling the development of tailored therapeutic

strategies to optimize clinical decision-making and improve overall

survival rates. Our in vivo experiments demonstrated that

knockdown of ERRFI1, a critical gene within the STING signature,

significantly enhances antitumor immunity and synergizes with anti-

PD1 therapy in a lung cancer model. Compared to monotherapy or

vehicle control, the combination of shERRFI1 and anti-PD1

treatment markedly reduced tumor burden in mice. This

synergistic effect likely occurs through the modulation of both

innate and adaptive immune responses, as the STING pathway

activation can enhance dendritic cell function and subsequent T

cell priming. Kaplan-Meier survival analysis revealed that the

combination therapy conferred the greatest survival benefit,

significantly prolonging survival compared to either monotherapy

or control groups. Moreover, the combination treatment significantly

elevated the frequencies of TNF-a+ and GZMB+ CD8+ T cells,

indicating enhanced activation of cytotoxic T cells and improved

antitumor immune responses. These findings underscore the pivotal

role of ERRFI1 in modulating antitumor immunity and highlight its

potential as a therapeutic target to augment the efficacy of immune

checkpoint blockade. The observed synergy between ERRFI1

inhibition and anti-PD1 therapy suggests a promising strategy for

improving immunotherapy outcomes in lung cancer patients.
5 Conclusions

This study integrates single-cell RNA sequencing data and large-

scale transcriptomic datasets to systematically explore the role of the

STING signaling pathway in intercellular communication and
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immune mechanisms. Through biological analysis, this study

enhances our understanding of the STING pathway in LUAD,

offering new perspectives on tumor immune microenvironments

and laying the groundwork for potential applications in tumor

diagnosis, therapy, and personalized treatment. Despite its scientific

value and potential applications, the study has certain limitations.

Firstly, due to cost and sample availability constraints, this research

relies on public datasets rather than proprietary samples, which may

limit the accuracy of the results in certain populations. Secondly,

experimental validation was not possible, as some conclusions are

based solely on computational analyses. Furthermore, in vivo

experiments demonstrated that the loss of ERRFI1, a pivotal gene

within the STING signature, significantly enhanced antitumor

immunity and exhibited a synergistic effect with a-PD1 therapy to

promote tumor control. Nonetheless, the STING pathway-related

signature (STINGsig) constructed in this study holds significant

prognostic value, identifying key genes associated with the immune

microenvironment, and offering valuable insights for the diagnosis

and treatment of LUAD.
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