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The hallmark tissue lesions of tuberculosis (TB) are granulomas. These

multicellular structures exhibit varying degrees of cellular complexity, are

dynamic, and show considerable diversity within and between hosts.

Categorization based on gross pathologic features, particularly caseation and

necrosis, was historically coined prior to the identification of mycobacteria as the

causative agent of TB. More recently, granuloma zonation based on immune cell

composition, metabolite abundance, and physical characteristics has gained

attention. With the advent of single-cell analyses, distinct microenvironments

and cellular ecosystems within TB granulomas have been identified. We

summarize the architecture of TB granulomas and highlight their cellular

heterogeneity, including cell niches as well as physical factors such as oxygen

gradients that modulate lesion fate. We discuss opportunities for therapy,

highlighting new models and the power of in silico modeling to unravel

granuloma features and trajectories. Understanding the relevance of the

granuloma microenvironment to disease pathophysiology will facilitate the

development of more effective interventions, such as host-directed therapies

for TB.
KEYWORDS
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Introduction

Tuberculosis (TB) is a major global health threat (1). TB is caused by Mycobacterium

tuberculosis (Mtb), which usually infects the lungs. The pathological hallmark of TB and the

center of bacteria-host interaction are the tuberculous granulomas. These are organized

cellular structures generated by the host’s immune response in order to contain Mtb (2).

However, the bacteria may override the immune control in these lesions (3). Granulomas

are highly heterogenous, comprising microenvironments with diverse cellular

compositions and various biochemical characteristics including gas, metabolite and
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nutrient gradients (4, 5). Such heterogeneity profoundly influences

host immunity and Mtb biology, affecting disease progression,

latency, and potential reactivation.

Mtb actively drives granuloma biogenesis to its own benefit (6).

Accordingly, granuloma characteristics are relevant to both TB

chemotherapy and host-directed therapies (HDTs) (7, 8). Current

treatment regimens for drug-sensitive TB involve a prolonged

course of multiple antibiotics, which poses challenges in terms of

adherence and efficacy. The emergence of drug-resistant TB further

complicates the treatment. Given the limitations of conventional

chemotherapy and the threat of increasing drug resistance, HDTs

have emerged as a promising alternative (1). HDTs aim to enhance

the host immune response to effectively eliminate Mtb or limit

deleterious inflammation, potentially shortening treatment

duration, preventing the development of resistance, and

improving the efficacy of existing anti-TB drugs. This review

focuses on microenvironments within pulmonary TB granulomas,

specifically zonation, molecular gradients, and cellular ecosystems

revealed by spat ia l bio logy . We discuss the role of

microenvironments in disease pathogenesis and highlight their

relevance for HDT against TB.
The manifolds of TB
granuloma heterogeneity

Cellular zonation of granulomas

The granuloma as a histopathologic hallmark of TB was

described already in the 19th century (9, 10). Prior to the

introduction of TB chemotherapy, knowledge of the granuloma

was obtained from autopsies. Today, animal models recapitulate

the complexity of TB granulomas to varying degrees (8). Mouse

models contributed greatly to the understanding of immune

responses in TB, however usually lack organized granulomas,

cavitation and fibrosis (11). Natural TB hosts such as cattle, pigs

and non-human primates (NHPs) present well-organized and

histopathological diverse lung granulomas which resemble lesions

in humans (12, 13). Guinea pigs (14) and rabbits (15) develop

necrotic lesions and cavities, yet the immunological toolbox is

restricted for these species. Thus, spatial insights about TB

granulomas emerge from few mammalian TB models. Granulomas

contain aggregations of immune cells, initially macrophages, and are

formed by chronic mycobacterial stimulation (Figure 1). They range

in size from a few mm to 20 mm (16, 17) and are round,

ellipsoid, elongated or even branched (18, 19). Histopathology,

immunohistochemistry and ultrastructural microscopy revealed the

cellular composition of developing granulomas. As the disease

progresses, monocyte-derived macrophages, dendritic cells and

granulocytes, including neutrophils and eosinophils, are recruited

proximally to the Mtb-infected macrophages. The cellular influx

promotes granuloma biogenesis and macrophages within these

structures rapidly progress toward epithelioid differentiation as

shown in guinea pigs (14), mice (20), cattle (12), rabbits (15) and

NHPs (13). These nascent granulomas increase in size and
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complexity. T- and B-cells surround the macrophage core of the

mature TB granuloma. Non-immune cells including fibroblasts also

contribute to granuloma architecture and maintenance (21, 22). The

timing of immune cell afflux defines the architecture of the lung

granuloma, including cellular neighborhoods and cell-cell

communication. Lymphocytes enriched in the outer layer do not

interact with the inner myeloid cell compartment due to spatial

distance (23). This limits the mycobactericidal arsenal of the

phagocytes (24, 25). Even within an individual, granulomas can

have distinct immune signature (26, 27) and fates, ranging

from sterilizing to caseating entities that facilitate Mtb

dissemination (28, 29). Spatial mapping of individual immune cells

revealed a superstructural histopathologic feature of the human TB

granulomas (4) with distinct non-necrotizing cellular aggregates

proximal to necrotizing granulomas. The fate of TB granulomas is

determined by their cellular composition. An excess of neutrophils

accompanies caseating granulomas and immunopathology (30, 31),

whereas an early CD4 T-cell accumulation and local macrophage

activation prevent intra-granulomatous necrosis (31).

Macrophages acquire distinct features that define the zonation

of TB granulomas. Foamy and multinucleated giant cells (MNGCs)

are distributed in different regions while epithelioid macrophages

surround the core of Mtb-infected cells. Epithelization is driven by

chronic mTORC1 stimulation (32) in combination with the IL-4/

STAT6 signaling pathway which triggers E-cadherin expression on

macrophages (33). In addition to the upregulation of genes

regulating tight junctions and desmosomes, mainly E-cadherin

seems critical for granuloma organization (34). This tight layer

seals Mtb within the necrotic core and also limits drug penetration.

Granuloma zonation has also been linked to macrophage

polarization and to specific myeloid cell subpopulations. The M1

and M2 macrophage dichotomy fails to describe the continuum of

macrophage activation, yet markers associated with these

phenotypes occupy distinct granuloma niches. Anti-inflammatory

(M2-like) macrophages enriched in arginase 1 (Arg1) versus

inducible nitric oxide (iNOS) (35) are proximal to caseating foci

within primate granulomas. Such patterns differ in other natural

hosts. Porcine TB granulomas accumulate Arg1+ cells regardless of

the lesion stage whereas iNOS-expressing M1-like cells populate

bovine early-stage granulomas (36). Subsets of M2-like

macrophages identified as CD16+CD163+MerTK+pSTAT3+ cells

are associated with lesion severity in humans (37). iNOS/eNOS,

Arg1 expression and additional factors, e.g. IL-10 signaling, drive

regional macrophage polarization within TB granulomas. Subsets of

neutrophils releasing neutrophil extracellular traps in a type I

interferon (IFN-I)-dependent process are associated with central

granuloma caseation (38). The early influx of IFN-I-producing

plasmacytoid dendritic cells and interstitial macrophages may

influence neutrophil function, and subsequent lesion zonation

and outcome (39, 40). Fatty acid oxidation (FAO)-dependent

neutrophils are recruited to granulomas (41) and cells with

increased mitochondrial metabolism, similar to FAO-relying

alveolar macrophages (42), support Mtb replication and induce

immunopathology (43). Adaptive immunity in TB is mainly defined

by B and T cells in the periphery of the TB granuloma. CD8+ T cells
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are essential in early control of TB in macaques (44). On the other

hand, CD4+ T cells have a significant role in protection against

reinfection (45). Granuloma-associated lymphoid tissue containing

Mtb-specific B cells proximal to T follicular helper-like cells appear

essential for disease control (46). Further diversity of CD3+ and

CD8+ T-cell and B cell distribution within individual human TB

granulomas was unveiled by quantitative multiplexed

immunofluorescence which emphasizes presence of distinct

immune environments (47).

High-resolution single cell analyses suggest further a zonation

of granulomas into microenvironments and cellular ecosystems

(Figure 1) . Microenvironments with highly local ized

immunoregulatory programs, e.g. indoleamine 2,3-dioxygenase 1
Frontiers in Immunology 03
(IDO1)- and PD-L1-expressing myeloid cells or proliferating

regulatory T-cells, have been described (21). Variable

multicellular ecosystems endow granulomas with Mtb restrictive

functions (13). Bacilli persist in granulomas showing a type 2

immunity and wound healing programs. Mtb control requires

niches enriched for type 1/type 17, stem-like, and cytotoxic T-

cells. Spatial transcriptomics revealed regions containing SPP1+

macrophages distributed from the periphery to the granuloma

center (48, 49). These engage with fibroblasts in bilateral cross-

talks possibly contributing to lesion outcome. The spatial

organization of TB granulomas follows pro- and anti-

inflammatory mediators (50). Granuloma centers are rich in

reactive oxygen species and pro-inflammatory eicosanoids
FIGURE 1

Tuberculous granuloma microenvironment and host-directed therapies. Granulomas are hallmark lesions of tuberculosis (TB) and exhibit distinct
cellular zonation, gradients of gases such as oxygen or carbon monoxide (A, B), nutrients such as amino acids and glucose, and various metabolites
(C). (D-F) Distinct cellular ecosystems have been identified in TB granulomas. These are defined by polarized macrophages and T-cell immune
responses, distinct features of immune cells including transformed macrophages, and cell clusters with distinct spatial positioning. (G) Approaches
for host-directed therapies (HDTs) targeting granuloma biology include modulation of inflammation, tissue matrix, and neovascularization. Ala,
alanine; Arg, arginine; CBS, cystathionine b-synthase; CO, carbon monoxide; H2S, hydrogen sulfide; Glu, glucose; HIF, hypoxia-inducible factor; HO-
1, hemeoxygenase-1; IDO, indoleamine dioxygenase; IFN, interferon; IL, interleukin; iNOS, inducible nitric oxide synthase; Mj, macrophage; MMP,
matrix metalloprotease; NO, nitric oxide; PDE, phosphodiesterase; PD-L1, programmed cell death ligand 1; PGE, prostaglandin; T, T-cell; Th, T-
helper cell; TNF, tumor necrosis factor; Trp, tryptophan; VEGF, vascular endothelial growth factor. Figure created with Biorender.
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whereas an anti-inflammatory signature surrounds the caseum.

This physical segregation of the mediators may stem from various

cellular niches. Thus, different cellular phenotypes and secretory

products localize in specific areas, control bacilli growth and cell

death events within TB granulomas.
Zonation of gases, nutrients
and metabolites

One of the key features of TB granulomas is a gradual decrease in

oxygen levels towards the center (51, 52). Certain host species,

including guinea pigs, rabbits, NHPs, and selected mouse strains,

i.e. C3HeB/FeJ, exhibit hypoxic and well-defined granulomas (53, 54).

Although organized granulomas were described in very-low dose (20)

and ultra-low dose (55) infected C57BL/6 mice the oxygen

abundances within remain unknown. Hypoxia promotes a

non-replicating, persistent Mtb state that is also induced by nitric

oxide (NO) and carbon monoxide (CO) gas gradients (56, 57). The

hypoxic granuloma core is often necrotic, regardless of whether the

infection is latent or active (58, 59). Disease exacerbation by necrosis

is enhanced under hypoxia, leading to extracellular matrix

destruction through the upregulation of collagenase and

elastases (60).

Hypoxia-mediated inflammation is conserved across species

(61). It triggers the stabilization of HIF-1a and the subsequent

adaptation of immune cells to oxygen limitation. Depending on

their spatial distribution, certain immune cell populations face

oxygen deprivation within the TB granuloma. Hypoxia affects the

architecture and dynamics of intracellular organelles relevant to

defense against Mtb and these changes may be independent of

HIF1-a stabilization (62–66). Nevertheless, HIF-1a stabilization

reduces the influx of CD4+ and CD8+ T-cells, impairing Mtb

control (67). Mtb produces d-serine under hypoxia, which

hampers CD8-mediated IFN-g secretion via dysregulated

mTORC1 functions (68). Hypoxia related immune regulation and

spatial reorganization within granulomas have also been

demonstrated for innate immune cells including macrophages

(69, 70), and neutrophils (71, 72). Abundances of macrophage

Arg1 and neutrophil proteases, such as cathepsin G, are altered

under hypoxia. The macrophage-rich core splits into two metabolic

zones: a hypoxic, high-burden zone and an IDOhigh zone that limits

lymphocyte infiltration, weakening immunity in the NHP model

(73). Thus, both innate and adaptive immune cells are affected by

hypoxia in TB. Certain pro-angiogenetic factors such as vascular

endothelial growth factor (VEGF), which are regulated by hypoxia,

modulate granuloma architecture. While VEGF is highly abundant

in the necrotic core and in surrounding macrophages (74) of human

and rabbit (75) granulomas, microvessels are mainly present in the

granuloma periphery and exhibit spatial and morphological

heterogeneity (75). Propensity of macrophages to produce VEGF

upon Mtb infection was shown with human cells (76). Inhibition of

VEGF results in resolution of hypoxia, reduced inflammation,

survival and vascular normalization in rabbits and mice (74, 75).
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Changes within TB granulomas are not limited to oxygen levels.

Mtb stimulates the expression of heme oxygenase 1 (HO-1) in

macrophages which is highly abundant in the lungs of Mtb-infected

mice (77). HO-1 produces CO, which remains elusive in the context

of TB granulomas. Another gas, hydrogen sulphide (H2S) recently

gained attention in TB. H2S is produced by several host enzymes

including cystathionine b-synthase (CBS). H2S is a vasodilator that

can cause inflammation via NF-kB activation (78). It may also

negatively regulate iNOS and NO production (79). Mice deficient in

CBS or treated with enzyme inhibitors survive longer with reduced

bacterial load and lung inflammation (80). Despite these recent

findings, there is still a knowledge gap about roles of these gases in

pathophysiology of the TB granuloma.

Hypoxia is linked to glycolysis in the TB granuloma. Increased

glycolysis triggers the formation of acidic by-products such as

lactate which acidifies the lesion microenvironment in guinea pigs

and mice (81–83). Lung tissue from human TB patients may reach

acidic (pH ≤5.5) pH (84). The pH in rabbit caseum within

granulomas increases from 6.4 to 7.4 upon lesion maturation

(85), which is accompanied by changes in cellular composition.

Thus, existence of zones with different pH within individual

granulomas or within certain granuloma subtypes is plausible. On

the other hand, in situ lesion pH in C3HeB/FeJ mice does not reach

a pH below 7 (86).

Regarding the tricarboxylic acid cycle, the intermediate

itaconate modulates host immunity in TB. Itaconate triggers anti-

inflammatory responses, influences bacterial clearance, and affects

tissue pathology in mouse models (87). Given the intracellular

localization and limited cell permeability of itaconate, its potential

influence on the microenvironment of TB granulomas requires

further investigation.

Local hypoxia leads to a shift in the metabolic landscape beyond

glycolysis. In humans, caseating granulomas are associated with

increased lipid metabolism, especially cholesterol, cholesterol esters

and triacylglycerols (88). Arginine and tryptophan are metabolized

by the host via Arg1 or NOS, and IDO, respectively. Unavailability

of Arg1 in the absence of iNOS leads to increased Mtb burden in

hypoxic granulomatous structures (70). Epithelioid macrophages

express higher levels of eNOS and iNOS than Arg1 with

immunosuppressive macrophage phenotypes proximal to the

lymphocyte cuff (35). Thus, the spatial availability of arginine

may be critical for the pathophysiology of TB granulomas. The

enzymes IDO1 and IDO2 perform the first-rate limiting step of L-

tryptophan conversion to L-kynurenine and are highly expressed in

macrophages within the granuloma. IDOhigh macrophages are

present in caseating granulomas in the NHP model (89). They

may also interact proximally with T-cells and thus may be involved

in the modulation of T-cell functions (90). In guinea pig

granulomas, upregulation of many metabolites including amino

acids such as alanine, glutamate and aspartate mimics metabolic

changes in solid tumors (83). L-alanine promotes NF-kB activation

and antimicrobial peptide production. Mtb expresses the alanine

dehydrogenase Rv2780 which hydrolyzes the intracellular L-alanine

pool and thereby suppresses the NF-kB-mediated expression of
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defensins in the murine TB model (91), but the relevance of this

process to granuloma biology requires further investigation.

Metabolites of the arachidonic acid (AA) pathway are also

critical for the pathophysiology of TB granulomas. These (e.g.

products of ALOX5, ALOX5AP and LTA4H) are distributed

throughout the granuloma with elevated levels in cavitary and

caseous human granulomas (50). Within solid lesions, LTA4H is

mainly distributed among MNGCs. In caseous and cavitary

granulomas as well as alveolar inflammatory infiltrates, it is

mainly distributed in macrophages/DCs and MNGCs (50).

Caseous and cavitary granulomas show low levels of

cyclooxygenases (COX1 and 2), which are responsible for the

synthesis of prostaglandins (PGH2 and PGE2 or PGD2) (92).

Since Mtb inhibits the eicosanoid pathway and negatively affects

innate and adaptive immunity as well as cellular necrosis (93, 94),

zonation of these metabolites affects granuloma stability.

In summary, the TB granuloma is a highly dynamic entity

shaped by metabolic shifts, cell interactions, and oxygen

deprivation. Metabolic adaptations further shape the immune

landscape of granulomas, adding another layer of complexity

(Figure 1). Because timing and location control the composition

of the cellular microenvironment and Mtb permissiveness, a

thorough understanding of the spatial immunobiology of the TB

granuloma is essential for advancing the understanding of TB.
Opportunities for therapies targeting
TB granuloma biology

Standard TB chemotherapy consists of a combination of

antibiotics over several months. Compliance is often poor due to

the long duration of treatment and drug side effects (95),

necessitating additional treatment options. Moreover, TB

granulomas ‘wall off’ mycobacteria and also antibiotics. For

example, in situ analysis of fluoroquinolones showed a variable

distribution in immune cells within granuloma zones (96).

Therefore, novel antibiotics should take granuloma biology into

account, as lesion penetration is essential for good clinical

outcomes. We focus on adjunctive HDTs in the context of

pulmonary TB granulomas.

As diverse as granulomas in TB patients are, so are the

requirements for HDTs (97). In the context of granuloma

biology, several adjunctive HDTs are attractive (Figure 1). Type 4

phosphodiesterase inhibitors (PDE) such as CC-11050 exert their

anti-inflammatory effects by limiting cAMP degradation. Increased

cAMP levels lead to suppression of pro-inflammatory cytokines,

prevention of inflammatory cell proliferation and slowing down of

fibrotic processes (98). The downregulation of TNF-a networks by

CC-11050 treatment is particularly relevant in TB (99, 100), given

the role of this cytokine in the early formation and maintenance of

granulomas (101, 102). Combined with antibiotics PDE inhibitors

reduced the bacillary load in the lungs of rabbits and mice (99, 100)

and improved TB outcomes in patients. CC-11050 completed a

phase 2a clinical trial with increased lung recovery and a good

preliminary safety profile (NCT02968927) (103). Moreover, CC-
Frontiers in Immunology 05
11050 and CC-3052 (another PDE inhibitor) modulated the wound

healing networks in a rabbit model of TB (99, 104). Factors involved

in this process were matrix metalloproteases (MMPs). MMPs

include collagenases (e.g. MMP1 and MMP13), gelatinases (e.g.

MMP2 and MMP9), stromelysins (e.g. MMP3), elastases (e.g.

MMP12), and membrane-anchored proteases (e.g. MMP14)

(105). They are involved in connective tissue homeostasis and

fibrotic processes associated with TB granulomas. Excessive

expression of MMPs in TB leads to lung tissue damage and

cavitation. The use of an anti-MMP9 antibody as an adjunct to

TB drugs reduced TB relapse rates (106). Hydroxamate-based

compounds have a broad-spectrum activity against MMPs by

mimicking collagen. Marimastat belongs to this class of drug and

inhibited early granuloma formation besides reducing Mtb growth

in a lung tissue model (107). Marimasat and Batimastat (a

compound in the same class) in combination with anti-TB drugs

reduced vascular leakage, stabilized blood vessels and improved

drug penetration by targeting MMP2 and 9 (108). Doxycycline, an

FDA-approved antibiotic and systemic MMP inhibitor (109) is

being evaluated for off-target use in pulmonary (NCT02774993,

NCT06477185) and central nervous system TB (NCT06446245).

Besides bactericidal and sustained immunomodulatory effects via

downregulation of IFN I and II, doxycycline reduces cavitary

volume in the lungs of TB patients (109).

Granuloma formation is closely related to angiogenesis (27, 110).

Normalization of Mtb-induced angiogenesis results in reduced

bacillary growth and dissemination (110). Administration of

losartan, an AT1 receptor antagonist, and bevacizumab, a human

anti-VEGF monoclonal antibody, showed regularized blood vessels

and extracellular matrix in granuloma microenvironment. These

agents reduced Mtb burden in a rabbit model of TB alone and in

combination with TB drugs (111). Delivery of an anti-VEGF

antibody also resulted in reduced hypoxic regions and increased

small molecule delivery (75). As discussed above, host enzymes

associated with macrophage polarization control Mtb replication

and the inflammatory milieu within the TB granuloma. Targeting

the AA pathway seems amenable for the development of HDTs (112).

Targeting IDO as adjunct to chemotherapy also showed promising

results in NHP models (113). HDTs could balance the immune

response within the granuloma considering its various

microenvironments. Current solutions are limited to specific

molecules or pathways, and many regulators of granuloma

zonation remain to be targeted.
Outlook

Multi-omics approaches in spatial biology currently advance

the study of diseased tissues at unprecedented resolution. However,

there is a growing need for novel ex vivo models to complement

animal models that develop human-like TB granulomas. We

envision that integrative approaches incorporating patient

biopsies, animal samples, and ex vivo models will mutually

facilitate a detailed understanding of the spatiotemporal cues of

the TB granuloma.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1575133
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Krueger et al. 10.3389/fimmu.2025.1575133
Opportunities to advance knowledge of TB granulomas are

provided by new technologies, high performance computing

and modeling. Granuloma models based on computational

methods (114, 115) and 3D spheroids (116, 117) facilitate studies

of cellular responses under specific conditions such as hypoxia.

Spheroids mimic in vivo granulomas, including the dormant state

of Mtb (118, 119). Further opportunities include the integration of

novel features into 3D models and/or in silico simulations. New

experimental data link macrophage ontogeny (120), phenotype

(enzymes, cel l surface markers e.g. CD38) (121) and

immunometabolism (FAO or glycolysis) to Mtb killing propensity,

but the spatial context is still lacking. Similarly, clarifying the non-

redundant roles of CD4+ and CD8+ lymphocyte subsets (44, 45) or

positioning of granuloma-associated lymphoid tissue (46) in the

spatial context could help define correlates of protection. In this

respect, precise localization and interactors of B cell clusters including

plasma cells, as detected in NHPs (122), and zonation of Mtb-specific

antibodies remain elusive. The TB granuloma has already been

mathemat ica l ly modeled (123) . Refinements and AI

implementation to integrate multi-omics could help predict

granuloma trajectories. New in vivo tracers of inflammation (124)

and AI-based imaging algorithms could predict responses to

therapies and accelerate HDTs.

The challenges in determining granuloma heterogeneity lie in

the diverse lifestyle of Mtb. In addition to its intracellular and

extracellular localization, Mtb’s subcellular lifestyle adds a layer of

complexity and modulates host responses. Visualization of the

subcellular localization of Mtb within infected tissue using

correlative light electron microscopy is feasible, but limited to a

few specialized laboratories and precludes high-throughput scale

(125). Drug penetrance is conditioned by subcellular niches (126),

and thus uncovering microenvironments with distinct subcellular

Mtb residency is relevant for TB chemotherapy. Mtb genetic

diversity influences disease severity and lung pathology (127), and

must be considered. Attempts to model granuloma responses to

distinct Mtb lineages (128) encourage further studies aiming to

elucidate the extent to which Mtb lineage alters zonation or

cellular niches.

Singular HDT approaches are currently being tested, but future

therapy of TB patients could be guided by clinical data and

individualized. Complex diseases require personalized therapies,

and perhaps TB endotypes (129) are based on granuloma
Frontiers in Immunology 06
variability. Embracing heterogeneity at the microenvironmental

level paves the way for exciting discoveries about granuloma

biology and TB therapy.
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