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Introduction: K-ras mutant lung adenocarcinoma (KM-LUAD) is a difficult-to-

treat cancer subtype in which chronic inflammation pervades the tumor immune

microenvironment (TIME). Pro-inflammatory pathways dampen the response to

treatments, including immune checkpoint inhibitors, necessitating therapies that

target this inflammatory signaling network in the TIME. One of the lynchpins of

chronic inflammation in KM-LUAD is signal transducer and activator of

transcription 3 (STAT3).

Methods: Here, we tested the anti-tumor and early immunotherapeutic efficacy

of TTI-101, a selective small-molecule inhibitor of canonical STAT3 signaling, in a

K-rasG12D mutant lung cancer mouse model (CC-LR).

Results: Treatment of CC-LR mice with TTI-101 resulted in reduced tumor

burden while increasing dendritic cell (DC) and T helper 1 (Th1) infiltration into

the TIME. TTI-101 treatment decreased pY-STAT3 expression in tumors with

accompanying increases in several NF-kB anti-tumor target genes including

CXCL9, a chemokine for primed T cells. Transcriptional profiling of the TIME

revealed improved immune activation and anti-tumor skewing, as well as B cell
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signaling enrichment. Analysis of human LUAD data demonstrated negative

correlations between STAT3 and Th1/DC infiltration, with DC infiltration also

conferring improved survival in LUAD patients with low STAT3.

Discussion: Our results highlight the importance of STAT3 in driving early

tumorigenesis and offer a preventative treatment window for high-risk

individuals and patients with early-stage KM-LUAD.
KEYWORDS
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1 Introduction

A quarter of global cancer-related deaths are attributable to

lung cancer, of which 40% are histologically classified as lung

adenocarcinoma (LUAD) (1–3). A large plurality (25%) of LUAD

cases feature a driver mutation in K-ras, earning the moniker

K-ras mutant LUAD (KM-LUAD) (3). Patients with KM-LUAD,

especially those with a history of cigarette smoking, carry a poor

prognosis, with K-ras mutations leading to hyperactive

RAF-MEK-ERK signaling and unchecked cellular proliferation

(2, 4, 5). While direct inhibition of K-ras has been attempted with

some recent success, resistance mechanisms eventually appear,

reversing any initial benefits (6, 7). As a result, new therapeutic

strategies independent of K-ras signaling are urgently needed to

provide better care for an exceedingly large cohort of lung

cancer patients.

One promising treatment modality lies in targeting tumor-

promoting inflammation. Tumor-promoting inflammation occurs

when an initial anti-tumor immune response shifts from acute to

chronic, and K-ras is well described as an intrinsic driver of this type

of inflammation (8, 9). While the inflammation itself physically

damages the lung tissue and promotes tumor proliferation, the

flavor of inflammation changes from strongly T helper 1 (Th1) to

other non-productive phenotypes such as Th17 and M2-type

macrophage polarization (10). We and others have shown the

importance of immune cells such as Th17s, myeloid-derived

suppressor cells (MDSCs), M2-like macrophages, and neutrophils

in lung cancer development via production of cytokines like

interleukin 6 (IL-6), IL-17, IL-22, and IL-1b (11–13). In

particular, we have shown that targeting IL-6 strongly reduces

tumor-promoting inflammation and improves tumor burden in a

murine KM-LUAD model (14). The importance of IL-6 signaling

has become recognized clinically, with IL-6 neutralizing antibodies

currently under study in concert with immune checkpoint

inhibitors (NCT04691817).

While targeting IL-6 presents an excellent therapeutic

opportunity, this modality is limited to the extracellular space. An

alternative strategy to targeting IL-6 is to block key downstream
02
mediators in the pathway, one such being signal transducer and

activator of transcription 3 (STAT3). STAT3 plays a key role in

pro-tumor machinery across many cell types of the tumor immune

microenvironment (TIME). Activated STAT3 within tumor cells

has been shown to promote tumor development through

transcriptional activation of gene targets that improve cancer

survival, stemness, proliferation, and invasiveness (15). In

immune cells, STAT3 signaling encourages autocrine production

of IL-6 that sustains tumor-promoting inflammation along with

immunosuppressive factors such as IL-10 and TGFb which blunt

the anti-tumor response (16). STAT3 activation can occur

independently of IL-6 targeting, as it lies downstream to other

cytokines including IL-10, IL-22, and IL-27, which are broadly pro-

tumor in nature and found in abundance in KM-LUAD (12, 17).

Moreover, the use of a small molecule inhibitor enables the

targeting of STAT3 in the cytoplasm or nucleus, and such an

inhibitor can be upscaled for mass production more easily than a

monoclonal antibody (18).

Despite STAT3 representing an attractive therapeutic target,

there is disagreement as to the role of STAT3 in early versus late-

stage tumors. Most groups have shown that late stage blocking of

STAT3 is favorable for tumor clearance (19–28). However, others

have shown that targeting STAT3 prior to or during tumorigenesis

leads to a loss of epithelial cell identity and a worsening of disease

(29, 30). To elucidate the role of STAT3 in early KM-LUAD

development, we tested a selective small molecule STAT3

inhibitor, TTI-101, currently in phase II clinical trials, including

treatment of idiopathic pulmonary fibrosis and hepatocellular

carcinoma (NCT05671835 and NCT05440708, respectively), in a

mouse model of KM-LUAD called CC-LR (31). Here, we profile the

immune cells, cytokines, chemokines, and transcriptome of the

TIME in CC-LR mice to illustrate the effects of STAT3 inhibition

across a wide array of cell types. Mice treated during the initial

stages of tumorigenesis displayed significant reduction in tumor

burden, reprogramming of the TIME chemokine profile, and

augmented dendritic cell (DC) and Th1 responses, supporting

the hypothesis that STAT3 contributes to early-stage

KM-LUAD development.
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2 Methods

2.1 Cell culture

MDA-F471 cells, a Gprc5a-/- Kras-mutant LUAD cell line with

STAT3 hyperactivation, were developed as previously described

(32). Cells were cultured in complete growth medium consisting of

DMEM (GenDEPOT) supplemented with 10% fetal bovine serum

(FBS) (GenDEPOT) and 1% penicillin-streptomycin (GenDEPOT)

and maintained at 37°C in a humidified atmosphere with 5% CO2.

Cells were passaged upon reaching 80-90% confluency. Regular

mycoplasma testing was provided by the MD Anderson

Cytogenetics and Cell Authentication Core.

Cell viability was measured by MTT assay. Cells were seeded in

96-well plates at a density of 5,000 cells per well in 100 µL of complete

growth medium and incubated overnight at 37°C in a 5% CO2

atmosphere in serum-free medium containing TTI-101 diluted

serially 1:1 from 100-12.5 mM in DMSO; equivalent volumes of

DMSO were added to vehicle control wells. After treatment, 10 µL of

MTT solution (5 mg/mL in PBS) were added to each well to achieve a

final concentration of 0.5 mg/mL. Wells of each concentration were

set up in triplicate. Plates were incubated for 4 hours at 37°C to allow

for formazan formation. Following incubation, mediumwas removed

and replaced with 100 µL of DMSO to dissolve formazan crystals. The

plates were gently shaken for 10–15 minutes to ensure complete

dissolution. Absorbance was measured at 570 nm using a microplate

reader, with a reference wavelength of 630 nm for background

correction. Cell viability was calculated by normalizing absorbance

values to untreated control wells.
2.2 Mouse husbandry and treatments

CCSPCre/LSL-K-rasG12D (CC-LR) mice were generated as

previously described (14). Briefly, C57BL/6 background mice with

the LSL-K-rasG12D allele were crossed with mice with Cre

recombinase under the control of the club cell secretory protein

(CCSP) locus. The resulting mice gain expression of mutant K-ras

in the lung epithelium, leading to spontaneous tumor formation

that parallels KM-LUAD pathology. All mice were housed under

specific pathogen–free conditions and handled in accordance with

the guidelines of the IACUC of MD Anderson Cancer Center. Mice

were monitored daily for evidence of disease or distress. Both male

and female mice were used in this study, and data were analyzed to

check for sex-specific effects, which were not seen.

TTI-101 was provided by Dr. David J Tweardy under an approved

material transfer agreement with Tvardi Therapeutics, Inc. Mice

receiving TTI-101 intraperitoneally (i.p.) were given 100 mg/kg TTI-

101 in DMSO five times weekly from 10-to-14 weeks of age (N = 8

controls, 9 TTI-101-treated). Oral gavage (o.g.) delivery of TTI-101 was

formulated at 50 mg/kg in Labrasol: PEG 400 at a ratio of 3:2 and given

once daily from 10-to-14 weeks of age (N = 21 controls, 25 TTI-101-

treated). Mice were weighed daily to determine drug dose and to

monitor for weight loss, a possible sign of toxicity or poor gavage

technique. Dosing was performed as previously described (33, 34).
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2.3 Mouse necropsy, bronchoalveolar
lavage, plasma, and histology preparation

To harvest samples, 14-week-old CC-LR mice were anesthetized

by i.p. injection of 0.8 mL of 0.25 mg/mL 2,2,2-tribromoethanol

(Avertin, Sigma). Cannulas (Luer) were inserted into the tracheas and

sutured into place, and lung surface tumors were then counted.

For bronchoalveolar lavage fluid (BALF) collection, a portion of

mice received two sequential instillations of 1 mL of PBS via the

cannulas. Blood was collected from the inferior vena cava and

centrifuged at 2,370 x G for 5 minutes, and supernatants were

collected as plasma. The lungs of these mice later underwent

perfusion with 10 mL of PBS injected into the right ventricle. The

lung tissue was then snap frozen in liquid nitrogen for downstream

RNA and protein analyses. BALF total white blood cell (WBC)

count was then obtained on a hemocytometer. Cytocentrifugation

and subsequentWright-Giemsa (Sigma) staining were performed to

measure major immune cell lineages.

For histology preparation, a portion of mice had blood drawn

and were perfused as described above, after which the lungs were

inflated with 10% buffered formalin (Sigma) for 10 minutes via the

cannulas. Lungs were removed and stored in formalin for 24 hours,

followed by 24 hours in PBS. Lungs were then passed through an

automated tissue embedder (Leica Biosystems) to make formalin

fixed paraffin embedded (FFPE) blocks.
2.4 Quantification of TTI-101 drug
concentrations in plasma

Plasma collected as above was mixed with stabilizer solution

containing 20 mg/mL of NaF, 25 mg/mL of Na2SO3, and 25 mg/mL

of L-ascorbic acid in ddH2O with 1X PBS at a 1:1 ratio. Aliquots of

plasma frommice were spiked with 5ul of deuterated TTI-101(D7) as

the internal standard (IS) to a final concentration of 5 mg/mL.

Calibration standards and QC samples of TTI-101 were prepared

by spiking 5 mL of the relevant working solutions of TTI-101 and SI

into 100 mL of blank normal plasma. TTI-101 was extracted through

one-step liquid-liquid extraction (LLE) using methyl tert-butyl ether

(MTBE). Samples were reconstituted in 100 mL of methanol before

analysis. The LC-MS/MS analysis was performed on a QTRAP 5500

Sciex hybrid quadrupole-linear ion trap systemwith a turbo ion spray

source coupled to a Sciex LC Exion liquid chromatography system.

Data acquisition and quantification were conducted using Analyst

1.6. (Redwood City, CA, USA). Chromatographic separation was

achieved using a Synergi™ 4 µm Fusion-RP 80 Å, LC Column 50 x 2

mm at a temperature of 40°C with a 3 min linear gradient at 500 mL/
mL. The aqueous mobile phase (solvent A) was created as follows:

0.1% (vol/vol) formic acid and 5 mM ammonium acetate in ddH2O.

The organic phase (solvent B) was 0.1% formic acid and 5 mM

ammonium acetate in methanol. MRM monitoring in positive mode

(ESI+) was used to detect TTI-101 and the IS, with m/z

472.093 > 301.1 for TTI-101 and m/z 479.200 > 301.1 for IS. The

calibration curve for TTI-101 was generated from the peak area ratio

of TTI-101 to the peak area of its internal standard TTI-101(d7) using
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the Linear regression analysis with 1/X weight over the range of 0.03-

30uM. All LC-MS/MS reagents including methanol, water,

ammonium acetate, and formic acid were obtained from

Honeywell Fluka (Morris Plains, NJ). Methyl tert-butyl ether

(MTBE) was obtained from Sigma Aldrich. The C18 Synergi™ 4

µm Fusion-RP 80 Å LC column (50 × 2 mm) was purchased from

Phenomenex, (Torrance, CA, USA).
2.5 Tissue histology

Hematoxylin and Eosin (H&E) staining was performed on

multiple 5 mm-thick cuts from FFPE lungs, with individual

sections separated by at least 50 mm. Slides were scanned at 4X

magnification and stitched together on a BZ-X810 microscope

(Keyence). Normal lung and lesion areas were manually

annotated in ImageScope 12.4.3 (Leica Biosystems).

Immunohistochemistry (IHC) for Ki-67 (1:200, ab16667,

Abcam) and pY-STAT3 (Tyr705) (1:200, 9145S, Cell Signaling

Technology) were performed as previously described (14). Ki-67+

and pY-STAT3+ nuclei within tumors were quantified using ImageJ

(NIH) as previously described (35). Additionally, pY-STAT3

staining and lesion type in o.g. CC-LR mice was quantified using

HALO Indica Labs image analysis platform (version 3.5.3577.108).

Multiplex immunofluorescence staining (Lunaphore COMET)

was performed on FFPE-derived sections as described in Wang

et al. (36). Antibodies against major immune markers were

sequentially stained, imaged, and inactivated to build multicolor

image overlays. Images were imported into Visiopharm for

segmentation, gating, and quantification (see Supplementary

Table 1 for full antibody panel and cell segmentation logic).
2.6 RNA extraction and qRT-PCR analysis

Mouse lung RNA was extracted by placing cryopreserved lung

tissue into tubes containing chrome plated steel beads and QIAzol

(Qiagen). Tubes were then shaken on a Mini-BeadBeater 16

(BioSpec) for 10–20 seconds twice, incubating samples on ice

between each round. Homogenates were then passed through a

QIAshredder (Qiagen) for further cellular lysis. RNA extraction was

then performed using the RNeasy Mini kit (Qiagen) following the

manufacturer’s instructions. cDNA was made using the qScript

cDNA SuperMix (Quanta Biosciences). qRT-PCR was run using

SYBR Green FastMix (Quanta Bioscience) on a CFX96 Touch™

Real-Time PCR Detection System (Bio-Rad). Beta-actin (Actb) or

CD45 (Ptprc) were used as housekeeping genes, with results

presented as fold change using the DDCt method. Primers used

are listed in Supplementary Table 2.
2.7 Protein extraction and analysis

Mouse lung protein was extracted by homogenizing

cryopreserved lung tissue in tubes containing chrome plated steel
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beads. For total protein, RIPA buffer (Sigma) with protease +

phosphatase inhibitor cocktail (Thermo Fisher Scientific) was

used; for nuclear and cytosolic fractionation, buffers from the NE-

PER Nuclear Protein Extraction Kit (Pierce) were used. After

incubating for 30 minutes on ice, samples were centrifuged at

18,620 x G for 30 minutes at 4°C, with supernatants collected.

Protein concentration was determined using a bicinchoninic acid

a s say (Thermo F i she r Sc i en t ific ) acco rd ing to the

manufacturer’s instructions.

BALF supernatants were analyzed by Olink Proximity

Extension Assay using the Olink Target 48 (Olink Proteomics)

panel for mouse immune markers. Samples were run by the

Houston Methodist Research Institute Immunoediting Core

according to the manufacturer’s instructions. Data were provided

as NPX values (normalized protein expression with log2-type

transformation) and pg/mL (absolute quantification).

Immunoblotting was performed as previously described (37),

with nuclear fractions used for STAT3 detection and total protein

used for p65. Primary antibodies were against STAT3 (1:1000;

catalog 4904S, Cell Signaling Technology), p-p65 (Ser536)

(1:1000, catalog 3033S, Cell Signaling), total p65 (1:1000, catalog

ab32536, Abcam), histone H3 (1:1000; catalog 4499S, Cell Signaling

Technology), and b-actin (1:1000; catalog 4970S, Cell

Signaling Technology).

The NF-kB (p65) binding activity was measured using the NF-

kB (p65) Transcription Factor Assay Kit (Cayman Chemical

Company) as previously described (13), with 10 mg of nuclear

extracts run in duplicate. Optical density (OD) was measured at 450

nm, and fold binding activity was calculated by normalizing to

control ODs.
2.8 Flow cytometry

Flow cytometry was performed as previously described (13):

Briefly, lungs were harvested as mentioned above but were then

manually cut using scissors into a paste and then digested for 30–45

minutes at 37°C in 1 mg/mL collagenase IV (Gibco) in RPMI

(GenDEPOT). Digested samples were then mechanically

dissociated into single-cell suspensions using 70 mm nylon mesh

(Falcon) and subjected to RBC lysis. Cells were then resuspended in

FACS buffer (1X PBS, Sigma; 2 mMEDTA, Millipore Sigma; 1% FBS,

GenDEPOT) for staining. 3 x 106 cells per sample were allocated to

separate myeloid and lymphoid panels (see Supplementary Table 3

for complete antibody list and panel composition). Myeloid samples

underwent Fc blocking with anti-CD16/CD32 (clone 2.4G2, Tonbo)

concurrent with surface staining for 30 minutes on ice, followed by

fixation with 1% formaldehyde. Lymphoid samples underwent

intracellular cytokine stimulation: cells were cultured in RPMI

(GenDEPOT) containing 50 ng/mL phorbol 12-myristate 13-

acetate (PMA, Sigma), 500 ng/mL ionomycin (Sigma), 1 mL/mL

GolgiStop (BD Biosciences), and 0.7 mL/mL GolgiPlug (BD

Biosciences) for 4–6 hours at 37°C. After surface staining, cells

were permeabilized with the FoxP3 Transcription Factor Staining

Kit (Invitrogen) for intracellular/intranuclear markers. All data were
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acquired using an LSRFortessa X-20 (BD) and analyzed with FlowJo

software, version 10 (Tree Star). Gating strategies are shown in

Supplementary Figure 5.
2.9 Bulk RNA sequencing and GSEA

Following RNA extraction as described above, whole-

transcriptome sequencing (RNA-seq), library construction, and

gene set enrichment analysis (GSEA) were performed by

Novogene (Beijing, China) using standard protocols, including

quality control, library preparation with poly(A) selection, and

paired-end sequencing on the Illumina platform. Data were

processed and analyzed following Novogene’s recommended

RNA-seq pipeline. GSEA results were generated by comparison

with GO Enrichment gene sets.
2.10 Cellular deconvolution and TCGA
analysis

RNA-seq immune profiles were deconvoluted from bulk RNA-

seq data using the xCell (38) and CIBERSORT (39) algorithms in R

(version 3.5.1; R Project for Statistical Computing). Gene expression

data from LUAD patients, including both males and females, were

obtained from TCGA (https://portal.gdc.cancer.gov). Linear

regression was run to correlate immune cell infiltration with

STAT3 expression. Overall survival was calculated for patients

compared to B cell infiltration, and overall survival for patients

with low STAT3 expression was compared to DC infiltration.
2.11 Statistics

Data are presented as mean ± SEM. Comparisons between

control and TTI-101-treated groups were calculated by a 2-tailed t

test, with P < 0.05 being statistically significant. All statistical

analyses were performed in GraphPad Prism (Version 10.3.1).
2.12 Data availability statement

Data were generated by the authors and are available on request.
3 Results

3.1 TTI-101 reduces growth of tumor cells
in KM-LUAD models

To test the effectiveness of TTI-101 on K-ras mutant cancer

cells, we first treated a mouse-derived KM-LUAD cell line with

increasing concentrations of TTI-101. The MDA-F471 mouse

LUAD cell line, which is K-ras mutant and STAT3-addicted (32),

demonstrated a dose-dependent decrease in viability upon
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treatment with TTI-101, with an IC50 of 14.74 mM
(Supplementary Figure 1A).

We next examined TTI-101 in vivo using a KM-LUAD mouse

model possessing K-rasG12D expression under the control of club

cell secretory protein (CC-LR). TTI-101 was formulated in DMSO

and delivered intraperitoneally (i.p.) at 100 mg/kg five days per

week from 10-to-14 weeks-of-age. This treatment timeline was

chosen in order to test for any tumor-preventative effects, since

adenoma formation is evident at 14 weeks of age in the CC-LR

model (40). Fourteen-week-old TTI-101-treated mice displayed

significant reduction in tumor burden as measured by surface

tumor number (Supplementary Figure 1B) and the ratio of tumor

to healthy lung area by histology (Supplementary Figures 1C, D).

Tumors from these mice showed reduced levels of activated STAT3

(STAT3 phosphorylated on Y705; pY-STAT3) using both pY-

STAT3 immunohistochemistry (IHC; Supplementary Figures 1E, F)

and Luminex bead-based assays (Supplementary Figure 1G).

To facilitate its potential use in patients, we next examined the

effect of TTI-101 treatment (50 mg/kg once daily) in CC-LR mice

again from 10-to-14 weeks of age using TTI-101 formulated in

Labrasol/PEG-400 that allowed for its administration by oral gavage

(o.g.) (41). Plasma TTI-101 levels reached 1952 +/- 914.5 ng/mL in

treated mice and were below the lower limit of quantitation (LLOQ)

for controls (Supplementary Table 4). Importantly, we witnessed a

39% reduction in tumor burden (p = 0.0053; Figures 1A–C). In

addition, the number of Ki-67+ tumor cell nuclei was decreased,

indicating reduced tumor cell proliferation (Figures 1D, E). As

previously demonstrated, TTI-101 was well tolerated with no

evidence of toxicity or weight loss observed (Figure 1F).
3.2 STAT3 inhibition reduces STAT3
signaling while skewing to an NF-kB-driven
chemokine profile

To determine if STAT3 signaling was impacted by TTI-101, we

measured STAT3 in CC-LR mice treated with TTI-101 by o.g. Early

lesions displayed a lower density of pY-STAT3+ cells (Figures 2A, B),

and immunoblotting of nuclear fractions from whole lung protein

showed decreased translocation of STAT3 into the nucleus

(Figures 2C, D). Since there is known modulation between STAT3

and NF-kB signaling (42), we performed immunoblotting to assess

for NF-kB pathway components. However, we saw no changes in

protein abundance of the NF-kB nuclear effector subunit p65

(Supplementary Figures 2A, B). To check for possible changes in

transcriptional activity, we performed a p65 DNA binding assay,

which measures the ability of the NF-kB p65 subunit to bind its

transcriptional target sequences. Using this method, we saw a trend

for increased p65 DNA binding (Figure 2E).

To assess changes in the TIME and any downstream effects of

STAT3 inhibition, we performed an Olink Proximity Extension

Assay on bronchoalveolar lavage fluid (BALF) from CC-LR mice.

BALF was chosen as a means of biomarker discovery and

facilitating clinical translation because cytokine changes in BALF

are more reflective of the secretory products of airway immune cells.
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Olink of BALF revealed upregulation of various soluble mediators

(Figure 2F): Three chemokines, CXCL1, CCL2, and CXCL9, were

upregulated, which provide chemotactic impetus to neutrophils,

monocytes, and primed T cells respectively (43–45). IL-1a, a pro-
inflammatory cytokine (46), was also upregulated. These four

markers are notable as being transcriptional targets of NF-kB
(47), although CXCL9 is also strongly induced by IFNg (48).

Normalized protein expression (NPX) data from Olink showed

upregulation of other NF-kB targets: CCL22, CSF1, CSF2, CSF3,

CXCL2, and TNFa (Supplementary Figure 2C). We also noted an

increase in FGF21, a factor which promotes cholesterol metabolism

and is known to cause exhaustion in T cells (49).

Collectively, these results indicate a possible shift in lung tumors

from STAT3- to NF-kB-driven inflammation, with the

reprogramming of the TIME evidenced primarily by changes in

chemokine composit ion rather than prol ific cytokine

profile alterations.
3.3 STAT3 inhibition increases DC and Th1
proportion within the TIME

To better understand changes in the immune cell populations

within the TIME, we performed flow cytometry of CC-LR mouse

lungs treated with TTI-101 by o.g. In the myeloid compartment, the
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most significant changes were seen in dendritic cells (DCs), with

classical type 1 (cDC1), classical type 2 (cDC2), and monocytic DC

(Mo-DC) proportions elevated in the lung (Figures 3A, B). It should

be noted, however, that our myeloid gating strategy was unable to

satisfactorily delineate alveolar macrophages (AMs) and cDC1s, as

both are CD11b- CD11c+. Therefore, we treated these cells as a

lumped group labeled cDC1/AM. cDC2s displayed trends for

increased MHC-II expression (Supplementary Figure 3C),

indicating activation and antigen presentation ability. Flow

cytometry of BALF indicated a trending increase in cDC2

infiltration and Ly6G low immature granulocytes (Supplementary

Figure 3B), which may have migrated in response to elevated CCL2

and CXCL1 respectively (Figure 2F). Immature granulocytes may

develop into polymorphonuclear MDSCs (PMN-MDSCs), and

these findings will be explored in greater depth later.

Within the lymphoid compartment, we noted an increase in

IFNg-producing CD4+ helper T cells (Th1s) (Figures 3C, D). IFNg
transcripts (Ifng) were significantly elevated as measured by qRT-

PCR, and expression of T-bet (Tbx21), the defining Th1 lineage

transcription factor, trended higher (Supplementary Figure 3D).

However, no significant changes were seen in other T cell subtypes

(data not shown). We also noted a trend for increased B cell

proportion by flow cytometry (Supplementary Figure 3E), an

observation corroborated by immunofluorescence imaging of lung

sections showing some heterogeneous increase in B cell infiltration
FIGURE 1

STAT3 inhibition reduces development and growth of lung tumors. (A) Representative stitched photomicrographs of H&E-stained sections of 14-
week-old CC-LR mouse lungs either untreated or given TTI-101 by oral gavage (o.g.); arrows indicate representative tumor areas; original
magnification, 4X; scale bar is 5 mm. (B) Tumor burden as measured by manual counting of lung surface tumors (N = 21-25). (C) Percentage of
tumor area over total lung area (N = 6). (D) Representative photomicrographs of Ki-67-stained sections and quantified in (E) (N = 4-12); scale bar is
200 mm. (F) Weight, normalized to initial weight, of CC-LR mice given 50 mg/kg TTI-101 o.g. from 10-to-14 weeks-of-age. Data represent mean ±
SEM. ***P < 0.001, **P < 0.01, *P < 0.5 by unpaired t test.
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into the lung (Figure 3E, Supplementary Figure 3F). Taken together,

our findings suggest that STAT3 inhibition by TTI-101 augments

DC infiltration into the TIME and bolsters the Th1 response.
3.4 Transcriptomic profiling indicates
STAT3 inhibition broadly increased immune
activation, particularly DCs and B cells

To better survey the effects of TTI-101 in our model in an

unbiased manner, we performed whole-transcriptome sequencing

(RNA-seq) of mRNA from whole lung lysates. Applying a cutoff

rate of FDR > 2, we discovered 398 genes that were differentially

expressed following STAT3 inhibition (Figure 4A). Gene set

enrichment analysis (GSEA) by GO enrichment indicated

downregulated pathways related to microtubules and cilia
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(Supplementary Figure 4A). Additionally, C2cd4b, a marker of

acute inflammation (50), and Dlk1, a driver of Wnt signaling,

lung repair and stemness, and cancer stemness (51–53), were

downregulated (Figure 4A). However, a larger number of

pathways related to immune activation were found to be

significantly enriched (Figure 4B). Broad T, B, and myeloid cell

activation pathways were seen, including cell adhesion, cell

migration, B cell receptor (BCR) signaling, immune proliferation,

and more. Several transcripts in these pathways were upregulated,

including Blk (T cell activation) and Cd79a (mature B cells)

(Figure 4A). GSEA also supported our findings of increased Th1/

DC activation as well as enrichment of inhibitory gene sets

governing Ras and ERK1/2 (Figure 4B), indicating that TTI-101

mitigates hyperactive K-ras signaling.

We next deconvoluted the bulk RNA-seq data to quantify

immune cell infiltration. Using the xCell deconvolution method
FIGURE 2

STAT3 inhibition reduces STAT3 signaling intensity while skewing to an NF-kB-driven chemokine profile. (A) Representative photomicrographs of
pY-STAT3-stained sections in early lesions in CC-LR mice (N = 3); magnification, 20X; scale bar is 200 mm. (B) Quantification of pY-STAT3+ cells
from CC-LR mice by mm2 of lesion area. (C) Immunoblot of STAT3 and histone H3 (HH3; loading control) in nuclear fractionated lung tissue lysates,
quantified in (D) as relative density of STAT3 to HH3 (N = 6). (E) p65 DNA binding assay, with fold binding activity calculated based on OD of control
samples (N = 5). (F) Olink protein extension assay analytes from bronchoalveolar lavage fluid (BALF) (N = 4). Data represent mean ± SEM. **P < 0.01,
*P < 0.5 by unpaired t test.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1575181
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Clowers et al. 10.3389/fimmu.2025.1575181
(38), we saw significant enrichment in B cells, memory B cells, and

class-switched memory B cells (Figure 4C). B cell genes were seen to

be upregulated, including Ighm (Ig mu heavy chain), Cd19 (B cell

lineage), and Cxcr5 (B cell chemotaxis) (Figure 4A). Using xCell, we

also noticed a higher score for common lymphoid progenitors (CLPs)

(Supplementary Figure 4B). Use of CIBERSORT deconvolution (39)

revealed a decrease in M2 score (Supplementary Figure 4C).

Deconvolution scores were correlated with LUAD data from The

Cancer Genome Atlas (TCGA): Th1s and plasmacytoid DCs

negatively correlated with STAT3 expression in LUAD tumors

(Figures 4D, E), a pattern we also noticed for CLPs (Supplementary

Figure 4D). Owing to the B cell phenotype found in our RNA-seq

data, we queried TCGA for LUAD patients and B cell infiltration.

Our results showed that higher B cell infiltration led to increased

cumulative survival (Figure 4F). Since we were operating in the
Frontiers in Immunology 08
setting of STAT3 inhibition, we narrowed our analysis to patients

with low STAT3 expression. We found that patients with low STAT3

showed improved survival with higher infiltration of DCs

(Figure 4G), supporting our finding of increased DC infiltration in

CC-LRmice. These data suggest that DC tumor infiltrationmay serve

as a predictor of response to STAT3 inhibition while suggesting a role

for B cells in the anti-tumor response engendered by TTI-101.
4 Discussion

In this study, we demonstrated that inhibiting STAT3 with TTI-

101 is an efficacious means of targeting a myriad of pro-tumor

STAT3 functions across the tumor and immune compartments. In

CC-LR mice, STAT3 inhibition attenuated tumor burden and
FIGURE 3

STAT3 inhibition increases DC and Th1 proportion within the TIME. (A) Representative dot plots of myeloid cell flow cytometry analysis pre-gated on
CD11c+ cells; expression of Ly6C and CD11b is used to delineate classical type 1 DCs (cDC1s)/alveolar macrophages (AMs), cDC2s, and monocytic
DCs (Mo-DCs), and is quantified in (B) as a percentage of CD45+ cells (N = 3-5). (C) Representative dot plots of lymphoid cell flow cytometry
analysis with ex vivo restimulation by PMA/Ionomycin, pre-gated on CD3+ cells; expression of CD4 and IFNg is used to mark T helper 1 (Th1) cells
and is quantified in (D) as a percentage of CD4+ cells (N = 3-5). (E) Representative multiplex immunofluorescence (COMET) images for B cells
(B220+); original magnification, 20X; scale bar is 100 µm. Data represent mean ± SEM. **P < 0.01, *P < 0.5 by unpaired t test.
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tumor proliferation. Immunologically, we observed substantial

reprogramming of the TIME: in addition to decreased STAT3

signaling, we observed upregulation of many NF-kB targets,

including monocyte and T cell chemokines (CCL2 and CXCL9).

Flow cytometry profiling of the lung revealed changes in both the

myeloid and lymphoid compartments: DC proportions were higher

following treatment with TTI-101, with a corresponding increase in

Th1s. Increased immune activation was reinforced by differential

gene analysis, with profiles for T, B, and myeloid cell activation

showing significant positive enrichment, particularly for B cells.

Comparisons with LUAD data from TCGA data likewise indicated

inverse relationships between STAT3 expression and Th1 and DC

infiltration. B cell and DC infiltration even correlated with

improved survival.

Our results shed light on the temporal nature of STAT3 in lung

tumorigenesis. Some studies have reported that early Stat3 ablation

is pro-tumorigenic (29, 30). These studies showed that deletion of

Stat3 in the lung epithelium concurrent with K-rasG12D induction

fostered KM-LUAD development, growth, and lethality. The

temporal nature of STAT3 function was illustrated by Zhou et al.,

who demonstrated that preemptive targeting of STAT3 prior to

carcinogen exposure resulted in increased K-ras mutation rate,

inflammation, and tumorigenesis. However, once tumors were
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established, Stat3 deletion proved integral to reducing tumor

growth (26). In our hands, we were able to pharmacologically

target STAT3 after initial tumor formation but saw decreased

tumor growth. Therefore, we conclude that STAT3 inhibition is a

viable means of treating KM-LUAD between initial tumor

formation and tumor establishment.

Additionally, our results show that targeting STAT3 does not

only affect tumor cells but repolarizes the TIME to an anti-tumor

phenotype. Skewing from STAT3 to NF-kB signaling may explain

the resulting changes in secreted factors. The NF-kB target CCL2,

which is a known monocyte chemokine, is also a DC chemotactic

factor (54) and may well explain the increased abundance of DCs

within the lung. Likewise, CXCL9 is known to recruit primed T cells

to sites of inflammation (45) and may correspond with our finding

of increased Th1 prevalence.

DCs are well known to play an essential role in priming T cell-

mediated anti-tumor immune responses (55, 56), and the trend for

cDC2s to upregulate their MHC-II expression is indicative of

increased activation and antigen presentation (57). While STAT3

is known to play an important role in DC maturation (58, 59), DC-

specific knockouts of STAT3 in mice result in DCs that are fewer in

number but greater in anti-tumor function and Th1 priming ability

via IL-12 secretion (20, 60). Therefore, we suspect that TTI-101
FIGURE 4

Transcriptomic profiling indicates STAT3 inhibition broadly increases immune activation. (A) Volcano plot of upregulated (orange) and
downregulated (blue) genes following TTI-101 treatment in CC-LR mice (N = 4). (B) Go enrichment GSEA showing the top enriched pathways (N = 4).
(C) Cellular deconvolution score of RNA-seq data by xCell. Correlation of STAT3 expression in LUAD patients (adjusted by stage) vs. Th1 (D) and
plasmacytoid DC (E) infiltration (N = 515). Survival curves of B cells in LUAD (F) and DCs in LUAD with low STAT3 expression (G). Data represent mean ±
SEM. *P < 0.5 by unpaired t test.
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enhances DC antigen presentation and T cell priming to elicit an

anti-tumor response.

Th1 function is likewise influenced by STAT3 signaling:

STAT3-derived IL-6 and TGFb drive CD4 differentiation away

from Th1 towards Th17, a CD4 subtype that is often pro-

tumorigenic through IL-17-mediated recruitment of MDSCs (61–

64). STAT3 likewise is important for regulatory T cell (Treg)

differentiation via TGFb (65), and deletion of STAT3 in the

murine T cell compartment obliterates Treg tumor infiltration

(66). In our hands, STAT3 inhibition using TTI-101 in the CC-

LR model seems to promote Th1 function.

Evidence of anti-tumor synergy between myeloid and T cells is

also mirrored in our RNA-seq results, with numerous anti-tumor

immune signaling pathways showing significant enrichment. It is

also telling that in LUAD tumors with low STAT3 expression, DC

infiltration is predictive of survival. In subsequent studies, we will

focus more on the DC:T interaction and the priming process in

response to TTI-101.

It is worth noting that while we only saw a trending increase in B

cell abundance in the lung, transcriptomic profiling indicated increased

BCR signaling and B cell activity, and cellular deconvolution predicted

increased B cell enrichment. Humoral immunity and tertiary lymphoid

structures (TLSs) are known positive prognostic indicators in KM-

LUAD (67, 68); while we saw no evidence of TLSs (data not shown), it

is likely that humoral immunity plays a role in the response to TTI-101

and merits further investigation.

We also detected TTI-101-induced gene transcript changes that

suggest potential pathways for the emergence of TTI-101 resistance.

For example, FGF21, which inhibits CD8 T cells by boosting

cholesterol metabolism (49), was upregulated in BALF and may

herald blunting of the anti-tumor responses. Similarly, increased

CXCL1, a known neutrophil chemokine (43), could lead to

recruitment of PMN-MDSCs, which are immunosuppressive and

a negative prognostic indicator in KM-LUAD (10).

While this study demonstrated the efficacy of STAT3 inhibition

via TTI-101 in reducing tumor burden and in reprogramming

inflammation in KM-LUAD, several limitations should be

addressed. First, we have studied the role of TTI-101 in a

preventative setting in CC-LR mice. Our early treatment regimen

is most translatable to high-risk patients who, through improved

early screening, may benefit from a prophylactic intervention.

However, providing the drug once tumors are established or

increasing drug exposure may yield different results, and we plan

to study STAT3 inhibition at later timepoints moving forward.

Second, although we observed increased immune activation,

including DC and Th1 responses, the precise mechanism of

immune priming and the durability of this response remain

unclear. While we see tumor-intrinsic effects of STAT3 inhibition

in terms of reduced tumor cell proliferation, we do not see changes

in angiogenesis or apoptosis markers (data not show). This suggests

that tumor-extrinsic STAT3 function in DCs and T cells play a

marked role. In the same vein, we cannot precisely define if one DC

subset or another is playing a greater role, and we cannot rule out a

role for AMs, since they were indistinguishable from cDC1s in our

gating. Additionally, while transcriptomic analyses suggested
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increased B cell enrichment and activity, our flow and COMET

results are limited and only trending. The functional contribution of

humoral immunity and its role in the anti-tumor response in this

model warrant further investigation. Moreover, the CCR2/CCL2

pathway recruits mononuclear MDSCs (M-MDSCs) into tumors, in

addition to monocytes and DCs (69).

We will focus future studies on longitudinal monitoring of M-

and PMN-MDSC recruitment to further dissect the interplay

between MDSCs, DCs, T cells, and B cells in shaping anti-tumor

immunity. Since the use of TTI-101 alone did not completely

abrogate lung tumor burden, and since TTI-101 did not appear to

alter CD8 number or their cytokine profiles (data not shown), we

plan to combine TTI-101 with anti-PD-1 to see if there are

synergistic effects that could boost cytotoxicity. In addition, it will

be interesting to test combination therapy with K-ras inhibitors,

conventional chemotherapy, and other immunotherapeutic

interventions such as DC vaccination to improve DC function

and T cell priming. As this study was limited to the early-stage

lung tumor setting, we also plan to study the effects of TTI-101 in

later-stage tumors alone and in combination with the other

therapies mentioned.

In conclusion, our findings establish STAT3 inhibition via TTI-

101 as a promising early therapeutic/preventative approach for

KM-LUAD that can reduce tumor burden, reprogram the TIME,

and enhance anti-tumor immunity.
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