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autoinflammatory diseases by
integrating multi-modal data
and hierarchical ontologies
Axian Liu1, Yutong Su2, Jinwei Zhu1 and Yuan-Yuan Li1*

1Shanghai-MOST Key Laboratory of Health and Disease Genomics, Shanghai Institute for Biomedical
and Pharmaceutical Technologies, Fudan University, Shanghai, China, 2Department of Rheumatology
and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
Background: Autoimmune and autoinflammatory diseases (AIIDs) are

characterized by significant heterogeneity and comorbidities, complicating

their mechanisms and classification. Disease associations studies, or

diseasome, facilitate the exploration of disease mechanisms and development

of novel therapeutic strategies. However, the diseasome for AIIDs is still in its

infancy. To address this gap, we developed a novel framework that utilizes multi-

modal data and biomedical ontologies to explore AIID associations.

Methods: We curated disease terms from Mondo/DO/MeSH/ICD, and three

specialized AIID knowledge bases, creating an integrated repository of 484

autoimmune diseases (ADs), 110 autoinflammatory diseases (AIDs), and 284

associated diseases. By leveraging genetic, transcriptomic (bulk and single-

cell), and phenotypic data, we built multi-layered AIID association networks

and an integrated network supported by cross-scale evidence. Our ontology-

aware disease similarity (OADS) strategy incorporates not only multi-modal data,

but also continuous biomedical ontologies.

Results: Network modularity analysis identified 10 robust disease communities

and their representative phenotypes and dysfunctional pathways. Focusing on 10

highly concerning AIIDs, such as Behçet’s disease and Systemic lupus

erythematosus, we provide insights into the information flow from genetic

susceptibilities to transcriptional dysregulation, alteration in immune

microenvironment, and clinical phenotypes, and thus the mechanisms

underlying comorbidity. For instance, in systemic sclerosis and psoriasis,

dysregulated genes like CCL2 and CCR7 contribute to fibroblast activation and

the infiltration of CD4+ T and NK cells through IL-17 signaling pathway, PPAR

signaling pathway, leading to skin involvement and arthritis.
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Behçet’s Disease; JIA, Juvenile Idiopathic Arthritis; T1

Mellitus; RA, Rheumatoid Arthritis; ACS, AIID Class

strategy, Ontology-Aware Disease Similarity strateg

Chronic Infantile Neurological Cutaneous and Arti

Psoriasis; SSc, Systemic Sclerosis; CAPS, Cryopyrin

Syndromes; PAPGAS, Pyogenic Arthritis, Pyoderma

Syndromes; AD_CEO, Atopic Dermatitis Children Earl

Fatigue Syndrome; LN, Lupus Nephritis; MS, Multiple

Sjogrens Syndrome.

Liu et al. 10.3389/fimmu.2025.1575490

Frontiers in Immunology
Conclusion: These findings enhance our understanding of AIID pathogenesis,

improving disease classification and supporting drug repurposing and targeted

therapy development.
KEYWORDS

autoimmune diseases, autoinflammatory diseases, diseasome, disease association,
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1 Introduction

Autoimmune and autoinflammatory diseases (AIIDs) encompass a

variety of disorders characterized by the loss of immune tolerance and/

or uncontrolled inflammation, resulting in either organ-specific or

multi-organ damage (1). Genetic factors, environmental factors, and

their interactions contribute to their etiology. It has been reported that

over 10% of the population is affected by at least one of the 19 common

autoimmune diseases (2). Furthermore, approximately 25% of AIID

patients develop a second autoimmune disease, highlighting a notable

comorbidity trend that surpasses that of other complex diseases (3).

Historically, AIIDs have been classified into autoimmune

diseases (ADs) and autoinflammatory diseases (AIDs). ADs are

characterized by a dysregulated adaptive immune response, while

AIDs arise from innate immune imbalances and chronic

inflammation (1, 4). However, recent reports have challenged this

simplified classification, suggesting that AIIDs exist on a spectrum,

with both adaptive and innate immune dysregulation contributing

variably to different diseases (1, 5). The identification of “mixed-

pattern” AIIDs characterized by co-occurrence of autoantibodies

and innate markers (e.g., TLRs, inflammasomes) supports this

paradigm shift in understanding AIID pathogenesis (1).

The heterogeneity and comorbidity of AIIDs complicate their

mechanism understanding and classification (2, 6). Investigating

disease associations across AIIDs and shared mechanisms among

associated diseases could help clarify this complexity. Systematic

exploration of disease associations is referred to as “diseasome” in

the field of network biology, which involves the construction and

analysis of disease association networks with the aim of uncovering
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common pathogenesis, predicting disease evolution, and optimizing

therapeutic strategies (7). Early work relied on disease-related genes

or pathways to establish disease associations (8, 9), which was

inherently constrained by existing knowledge. The integration of

Electronic Health Records (EHRs) with disease-associated genes or

genetic loci helped infer genetic mechanisms underlying disease

progression (10, 11). Recent advances leverage multi-omics data

and clinical phenotypes to construct disease association in a data-

driven manner (12–14), which enhances the ability to identify novel

disease relationships and the underlying mechanisms.

However, AIID disease association network analysis remains in

its nascent stage. Pioneering studies used limited data types and

studied a small number of disease categories (e.g., SNPs in 6 diseases

(15), comorbidity in 12 diseases (16). A recent effort explored the

relationships among 26 AIIDs using a more comprehensive range of

data types, including disease-related genes and gene interaction

networks (17). In 2022, a disease network involving a total of 100

AIIDs was built based on their co-citation in PubMed (3). We

believe that the rapid accumulation of high-quality, multi-modal

data that characterize AIIDs from multiple perspectives provide an

excellent opportunity to more accurately measure disease

associations within AIIDs and uncover the mechanisms

underlying these associations from a cross-scale perspective.

In this study, we curated disease terms from Mondo, DO, MeSH,

ICD-11, and three specialized AIID knowledge bases, establishing a

comprehensive AIID repository which includes 484 autoimmune

diseases (ADs), 110 autoinflammatory diseases (AIDs), 14 contested

diseases, and 284 diseases associated with existing AIIDs. By leveraging

multi-modal data, encompassing genetic, transcriptomic (bulk and

single-cell), and phenotypic data, we constructed multi-layered and

integrated AIID disease association networks, which were supported

by cross-scale evidence at genetic, transcriptomic, cellular, and

phenotypic level. Benefiting from the novel design of ontology-aware

disease similarity (OADS) strategy, our disease relationships incorporate

not only multi-modal data, but also the continuous framework of

hierarchical biomedical ontologies: Gene Ontology, Cell Ontology, and

Human Phenotype Ontology. Network modularity analysis identified 10

robust disease communities and their key representative phenotypes and

dysfunctional pathways. The single- and cross-modal disease networks

around 10 highly concerning AIIDs provide deeper insights into the

information flow from genetic susceptibilities to transcriptional

dysregulation, alteration in immune microenvironment, and clinical
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phenotypes, and the mechanisms underlying comorbidity. This study

could deepen our understanding of AIID pathogenesis, facilitate disease

monitoring, and support the development of therapeutic strategies.
2 Methods

2.1 Disease knowledge bases and multi-
modal data

We integrated seven disease databases: Mondo (Monarch Disease

Ontology, v2024-04-02, 26,961 diseases, https://monarchinitiative.org),

DO (Disease Ontology, v2024-03-26, 15,777 diseases, https://

disease-ontology.org), MeSH (Medical Subject Headings, v2023-

11-16), ICD-11 (International Classification of Diseases 11th, 2023),

and three specialized AIID databases: AA (the Autoimmune

Association, 151 diseases, https://autoimmune.org), ARI

(Auto immune Reg i s t ry , Inc . , 167 d i s ea se s , h t tps : / /

www.autoimmuneregistry.org), GAI (the Global Autoimmune

Institute, 160 diseases, https://www.autoimmuneinstitute.org).

Gene expression data were curated from Affymetrix U133A

platforms (GPL570/96/571) in GEO, filtered by disease/control

groups ≥5 samples each, and tissue sources (PBMCs/whole blood/

skin). scRNA-seq data were obtained from five major platforms

(GPL24676/18573/16791/11154/20301) through GEO searches

with disease synonyms.
2.2 Calculation of the normalized AIID
classification score

To capture both the direction and confidence of each

classification source, we extended the original +1/–1 AIID

Classification Score (ACS) into a continuous, weighted metric on

[–1, +1]. For each disease and each source i, let sidenote classification

as autoimmune, unclassified or autoinflammatory, and let wi be the

source’s confidence weight (based on coverage, update‐frequency and

community endorsement; Mondo = 1.0, DO = 0.8, MeSH = 0.7, ICD

= 0.7, expert panel lists = 1.0, AA/ARI/GAI = 1.0). We then compute:

ACSnorm = oiwiSi

oiwi
(1)

and report these values (Supplementary Table 1) alongside the

original binary ACS.
2.3 Calculation of ontology-aware disease
similarity

Differential co-expression analysis used DCGL package (18)

with Z-score normalized dC values, retaining top20 Gene Ontology

terms per disease.

Disease genes, including genetically associated disease genes

obtained from OMIM and dysregulated genes (DCGs), calculated
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by DCGL, were mapped to GO (Biological Process). DCGs were

weighted by normalized dC values, retaining top20 GO terms

per disease.

scRNA-seq data were processed through Seurat (QC/

normalization/clustering) with SingleR-based cell annotation (19).

Phenotypic terms were extracted from Human Phenotype

Ontology (HPO).

Ontology similarities were calculated using Wang method for

GO/HPO (20), CellSim for Cell Ontology (21). Disease similarity

was computed via FunSimAvg (22), averaging bidirectional GO

term assignments.
2.4 Calculation of drug-based disease
similarity

Drug-disease relationships from five databases (DrugBank/

DrugCentral/TTD/PharmGKB/CTD) were filtered to retain

SMILES-defined drugs (23). Structural similarity between drugs

was computed using RDKit, and drug-based disease similarity was

derived via FunSimAvg aggregation.
2.5 Evaluation of disease similarity by
permutation

Disease-term mappings were shuffled 500× while preserving

term counts/distributions. Null distributions were generated by

recalculating similarities.
2.6 Disease network construction and
modularity analysis

Python/NetworkX was used to build disease networks with

edge’s similarity scores > 90th percentile and p < 0.05. Disease

modules/communities were detected by Hierarchical clustering

(Ward’s method) (24) and Leiden algorithm (resolution =1.0) (25).
2.7 Topological analysis of disease
networks

NetworkX library was used to calculate centrality measures

(degree, betweenness, closeness, eigenvector centrality), clustering

coefficient, transitivity, k-core, network diameter and shortest

path lengths.
2.8 Evaluation of power-law characteristics

The network degree distribution was fitted to a power-law

model using powerlaw library (26) to evaluate if a network

display power-law behavior.
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2.9 WiND

The within-network distance (WiND) (27), the mean shortest

path length (d(i,j)) among all links in the network (k), was defined

to describe the closeness of a network:

WiND = oi,j∈cd(i, j)

k
(2)
2.10 Identification of significant features in
disease community

To determine the representative features of diseases within

communities, we counted the frequency of each feature in a given

cluster relative to all other clusters. For each feature, a 2×2

contingency table was constructed, and Fisher’s exact test was

used to assess its enrichment, using p-values < 0.05 and

Benjamini-Hochberg adjusted p values (28).
2.11 Similarity network fusion

Disease similarity matrices from different modalities were

integrated using the snf.snf function from SNFpy Package. The

key parameters were set as K=10 (number of neighbors for

information propagation) and t=20 (number of iterative fusion

steps) (29).
2.12 Minimum spanning tree construction

The similarity matrix and corresponding significance matrix

were used to filter out non-significant similarity values (top 10% &

p<0.05). A distance matrix was then calculated from the filtered

similarity values as Distance = 1-Similarity. Using this distance

matrix, a Minimum Spanning Tree (MST) was constructed to

capture the most parsimonious connections among diseases based

on Prim’s algorithm (30).
3 Results

3.1 Construction of an integrated
repository of autoimmune and
autoinflammatory diseases and their
associated diseases

Considering the discrepancies in Autoimmune and

autoinflammatory diseases (AIIDs) across various disease

classification systems, we collected AIID terms from four

mainstream resources including Mondo, DO, MeSH, ICD-11, and

three specialized autoimmune knowledge bases, including AA, ARI,

AGI (see Methods for the details of all databases). This allowed us to
Frontiers in Immunology 04
construct a repository that comprehensively covers a wide range

of AIIDs.

The initial repository of AIIDs was derived fromMondo, the most

extensive and coherent ontological representation of human diseases.

In this repository, autoimmune diseases (ADs) were retrieved using

the Mondo ID MONDO:0007179 and its subclasses, encompassing

255 diseases. Similarly, autoinflammatory diseases (AIDs) were

retrieved using the Mondo ID MONDO:0019751 and its subclasses,

comprising 83 diseases. Some diseases were classified as both ADs and

AIDs in the original databases; for example, Blau syndrome

(MONDO:0008523) is included in both categories.

Using Monde-derived initial repository, including ADs and

AIDs, as a reference framework, we incorporated additional

AIIDs from DO, MeSH, and ICD-11. Among them, DO contains

166 ADs. Although all of these are included in Mondo, 80 of them

are not classified as AIIDs in Mondo. Therefore, these 80 diseases

were added to the AD category of the initial repository. Since DO

does not have a specific category for AIDs, we extracted 14 AIDs

using keyword matching with the terms “autoinflammation” or

“autoinflammatory”, such as familial cold autoinflammatory

syndrome and proteasome-associated autoinflammatory

syndrome. All of these diseases are classified as AIDs in Mondo,

so they do not alter the composition of the initial repository.

Similarly, MeSH includes 73 ADs and 9 AIDs, of which 19 ADs

were added to our AIID repository. Unlike the previous cases, ICD-

11 includes classifications for both ADs and AIDs, with 109 and 10

members, respectively, which contributed additional 41 ADs and

one AID to our AIID repository.

Next, we incorporated three specialized autoimmune

knowledge bases: AA (151 diseases), ARI (167 diseases), and GAI

(160 diseases), which collectively contain 208 non-redundant ADs.

Among them, 92 disease entries not yet included in our AIID

repository were added.

Moreover, clinical experts proposed a curated repository of 62

AIDs based on their clinical experience; of these, 38 were not yet

included and subsequently added to our AIID repository.

Ultimately, we constructed a comprehensive repository of 608

AIID terms.

In addition to discrepancies across classification systems in

defining AIIDs, inconsistencies in the differentiation between ADs

and AIDs were also observed. Adult-onset Still’s disease exemplified

this divergence (AID in Mondo vs. AD in MeSH/DO), while Blau

syndrome demonstrated classification ambiguity within Mondo

(classified as both AD and AID in Mondo).

The process of constructing the AIID disease repository clearly

demonstrates that there are substantial discrepancies across

resources in defining AIIDs and differentiating AIDs from ADs.

To quantitatively evaluate the discrepancies across systems, we

propose the AIID Classification Score (ACS) to measure

classification agreement across these systems. First, diseases

categorized as both ADs and AIDs, either within the same system

or across different systems, are designated as Contested

Autoimmune and Autoinflammatory Diseases (Contested AIIDs,

CAs). Among the 608 AIID terms, 14 were categorized as CAs.
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Then, each disease was assigned an ACS score based on its

categorization in different systems. Specifically, being classified as

AD by one classification system earns +1 point, while being

classified as AID earns -1 point. Among diseases excluding CAs,

those with ACS ≥1 were recorded as ADs, while those with ACS ≤-1

as AIDs.

As shown in Figure 1A, 48.1% of 484 ADs and 73.6% of 110

AIDs received a score of 1 or -1. This means that over half of these

diseases (314 out of 594) were recognized as AIIDs (either AD or

AID) by only one classification system, suggesting that a consensus

has yet to be reached. Complementing our binary ACS tally, we

computed a normalized AIID Classification Score (ACSnorm; see

Methods and Equation 1) that integrates source‐specific weights

into a continuous [–1,+1] scale, where values near +1 (–1) indicate

strong autoimmune (autoinflammatory) bias. ACSnorm values for all

diseases are provided in Supplementary Table 1. This assessment

provides an overview of the AIID collection across multiple

classification systems, serving as a foundation for building

consensus and resolving discrepancies.

Given the significant discrepancies in the inclusion of AIIDs

across different classification systems, we further expanded our

AIID repository by incorporating diseases with autoimmune-

related phenotypes that are not explicitly classified as AIIDs in

existing resources. These diseases, termed AIID-associated diseases

(AAs), were identified based on the “autoimmunity” phenotype

(HPO ID: HP:0002960) in the Human Phenotype Ontology (HPO)

database. In total, 416 diseases with the “autoimmunity” phenotype

were retrieved from HPO; of these, 132 were already included in the

previously compiled repository of 608 AIIDs. The remaining 284

diseases, categorized as AAs, were added to supplement the AIID

repository, further enhancing its comprehensiveness and coverage.

In total, we constructed an integrated repository of AIIDs and

their associated diseases (AAs), which includes 484 ADs (54.3%),

110 AIDs (12.3%), 14 contested AIIDs (CAs; 1.6%), and 284

associated AIIDs (AAs; 31.8%). This disease repository serves as

the basis for subsequent disease network construction and analysis

(Supplementary Table 1).
3.2 Calculation of ontology-aware disease
similarity

In order to quantitatively estimate pairwise disease associations

within our AIID list, we first collected various types of disease-

related data, including genetically associated disease genes,

transcriptomic data, and phenotypic data, which enable a more

comprehensive and in-depth characterization of diseases. Unlike

existing data-driven strategies for measuring disease similarity, we

designed an Ontology-Aware Disease Similarity (OADS) strategy to

integrate the hierarchical biomedical ontologies with the collected

multi-modal data.

Specifically, at the genetic level, genetically associated disease

genes were mapped to GO. Then, GO term similarity was calculated

(20), and pairwise disease similarities were computed by integrating

the GO terms assigned to each disease (22). Instead of merely
Frontiers in Immunology 05
counting the number of overlapping genes or pathways in previous

disease association studies (31), our genetic-level ontology-aware

disease similarity (Gen-OADS) strategy measures the association

between diseases based on the functions of genetically associated

disease genes and the hierarchical relationships among those

functions. At the transcriptomic level, differentially co-expressed

genes, or dysregulated genes, for each disease were mapped to GO.

Similarly, GO term similarity and disease similarity were calculated,

generating transcriptional-level ontology-aware disease similarity

(Trans-OADS). Differently from Gen-OADS, GO term similarity

was further weighted by the average differential normalized co-

expression (dC) value of their associated genes before it was used to

estimate disease similarity. At the phenotypic level, disease

phenotypes were extracted from HPO to compute semantic

similarity between HPO terms and then phenotypic-level

ontology-aware disease similarity (Phe-OADS). In this manner,

we incorporated the hierarchical biomedical ontologies, GO and

HPO, to multi-modal information that span genetic susceptibility,

transcriptional dysregulation, and clinical manifestation, achieving

the fusion of multi-modal data and continuous multi-level

knowledge. Due to data availability constraints, we eventually

obtained semantic similarity matrices for 296 diseases supported

by genetic evidence (Gen-OADS), 57 diseases supported by

transcriptional dysregulation (Trans-OADS), and 520 diseases

supported by clinical phenotypes (Phe-OADS) (Supplementary

Table 2), with the overlap of disease types across modalities

illustrated in Figure 1B.

Furthermore, by comparing the similarity distributions across

modalities, we found that the average similarity exhibits the

following trend: Trans-OADS > Phe-OADS > Gen-OADS.

Notably, associations based on transcriptional dysregulation are

more concentrated (Figure 1C), suggesting that the Trans-OADS

measure is more sensitive in capturing disease similarity, which is

likely due to DCGL’s ability to detect dysfunctional regulation (32,

33). In contrast, the Gen-OADS distribution has a lower mean and

is skewed toward zero, probably attributed to the uneven

distribution of genetic association knowledge across diseases.
3.3 Construction of single-modal disease
networks and evaluation of their
consistency with traditional classification

Based on the three levels of OADS, we constructed disease

association networks for AIID at the genetic, transcriptomic, and

phenotypic levels by identifying statistically significant disease

associations with similarity values above the 90th percentile and

permutation p-values below 0.05. This resulted in three single-

modal AIID networks: the Genetic Disease Network (Gen-DN)

supported by genetic evidence, the Transcriptomic Disease Network

(Trans-DN) supported by evidence of dysregulation (Figure 2), and

the Phenotypic Disease Network (Phe-DN) supported by clinical

symptom data. Topological analyses (Table 1) show that both Gen-

DN and Phe-DN exhibit scale-free, small-world properties with

power-law degree distribution (34) (Supplementary Figures 1A, B),
frontiersin.org
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whereas Trans-DN exhibits characteristics of a random network

(Supplementary Figure 1C). Given the smaller number of diseases

represented in the transcriptomic data, the true distribution

characteristics of this network layer remain to be fully elucidated

once more data become available.

Notably, Phe-DN has more nodes and edges, as well as higher

average degree, density, clustering coefficient, and transitivity, indicating

extensive phenotypic associations among AIIDs at the phenotypic level.

In contrast, althoughGen-DN shows lower average degree and clustering

than Phe-DN, it has the largest K-core, suggesting a large and stable core

of tightly interconnected genetic associations among diseases.

It is noteworthy that SLE is among the top 10 nodes with the

highest degrees across all three networks (Supplementary Table 3),

consistent with reports of its significant comorbidity relationships

(35, 36). Our three single-modal networks, along with the detailed

supporting evidence, provide a foundation for further hypotheses

on the mechanisms underlying these associations.

To investigate the consistency between our AIID networks and

traditional disease classification knowledge, we examined the

connectivity of diseases grouped by four Mondo categories -

“Autoimmune Diseases (Mondo-AD)”, “Immune Deficiency

Diseases (Mondo-IDD)”, “Rheumatic Diseases (Mondo-RD)” and

“Autoinflammatory Diseases (Mondo-AID)”. WiND values of the

subnetworks corresponding to certain categories (Category WiND)

and that of the whole network (Network WiND) were calculated,

from which WiND ratios were derived (see Equation 2). As shown

in Table 2, theWiND ratios for all categories in the Gen-DN, Trans-
Frontiers in Immunology 06
DN, and Phe-DN were below 1, except for AID in Gen-DN,

suggesting that AIID subcategories tend to form clusters in our

networks. The slightly elevated ratio for AID in Gen-DN, similar to

the lower mean similarity in Gen-OADS, likely reflects uneven

accumulation of knowledge on genetic associations.

To explore the consistency and complementarity of our three

single-modal AIID networks, or the three OADS measures in

disease association representation, we selected 91 disease pairs

among 14 diseases that contain all three data modalities. Taking

the similarity ranking of disease pairs in the Phe-OADS modality

(from rank 1 to rank 91) as a reference, we calculated Kendall’s Tau

coefficients (37) for the disease pair rankings across the three

modalities to assess their consistency. Our analysis revealed low

correlations (-0.001 for Phe-OADS vs. Gen-OADS, 0.110 for Phe-

OADS vs. Trans-OADS, and 0.154 for Trans-OADS vs. Gen-

OADS; Supplementary Figure 1D), highlighting the inherent

differences between modalities and emphasizing the necessity of a

multi-modal approach in disease association studies.
3.4 Network modularity analysis

To analyze the network structure and uncover intrinsic

connections between diseases, we employed two complementary

clustering methods: hierarchical clustering (HC) and the Leiden

algorithm (25). Specifically, HC provided global dendrograms,

while Leiden pinpointed robust disease communities.
FIGURE 1

(A) Category Distribution of AIIDs (ADs, AIDs, CAs) with ACS Scores and Disease Counts (Disease counts in parentheses; ACS scores outside
parentheses); (B) Overlap of diseases with different modality data; (C) Distribution of each Ontology-Aware Disease Similarity.
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Clustering analyses were conducted on Gen-DN, Trans-DN,

and Phe-DN using HC and Leiden, respectively. This process
Frontiers in Immunology 07
resulted in 6 to 17 clusters for each network. We further assessed

the alignment of these clusters with the four disease categories

concluded above, AD, AID, CA, and AA (Supplementary Figure

1E). The results indicate that most clusters are heterogeneous,

which contain diseases from multiple categories with only five

clusters consisting entirely of AD diseases and one cluster

containing a single AID disease. See Supplementary Table 3 for

detailed clustering results and network characteristics.

Recognizing that robust disease modules - those insensitive to

data modalities and clustering methods - likely reflect true disease

connections, we evaluated clustering consistency using the adjusted

Rand index (ARI). Since only 14 diseases overlapped among the

three single-modal networks, we compromised to focus on Gen-DN

and Phe-DN, which share 291 diseases. After excluding 9 diseases

that did not meet our criteria, 282 diseases were analyzed. The ARI

between Phe_Leiden and Phe_HC was 0.32, and between

Gen_Leiden and Gen_HC it was 0.22, indicating moderate

consistency between clustering methods; however, the cross-

modal ARIs (0.05 for Phe_HC vs. Gen_HC and 0.04 for

Phe_Leiden vs. Gen_Leiden) were very low (Supplementary

Figures 2A, B). These findings highlight the complementarity of

multi-modal data in capturing disease characteristics again.
TABLE 1 Topological properties of Phe-DN, Gen-DN, and Trans-DN.

Properties Gen-DN Trans-DN Phe-DN

Number of Nodes 293 45 514

Number of Edges 3300 92 12179

Average Degree 22.526 4.089 47.390

Network Density 0.077 0.093 0.092

Transitivity 0.370 0.297 0.486

K-core Size 99 11 73

Average
Clustering Coefficient

0.467 0.324 0.536

Average Shortest
Path Length

2.420 2.766 2.375

Degree distribution
Scale-

free network
Random
network

Scale-
free network
Bolded text “Degree distribution” indicates key topological metrics, with corresponding visual
representations shown in Supplementary Figures 1A-C.
FIGURE 2

Transcriptomic disease network (Trans-DN) supported by dysregulation evidence.
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Furthermore, by identifying diseases that consistently clustered

across the four combinations, we delineated 10 robust disease

communities (each containing at least four diseases).

Among the identified communities, Community 2 (C2) is

predominantly composed of AIDs (7/8), with the exception of

recessive mitochondrial ataxia syndrome (AA), while the

remaining diseases belonging to Aicardi-Goutières syndrome and

its subtypes. This suggests a strong link between recessive

mitochondrial ataxia syndrome and Aicardi-Goutières syndrome,

offering insight into the positioning of AA diseases within AIIDs.

Similarly, Community 6 (C6) is mainly composed of ADs (5/7),

with autoimmune lymphoproliferative syndrome and its subtypes

dominating, while immunodeficiency 57 - the only AID in this

community - consistently clusters with ADs, indicating that, despite

its autoinflammatory features, it aligns more closely with ADs.
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Notably, although each of the 10 communities is dominated by one

category, all communities include at least one disease from another

category (Table 3). This supports recent proposals that AIIDs

should not be strictly divided into ADs and AIDs and

underscores a broader and more complex disease spectrum. The

integration of cross-modal data in our multi-modal AIID network

helps enhance our understanding of the underlying mechanisms

driving these disease associations.

To investigate the drivers of stable associations within disease

communities, we identified each community’s representative

pathways (Figure 3) and clinical phenotypes (Figure 4). For

ins tance , C10 compr i ses four AIDs - fami l i a l co ld

autoinflammatory syndrome 1, cryopyrin-associated periodic

syndrome, Muckle-Wells syndrome, and Yao syndrome - and one

contested AIID (CA), chronic infantile neurological cutaneous and

articular (CINCA) syndrome, suggesting that CINCA syndrome is

more closely aligned with AIDs and may merit reclassification. C10

is marked by clinical features such as myalgia, arthralgia, skin rash,

uveitis, and elevated erythrocyte sedimentation rate, as well as

representative pathways including the positive regulation of type

II immune response, cellular response to lipopolysaccharide,

transcription regulation by RNA polymerase II, defense response

to Gram-positive bacteria, and cellular response to peptidoglycan.

Beyond disease-associated communities, we also paid attention

to closely related disease pairs or triplets. Specifically, although most

contested AIIDs (CAs) maintain relatively close associations with

AIDs, Psoriasis 14, pustular - a contested AIID with an ACS score of

0 - consistently clusters with both Sweet syndrome (AID, ACS = –1)

and systemic lupus erythematosus 17 (AD, ACS = 1). This finding,

along with evidence of shared classification as nonvasculitic

neutrophilic dermatoses and similar responses to granulocyte and

monocyte adsorption apheresis, underscores the ambiguity and

complexity of AIID classification. Together, these results
TABLE 3 Disease counts by categories within robustly
associated communities.

Communities AAs AIDs ADs CAs Total

C1 2 1 1 0 4

C2 1 7 0 0 8

C3 7 0 6 0 13

C4 3 0 4 0 7

C5 3 1 0 0 4

C6 1 1 5 0 7

C7 6 0 0 0 6

C8 1 1 3 0 5

C9 10 0 0 0 10

C10 0 4 0 1 5
TABLE 2 The bolded WiND value greater than 1 represents a unique case originating from the AID-WiND subnetwork.

Network Mondo Category Disease Count Category WiND Network WiND WiND Ratio Significant Pair Count

Gen-DN

AD 30 2.262

2.420

0.935 160

AID 54 3.069 1.268 262

RD 11 1.756 0.725 34

IDD 62 2.378 0.983 466

Trans-DN

AD 8 1.000

2.766

0.362 12

AID 9 1.545 0.559 24

RD 7 1.250 0.452 4

IDD 2 – – *

Phe-DN

AD 93 2.243

2.375

0.944 1208

AID 61 1.847 0.778 1222

RD 26 1.674 0.705 266

IDD 72 1.450 0.611 2872
*indicates that the two diseases are not significantly associated.
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(Supplementary Table 4) highlight the cross-scale interplay of

genetic, cellular, and clinical factors underlying AIID comorbidities.
3.5 Cross-scale evidence-supported
disease association network for core AIIDs

After constructing disease networks for AIIDs at genetic (Gen-

DN, 293 diseases), transcriptomic (Trans-DN, 45 diseases), and

phenotypic (Phe-DN, 514 diseases) levels, we further derived single-

cell-level associations (SC-OADS) by integrating cell type

proportions with the Cell Ontology using our ontology-aware
Frontiers in Immunology 09
disease similarity (OADS) strategy, and built the single-cell-level

disease association network (SC-DN). This led to four-layered AIID

networks, Gen-DN, Trans-DN, SC-DN and Phe-DN, supported by

evidence from the viewpoint of genetic susceptibility,

transcriptional dysregulation, immune microenvironment

alteration, and clinical manifestation. These four layers

collectively cover 10 key AIIDs including Behçet’s disease,

Crohn’s disease, juvenile idiopathic arthritis, Psoriasis (PsO),

multiple sclerosis, rheumatoid arthritis, SLE, systemic sclerosis

(SSc), type 1 diabetes (T1D), and ulcerative colitis (UC). The four

layers of disease networks were integrated via the SNF method

which combined the input matrices into a single integrated
FIGURE 3

Representative pathways for each disease community.
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network, capturing both intra- and inter-modality relationships

(29) (Supplementary Figure 3).

Network reliability was confirmed by comparing disease

similarity matrices to a drug-based benchmark, with Trans-DN

showing the highest Pearson correlation (r = 0.753), followed by the

integrated network (r = 0.707), SC-DN (r = 0.676), Gen-DN (r =

0.582), and Phe-DN (r = 0.550).

Hierarchical clustering revealed unique association patterns

among diseases in single-modal networks (Figure 5A). For

instance, SLE clustered closely with Behçet’s disease in Trans-DN

and Phe-DN, but with rheumatoid arthritis in Gen-DN and SC-DN,

and Crohn’s disease and UC consistently clustered together,

especially in Trans-DN and Phe-DN. In the integrated network,

the strong correlations between PsO and SSc, T1D and Crohn’s

disease/UC, as well as SLE and Behçet’s disease, provide key clues

for exp lor ing shared mechani sms under ly ing these

disease relationships.

To further investigate the mechanisms underlying the

association between SSc and PsO, we first applied functional
Frontiers in Immunology 10
enrichment analysis on genetically associated genes of the two

diseases and found that their overlapping pathways involved

innate immunity, adaptive immunity, the positive regulation of T

cell-mediated cytotoxicity, and so on. Then we traced their

differentially co-expressed genes (DCGs) which were used to

calculate the transcriptional level disease similarity, and

conducted enrichment analyses based on their overlapping genes

such as CCL2, CCR7, STAT1, CXCL9, FN1, MMP1, IL1RN, and

CD36 (Figure 5B). The results revealed significant dysregulation in

pathways such as the PPAR signaling pathway, the IL-17 signaling

pathway, and chemokine signaling pathway. Ranking the

consistency of cell proportions between the two diseases, CD4+ T

cells (with a ratio of 1.007) and NK cells (with a ratio of 1.264) were

the top two, suggesting their common roles in fibroblast activation

and immune cell infiltration in SSc and PsO. At the phenotypic

level, both diseases share features such as arthritis and

skin involvement.

Previous studies have highlighted the critical role of TGF-b
activity in SSc, which impairs PPAR-g function, contributing to
FIGURE 4

Representative clinical phenotypes for each disease community.
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uncontrolled fibroblast activation and progressive fibrosis (38).

Meanwhile, PPAR-g deficiency exacerbates inflammation by

disrupting keratinocyte differentiation and amplifying Th17

responses in PsO (39). Notably, PPAR-g modulates IL-17A

production not only in adaptive CD4+ Th17 cells (40, 41), but

also in innate lymphocytes (e.g., gd T cells and NK cells) (42, 43).

Furthermore, IL-17A itself perpetuates inflammation by inducing

NK cell expansion (44). In addition, prior research has established

the involvement of IL-17 in both PsO and vascular dysfunction,

further supporting its role as another critical mechanism

underpinning the association between SSc and PsO (45).

Together, these findings delineate a cross-scale pathogenic axis in

which PPAR-g–mediated regulation of both adaptive and innate IL-

17 production links genetic susceptibility, cellular dysregulation,

and clinical phenotypes in SSc and PsO.

Similarly, we identified differentially co-expressed genes

(DCGs) shared by BD and SLE, such as CCR1, GRB10, and
Frontiers in Immunology 11
IL18R1. Functional enrichment analysis indicated dysregulation

of “response to interleukin-18” pathway (Figure 5C). IL-18 has

been established as a potential therapeutic target for BD (46).

Meanwhile, a GWAS study involving 21,758 individuals

demonstrated a causal link between IL-18 and SLE risk (47).

These findings underscore that IL-18 plays a vital role in both

diseases and has the potential to be a common target.
4 Discussion

Autoimmune and autoinflammatory diseases (AIIDs) represent

a spectrum of disorders driven by diverse immune dysregulation,

with significant comorbidity trends reflecting intricate

interconnections. However, the underlying mechanisms remain

poorly understood. Rapid accumulation of multi-modal data that

characterize AIIDs has created new opportunities to measure
FIGURE 5

(A) Hierarchical Clustering of Single-modal and Integrated Disease Networks; (B) Enrichment analysis (KEGG) of overlapping differentially co-
expressed genes (DCGs) between systemic sclerosis and psoriasis; (C) Enrichment analysis (GO) of overlapping differentially co-expressed genes
(DCGs) between Behçet's disease and systemic lupus erythematosus.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1575490
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Liu et al. 10.3389/fimmu.2025.1575490
disease associations and uncover the mechanisms underlying these

associations from a cross-scale perspective. In this study, we

developed a novel framework for exploring AIID associations by

integrating cross-scale, multi-modal data and prior knowledge from

continuous biomedical ontologies including GO, Cell Ontology,

and HPO.

Curating disease terms from four major disease classification

systems (Mondo, DO, MeSH, ICD) and three specialized AIID

knowledge bases (the Autoimmune Association, Autoimmune

Registry, and the Global Autoimmune Institute), we compiled a

comprehensive dataset comprising 484 autoimmune diseases

(ADs), 110 autoinflammatory diseases (AIDs), 14 contested

diseases (CAs), and 284 diseases associated with AIIDs (AAs).

Notably, over half of these ADs and AIDs were recognized as

AIIDs by only one knowledge base, highlighting the significant

inconsistency in this field and the need to organize and curate the

accumulated AIID disease entries.

By designing an ontology-aware disease similarity (OADS)

strategy, we constructed multi-layered AIID networks and an

integrated network, supported by cross-scale evidence at genetic,

transcriptomic, cellular, and phenotypic levels. The disease

associations (Supplementary Figure 1) and modularity

(Supplementary Figure 2) of our networks display significant

complementarity across multi-layered disease networks,

supporting the necessity of multi-modal study of disease

association for AIIDs. In recent years, the rapid growth of multi-

omics data and standardized clinical phenotypic information has

greatly advanced cross-scale studies spanning “molecule-cell-tissue-

organ” levels (13, 48). Until now, significant efforts have been

devoted to addressing the challenges of high dimensionality,

noise, and sparsity in multi-modal data (49, 50); in contrast, the
Frontiers in Immunology 12
effective incorporation of prior knowledge has long been

overlooked. Although certain ontologies, such as GO, have been

widely used in biomedical studies, the potential of continuous and

unified ontologies has not been fully realized (51). Our OADS

methodology provides a reasonable and feasible demonstration of

integrating multi-modal data with biomedical rules, generating

mechanistically interpretable results that encompass genetic

susceptibilities, transcriptional dysregulation, alteration in

immune microenvironment, and clinical phenotypes. Notably,

this is the first time that single-cell data has been integrated into

a disease association study among the four layers. By incorporating

cell composition information, we enhance the characterization of

the cellular microenvironment, bridging the gap between the

molecular characterization of diseases and clinical phenotypes.

This integration is crucial for understanding the cross-scale

information flow during disease pathogenesis.

Emerging evidence suggests that AIIDs exist on a continuum

rather than as discrete entities: ADs and AIDs. “Mixed-pattern”AIIDs

especially challenge the traditional binary classification and necessitate

a more nuanced understanding of AIID pathogenesis (1, 5). In order

to explore the clustering modes and evolutionary patterns among

associated AIIDs, we performed disease trajectory inference using

MST-based analyses on a transcriptomic network (Trans-DN)

involing 45 diseases (Figure 2). As shown in Figure 6, the trajectory

exhibited multi-branching, clustering within ADs (indicated by the

circle around the blue nodes) or within AIDs (indicated by the circle

around the green nodes), as well as AD-AID or AID-AD transitions

(AD-AID neighbors) as well. This pattern can also be observed in the

phenotypic (Phe-DN), genetic (Gen-DN) networks (Supplementary

Figures 4A, B). These results suggest that the relationship patterns

among AIIDs are much more intricate than a binary or linear
FIGURE 6

Disease Trajectory Inference Based on Trans-DN.
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spectrum framework, such as “AD-mixed-AID”. Taking Behçet’s

disease (BD) – classified as Contested (CA, Figure 1A) - as an

example, BD displayed strong associations with systemic lupus

erythematosus (SLE, a classic AD) within our integrated network

(Figure 5A).Trajectory analysis in Trans-DN suggested that BD is

closely associated with both ADs and AIDs but exhibits a greater

similarity to ADs. Likewise, systemic-onset juvenile idiopathic arthritis

(So-JIA), although traditionally categorized as an AID, exhibited

significant associations with PsO (AD) and BD. These findings align

with the dynamic interplay between adaptive and innate immune

mechanisms in AIID pathogenesis.

This study integrates multi-modal data and continuous

biomedical ontologies to deepen the understanding of AIID

pathogenesis within the context of disease communities. It offers

new insights for diagnosis and management while demonstrating

potential for translational applications such as drug repurposing and

therapeutic target discovery. However, current methods are limited

by the incomplete coverage of public datasets and the heterogeneity

of multi-source data (differences in resolution, dimensions, and

weight distribution). Future efforts should also focus on developing

and customizing multi-modal data integration methods that combine

biomedicine rules with deep learning, and validating findings through

large-scale clinical studies. This technological framework holds broad

applicability for diseasome research on complex diseases.
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SUPPLEMENTARY FIGURE 1

(A) Degree Distribution Fitting with Poisson of Phe-DN; (B) Degree
Distribution Fitting with Poisson of Gen-DN; (C) Degree Distribution Fitting

with Poisson of Transn-DN; (E) Disease pair ranking transitions across
different modalities; (F) Disease Category Composition within Clusters

(Clusters dominated by a single category are color-coded to match the
respective category).

SUPPLEMENTARY FIGURE 2

Evaluation of Clustering Consistency (A) Sankey diagram of clustering results

across different modalities and methods; (B)Heatmap of Adjusted Rand Index
(ARI) values for clustering consistency across modalities and methods.
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fimmu.2025.1575490/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1575490/full#supplementary-material
https://doi.org/10.3389/fimmu.2025.1575490
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Liu et al. 10.3389/fimmu.2025.1575490
SUPPLEMENTARY FIGURE 3

Integrated disease network (SNF-DN).

SUPPLEMENTARY FIGURE 4

(A) Disease Trajectory Inference Based on Phenotypic Disease Network (Phe-

DN); (B) Disease Trajectory Inference Based on Genetic Disease Network
(Gen-DN).

SUPPLEMENTARY TABLE 1

Repository of AIIDs, Modal Data, and ACS Scores.xlsx. This table provides

detailed information on autoimmune and autoinflammatory diseases (AIIDs),
including multi-modal data sources and AIID Classification Score.
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SUPPLEMENTARY TABLE 2

Similarity Matrices Across Modalities.xlsx. A comprehensive presentation of similarity

matrices derived from different modalities, illustrating cross-modal disease relationships.

SUPPLEMENTARY TABLE 3

Clustering Results and Network Characteristics.xlsx. Summarizes clustering
outcomes, network attributes, and topological features identified across

multi-modal disease association networks.

SUPPLEMENTARY TABLE 4

Stable Associations Across Modalities and Clustering Methods.xlsx. Highlights robust
disease associations identified consistently across various data modalities and

clustering techniques, offering insights into shared patterns and cross-modal stability.
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