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Dendritic cells in multiple
myeloma: from immune evasion
to therapeutic potential
Melanie Andrea Jordan , Johannes Morschl
and Stella E. Autenrieth *

Dendritic Cells in Infection and Cancer, German Cancer Research Center, Heidelberg, Germany
Multiple myeloma (MM) is a type of hematologic cancer characterized by the

uncontrolled clonal expansion of plasma cells in the bone marrow (BM). This

leads to significant dysfunction and suppression of the immune system in

affected patients. Myeloma cells employ sophisticated strategies to manipulate

immune and non-immune cells, evading immune surveillance and enhancing

their survival. One key factor in this evasion is the disruption of dendritic cell

(DC)-mediated immune mechanisms. Extensive evidence indicates that in the

presence of myeloma cells, DC numbers are notably reduced, and their

phenotype and function are altered, impairing their ability to present antigens

and activate robust T-cell responses effectively. Despite rapid advances in MM

treatment, with promising strategies such as DC-based vaccines being already

achieved, DC dysfunction remains a substantial hurdle, associated with or

contributing to poor therapeutic outcomes, disease relapse, and MM’s

persistence as an incurable disease. To address these challenges, it is essential

to understand the intricate mechanisms through which myeloma cells transform

DCs into their “accomplices,” undermining immune responses. This review

comprehensively summarizes the current understanding of the role of DCs in

MM. Additionally, it evaluates the potential of DCs in anti-MM immunotherapy,

discussing persistent challenges and highlighting emerging perspectives that

may lead to promising breakthroughs for improved patient outcomes.
KEYWORDS

dendritic cells, multiple myeloma, immune evasion, DC vaccine therapy,
tumor microenvironment
1 Introduction

MM is a B-cell malignancy characterized by the uncontrolled proliferation of plasma

cells, primarily within the BM. It is the second most common hematologic cancer,

accounting for 10–17% of cases, and predominantly affects individuals over 40, with a

median diagnosis age of 65. Men are at a higher risk than women (1).

MM often progresses from two asymptomatic precursor stages: monoclonal

gammopathy of undetermined significance (MGUS) and smoldering MM (SMM).
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MGUS has <10% clonal plasma cells in the BM with a 1%

annual progression risk (2), while SMM has >10% clonal plasma

cells and a 10% annual progression risk (3). Clinical symptoms

are summarized by the CRAB criteria: hypercalcemia, renal

dysfunction, anemia, and bone lesions (4).

A hallmark of MM is severe immunodeficiency. Myeloma cells

evade immune responses by impairing DCs, critical for activating T

cells. This immune suppression facilitates disease progression and

limits the efficacy of therapies, including DC-based vaccines.

Despite advancements in treatment, MM remains incurable, with

a median survival of 5–7 years (5). Understanding DC interactions

within the tumor microenvironment is essential for developing

effective immune-based therapies.
2 DC in health & disease: a brief
overview

DCs are pivotal antigen-presenting cells that link innate and

adaptive immunity by activating T-cell responses. They process and

present antigens via MHC molecules, enabling T-cell priming and

differentiation. Human DCs are classified into three main subsets:

conventional DCs (cDCs), plasmacytoid DCs (pDCs), and

monocyte-derived DCs (moDCs) (6).

cDCs are divided into cDC1s, cDC2s, and DC3s according to

transcriptional and functional properties. cDC1s express markers such

as XCR1, DNGR-1 (CLEC9A), CD141 (BDCA3), and CADM1 and

are specialized in cross-presenting antigens to CD8+ T cells, promoting

cytotoxic responses (6). Ex vivo studies demonstrated their ability to

stimulate naïve CD4 T cells into Th1 and Th2 cells (7–9).

cDC2s are more heterogeneous and express CD11b, CD1c

(BDCA1), and SIRPa (CD172a). cDC2s promote CD4+ T cell

activation and differentiation into Th1, Th2, Th17 and T

follicular helper cells (10).

Subsets of cDC2s include DC2s and DC3s, the latter sharing

features with monocytes but developing differently (11, 12).

pDCs play a critical role in antiviral immunity by producing

type I interferons and expressing markers such as CD123, BDCA2

(CD303), and BDCA4 (CD304) (13). MoDCs arise during

inflammation and share phenotypic similarities with cDCs, but

they can be distinguished by CCR2 and Fcg receptors.
All DC subsets originate from hematopoietic stem cells in the

BM. They develop through granulocyte-monocyte DC precursors

(GMDPs) into common DC progenitors (CDPs) before

differentiating into pre-cDCs or pre-pDCs. While pre-cDCs

migrate to peripheral tissues to mature into cDCs, pDCs complete

their differentiation in the BM (14).

Upon activation by inflammatory signals or pathogens,

immature DCs mature, upregulating MHC and co-stimulatory

molecules like CD80, CD86, and CD40. Mature DCs migrate to

lymphoid organs to initiate immune responses (15). However,

under oncogenic or septic conditions, DC functions can be

impaired, promoting disease progression. Understanding these

subsets is crucial for advancing immunotherapy and cancer

treatment (16, 17).
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3 Myeloma immune escape: role of
DCs

Immune surveillance is crucial for the immune system to

recognize and eliminate cancer cells before tumor formation. This

concept ties into immunoediting, which outlines the dynamic

between the immune system and tumors. Cancer immunoediting

includes three phases: elimination, equilibrium, and escape, each

marking a specific interaction stage (reviewed in detail in (18–20)).

In the premalignant stages of MM, particularly during MGUS

and SMM, the immune system initially targets emerging malignant

clones. However, as MM progresses, specific genetic alterations may

allow certain tumor subclones to persist. This persistence creates a

fragile balance where some myeloma cells are eradicated while more

resilient cells remain in a dormant state maintained by the immune

system. It is proposed that when the immune system can no longer

sustain this delicate equilibrium, it leads to the uncontrolled

proliferation of malignant cells (21), marking the transition from

MGUS and SMM to active MM (reviewed in detail in (5)). MM

genetic events include chromosomal abnormalities like trisomies,

IgH translocations, somatic mutations, and secondary cytogenetic

abnormalities like Del(17p) (22).
3.1 The tumor microenvironment

The tumor microenvironment (TME) is a complex ecosystem

around a tumor, comprising cellular elements like cancer, stromal,

and immune cells and non-cellular components like blood vessels,

the extracellular matrix (ECM), and secreted factors. It is dynamic

and crucial for tumor growth, progression, metastasis, and

treatment response (23). Evidence shows that myeloma cells

employ various mechanisms to suppress antitumor immunity

while aiding their survival (24). These mechanisms primarily

involve interactions with immune and non-immune cells in the

BM microenvironment (BMME), which are related to MM risk and

severity (25–29). While the overall composition influences MM

progression, the specific roles of individual immune cells need

further exploration, though DCs are recognized as key players in

MM’s progression (30).
3.2 DCs in the MM-microenvironment

DCs activate T cells and infiltrate tumors, making them vital for

immune responses in various cancers, including MM. However, the

TME often impedes their functions, weakening anti-tumor

responses . In the TME, DCs become dys funct ional ,

compromising immune responses due to immunosuppressive

TME traits that affect maturation, migration, and effector

functions (31, 32). This dysfunction impairs antigen capture and

downregulates costimulatory molecule expression. Conventional

type 1 DCs (cDC1s) are essential for generating anti-tumor

responses by cross-presenting tumor antigens from necrotic cells

(33). Also, stimulatory DC infiltration correlates with better
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prognosis and immunotherapy response (34). Recent studies found

a universal mature DC population within the TME, but their

development and functions are unclear. This group, called

“mregDCs” or “LAMP3+ DCs,” shows similarities and

heterogeneity due to environmental factors (35).

Extensive evidence emphasizes DCs’ central role in MM

pathophysiology. Instead of fostering effective immune responses,

DCs often become impaired (36–38), promoting MM cell survival,

tumor growth, and immune evasion (24, 30). DC dysfunction

stems from various molecular mechanisms involving direct

interactions between myeloma cells and DCs or high levels of

cytokines, especially IL-6, in the TME (37). This results in the

aberrant activation of key signaling pathways and advances

disease progression.
3.3 Myeloma-DC cellular interaction

Previous studies show that DCs enhance myeloma cell survival

in the BMME through direct interactions that activate APRIL and

BAFF signaling pathways, essential for plasma cell growth. APRIL

and BAFF, produced by myeloid cells like DCs and monocytes,

regulate normal B lymphocyte and plasma cell survival through

BCMA or TACI receptors. APRIL and BAFF levels rise significantly

in MM, with their receptors overexpressed on myeloma cells (39,

40). While BCMA is typically expressed more than TACI on these

cells (41), Kukreja et al. and Chauhan et al. found that moDC/pDC-

myeloma interactions mainly promote BAFF/APRIL signaling via

TACI, aiding malignant plasma cell growth, respectively (24, 30).

Although mechanisms are not fully understood, studies confirm

blocking the BAFF/APRIL–TACI interaction inhibits DC-mediated

tumor clonogenicity in myeloma cells (24, 30). However, newer

studies show that pDCs from MM patients show higher BCMA

levels than myeloma cells, suggesting BCMA on pDCs may be vital

for supporting myeloma cell survival (42).
3.4 Cytokine-mediated effects on DCs

In addition to directly interacting with MM cells, DCs facilitate

immune evasion in MM, stimulated through immunosuppressive

cytokines, including transforming growth factor-b1 (TGF-b1),
vascular endothelial growth factor (VEGF), IL-6, and IL-10. These

are primarily secreted by myeloma and BM stromal cells during their

interactions (43). The cytokine signaling activates key cell growth and

survival pathways, impairing DCs (44). For instance, IL-6 binding to

its receptors activates Janus kinases (JAKs) and STAT proteins,

particularly STAT3, which diminishes DC function (45–48).
4 DC impairments in MM

Strong evidence shows DCs are impaired in MM, prompting

numerous studies on their numbers, phenotype, and function

throughout progression (36). Despite some contradictions in
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findings, consistent observations include a significant decrease in

DCs and cytokine-mediated changes impacting DC differentiation,

maturation, and function (Figure 1).
4.1 Reduced DC numbers in the periphery
of MM patients

DCs comprise 0.1-2.0% of peripheral blood mononuclear cells.

Still, studies show a significant decrease in both cDCs and pDCs in

MM patients compared to healthy individuals (49, 50). For instance,

Do et al. noted a 50% reduction in blood DCs among MM patients

(51). Similar DC depletion has been observed in other cancers and

infections (52–57). Ratta et al. found that peripheral blood DCs are

stable regardless of disease stage, with a trend for lower PBDCs in

patients with more significant tumor burdens (37). Studies show

fewer DCs in advanced disease stages in MM patients. While the

reasons for these discrepancies are unclear, factors like sample

collection variability and chemotherapy could affect DC counts.

Nevertheless, there is a clear trend of declining DC numbers as MM

progresses, yet studies on specific DC subsets in untreated MM

patients are lacking.

During DC development, they differentiate from CD34+

hematopoietic stem cells through several stages. High IL-6 levels

in the TME may skew differentiation towards monocytes instead of

DCs, at least in GM-CSF cultures, potentially explaining reduced

blood DC numbers in MM patients (37).

Research indicates increased pDC abundance in the BMME (24)

but diminished in the PB (36). Moreover, MM progression from

MGUS correlates with increased cDCs and pDCs in the BM, which

can contribute to immunosuppression and tumor growth. However,

they did not distinguish cDC1s from cDC2s, focusing only on CD141+

cDC1s, which have distinct roles and are fewer than cDC2s.

Consequently, their response in MM may vary significantly (50).

A recent analysis of DC subsets post-BCMA CAR-T therapy

revealed increased proportions of all cDC types except pDCs in the

BMME (58). However, the variability in the patient cohort limits the

findings. Overall, studies confirm significant reductions in

conventional and pDCs in MM patients. These DCs impact T-cell

responses and foster immune tolerance through immature DC

interactions with myeloma cells.
4.2 Impaired DC activation and maturation
in MM

DC number alterations due to immunosuppressive cytokines IL-

6, IL-10, VEGF, and TGF-b1 in the TME of MM link to significant

phenotypic changes in these cells. These changes indicate functional

deficiencies affecting DCmaturation, antigen presentation, and T-cell

priming. Key markers like HLA-DR, CD40, CD80, and CD86 show

lower expression on PB myeloid and pDCs from MM patients than

healthy donors (36–38). Despite high phagocytic activity, antigen

presentation capacity is low (37). Blocking IL-6 with anti-IL-6

antibodies does not fully restore this function, suggesting additional
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factors impair DC functions inMM (37). Brown et al. showed that IL-

10 and TGF-b frommyeloma cells hinder DCmaturation by affecting

CD80 and CD86 expression, which can be reverted using either IL-12

or IFN-g (59, 60). DC maturation involves complex processes for

efficient tumor antigen handling, regulated by interferon regulatory

factor 1 (IRF-1). IRF-1 controls MHC class II transactivator (CIITA)

for HLA class II expression and cathepsin S (CTSS) activity that

facilitates antigen peptide binding (61). Recent findings by Jiang et al.

indicate IRF-1 expression is low in cDC2s and mo-DCs of MM

patients, leading to decreased CIITA and CTSS levels, harming

maturation and antigen presentation capacity (62).

Additionally, Brimnes et al. reported reduced CCR5 and CCR7

expression in cDCs and pDCs during MM (36). CCR5 mediates

immature DC migration to inflammation sites, while CCR7 indicates

DCmaturation, guiding them to lymph nodes for T cell priming (63).

Impaired CCR5 and CCR7 expression further highlights defective

DC maturation in MM. Shinde et al. linked impaired CCR7

migration to increased IL-6 levels and p38 activation in the MM

TME. These observations reveal dysregulation in DC maturation in

MM, suggesting complex mechanisms behind the immature DC

phenotype warranting further exploration (64).
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4.3 Impaired T cell priming by pDCs and
moDCs in MM

DCs are essential for the immune system to effectively target

and eliminate myeloma cells. They must maintain a balance of

hematopoiesis, migration, maturation, and antigen processing to

prime T-cell responses and expand T-cell clones that recognize and

destroy malignant cells. However, studies show deficiencies in

MM’s DC differentiation, maturation, and migration. This leads

to a loss of tumor antigenicity and reduced T-cell priming, allowing

MM to evade the immune response (24, 36, 37, 51, 60). In human

MM models, pDCs and moDCs play critical roles, while cDCs

remain underexplored. In mixed lymphocyte reactions, PB myeloid

and pDCs from MM patients show reduced T cell proliferation.

Brimnes et al. first note that they stimulate IFN-g production by T

cells much less than DCs from healthy individuals (36).

Similarly, moDCs from MM patients exhibit reduced

co-stimulatory marker expression and impaired cytokine

expression, like less IL-12p70 and increased IL-10, leading to

reduced T cell activation and proliferation (64), indicating a

tolerogenic DC phenotype.
FIGURE 1

Human DC in MM BMME. This overview outlines the main mechanisms of DC impairment in the MM TME. Not all mechanisms are detailed for
simplicity. MM cells limit the number, differentiation, maturation, and function of various DC subsets by secreting inhibiting cytokines and engaging
directly with DCs. Elevated IL-6 shifts differentiation from CD34+ progenitor cells to monocytes rather than DCs. IL-10, VEGF, and TGF-b impair DC
migration and maturation. DCs and MM cells communicate via TACI and APRIL, promoting tumor growth. The interaction between them increases
RANKL expression on MM cells, while DCs express RANK, triggering DC transdifferentiation into osteoclasts, contributing to MM-related bone
disease. mRNA expression of IRF-1, CIITA, and CTSS in moDCs and cDC2s decreases in MM, impairing maturation and antigen presentation
pathways. pDCs are less effective at activating T cells and stimulating IFN-g due to immunosuppressive factors in the TME. Additionally, DCs facilitate
Treg expansion through direct contact with T cells and low CD80/CD86 co-stimulatory molecule expression. In the peripheral blood DC subsets are
reduced in numbers, combined with less expression of migration and maturation markers, and reduced antigen uptake and presentation capacity.
Created with Biorender.com.
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Studies also highlight the DC-T cell interaction fostering Treg

differentiation in the MM TME (65). In inflammatory conditions,

DCs co-cultured with T cells expand functional Tregs, dampening

T-cell responses (66, 67). Tregs may inhibit co-stimulatory

molecule expression on DCs and reduce their pro-inflammatory

cytokine release (68). These interactions suggest that expanding

Tregs might exacerbate DC dysfunction in MM, as also shown in a

mouse model of MM (69), although the precise mechanisms require

further investigation.

Taken together, these studies indicate a tolerogenic DC

phenotype in MM. MM-DCs exhibit functional traits similar to

mregDCs (e.g., immunosuppressive cytokine profiles, impaired T

cell priming), suggesting possible parallels. However, no direct

evidence exists regarding the involvement of mregDCs or

Lamp3+DCs in MM. Additional studies are necessary to assess

these subsets in MM.
5 Role of DCs in MM-induced
osteolytic bone disease

Most MM patients develop bone lesions due to excessive BM

osteoclast (OC) formation, resulting frommyeloma cell interactions

with BM components (70, 71). This impacts OC and DC processes

(72). Research shows that OC hyperactivity relates to DC

dysfunction (73–76), stemming from their myeloid precursor

relationship (77). Although some studies suggest OC precursors

arise from monocyte/DC progenitors (MDPs), their exact nature is

unclear (78). OC differentiation, or osteoclastogenesis, relies on

macrophage colony-stimulating factor (M-CSF) and receptor

activator of nuclear factor kB ligand (RANKL), activating T cells

and DCs (45, 79). In MM, myeloma cells hinder normal

osteoclastogenesis by recruiting, differentiating, and activating OC

precursors in the BM (45, 73).

Additionally, interactions with immature DCs release cytokines

like IL-6, increasing RANK-L and M-CSF production by stromal

cells, osteoblasts, and myeloma cells (30, 45, 73, 75, 80). Elevated

RANK-L in the BMME can convert DCs into OC-like cells via

RANK-RANK-L interactions (76, 79). Supporting this, Tucci and

colleagues confirmed that myeloma cells induce OC-like changes in

moDCs (45). DCs also promote MM-induced osteolysis by

overexpressing IL-17, produced by OCs and myeloma cells, as

Th17 cells expand due to mature DCs (45, 81). This IL-17-rich

environment enhances RANK-L activity, further stimulating

osteoclastogenesis and osteolytic bone disease in MM and other

cancers (81–84).
6 DC-based immunotherapies in MM

6.1 Current MM therapy

MM therapy advancements have significantly improved

survival rates, with over 50% of patients surviving five years and

30% reaching ten years. Current standard treatment involves
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high-dose chemotherapy and hematopoietic stem-cel l

transplantation (HSCT). For newly diagnosed MM, a four-drug

regimen including an anti-CD38 antibody, proteasome inhibitor,

lenalidomide, and dexamethasone is widely used (85).

CAR T-cell therapy has revolutionized treatment for relapsed/

refractory MM, mainly targeting BCMA (86, 87). Bispecific

antibodies and immunocytokine therapies are emerging as

promising options for relapsed cases. Bone-modifying agents like

bisphosphonates and denosumab manage bone complications,

while proteasome inhibitors and monoclonal antibodies remain

essential (85).

For high-risk SMM, treatments such as daratumumab

monotherapy or lenalidomide-based regimens delay disease

progression (88, 89).

Many preclinical and clinical studies are investigating

immunotherapeutic strategies, including DC-based vaccines, to

enhance or restore the function of DCs in tumors (31, 32, 90).
6.2 DC-based vaccination

DC- based vaccines are promising in cancer immunotherapy.

They activate tumor-specific T-cells to enhance cancer cell

destruction (91). Their personalized nature allows customization

based on individual tumor characteristics, offering a favorable safety

profile with fewer immune-related adverse events than other

immunotherapies (92). DC vaccines also induce long-lasting

antitumor immunity, potentially reducing cancer recurrence and

improving long-term outcomes. Additionally, they can convert

“cold” tumors into “hot” ones, increasing T-cell infiltration and

boosting the efficacy of subsequent treatments (91, 93, 94).

Despite these advantages, DC vaccines have shown limited

clinical success due to challenges such as the immunosuppressive

tumor microenvironment, manufacturing complexities, and

suboptimal activation states of ex vivo-generated DCs (93). Most

current vaccines rely on moDCs loaded with tumor-associated

antigens (TAAs) or RNA (95). While moDCs are less efficient than

natural DCs, they remain widely used due to their ease of production

and scalability (96–98). Innovative strategies, such as loading DCs

with a broad spectrum of antigens via tumor lysates or RNA

electroporation, aim to enhance immune responses and minimize

antigenic escape (99–102). However, as described above, mo-DCs

derived from MM patients, exhibit a compromised functionality

resembling tolerogenic DCs (64). This situation may hinder the

efficacy of MM immunotherapy by fostering tolerance instead of

immunity. To counteract this effect, strategies aimed at targeting

tolerogenic DC-like dysfunction in MM—such as enhancing IL-12

production or inhibiting IL-10—could reflect tactics used against

mregDCs in other cancers (103, 104).

Research is also exploring alternatives like DC-derived

exosomes, which can carry cancer-specific antigens and stimulate

robust immune responses while addressing some limitations of

traditional DC vaccines (105, 106).

Despite the promise of DC-based vaccines, clinical results have

varied, with only 5–15% of patients exhibiting significant immune
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responses and most experiencing relapses (94, 107). This limited

efficacy stems from various immune escape and immunosuppressive

mechanisms that foster therapy resistance.
6.3 Combinatory therapy

Consequently, considerable effort has been dedicated to

transforming traditional DC vaccines into ‘next-generation’ versions

that can counteract TME-related immunosuppression and bolster

antitumor activity responses (108). Combination therapies have

garnered significant interest in enhancing therapeutic effectiveness

and tackling resistance by integrating DC vaccines with immune

checkpoint inhibitors, CAR-T treatments, chemotherapy, and

immunomodulatory agents (109, 110). Research indicates that

modifying immune checkpoint molecules on DCs in vitro through

siRNA, lentivirus, adenovirus, or CRISPR-Cas-9 boosts T-cell

activation T cell activation (111). Similarly, Chu et al. demonstrated

that combining DC vaccines with PD-L1 blockade effectively hinders

tumor growth in MM models (112). Moreover, integrating DC

vaccines with prior stem cell transplantation has led to an overall

survival increase of nearly two years compared to patients who did not

receive DC therapy (113, 114). Nonetheless, the optimal timing for DC

immunotherapy continues to be debated, although evidence suggests

that administering it following HSCT, when the disease burden is low,

is preferable (115).

Efforts are ongoing to refine vaccine formulations, optimize

antigen-loading techniques, and improve the in vitro generation of

cDCs to mimic their natural counterparts better. These advancements

aim to enhance the clinical effectiveness of DC-based vaccines and

establish them as a cornerstone in cancer immunotherapy.
7 Discussion

This review explores DCs in MM, emphasizing their dual role in

immune regulation and cancer progression. DCs, essential for antigen

presentation and T-cell priming, are impaired in the MM tumor

microenvironment (TME), contributing to immune tolerance and

tumor growth. Understanding these dysfunctions and leveraging DCs

as therapeutic targets remains a critical area of research.

DC dysfunction in MM involves reduced numbers, altered

phenotypes, and impaired T-cell activation capacity. However, the

molecular mechanisms driving these changes remain unclear,

necessitating further investigation to identify therapeutic targets

and restore DC function. Additionally, the heterogeneity of DC

subsets—cDC1s, cDC2s, DC3s, pDCs, and moDCs—and their

specific roles in MM progression require deeper exploration to

develop targeted therapies.

The immunosuppressive nature of the MM TME poses

significant challenges for DC-based therapies. Future strategies

could include combination treatments targeting multiple immune

pathways or enhancing DC-based vaccines’ efficacy through

improved design and delivery methods. Personalized medicine

approaches also promise to tailor DC vaccines to individual
Frontiers in Immunology 06
tumor profiles and immune statuses for better outcomes. This

approach would require biomarker discovery and validation

advancements to predict response to DC-based therapies and

guide treatment decisions.

Another critical focus is long-term efficacy. Research should

assess the durability of immune responses induced by DC therapies

and explore maintenance strategies to sustain remission. Enhancing

immunological memory against MM cells is key to improving

survival rates.

Improving ex vivo DC manufacturing processes is vital for

scaling up therapies. Alternatively, in vivo, approaches targeting DC

activation directly in patients may overcome current limitations and

improve treatment effectiveness.

In conclusion, while challenges remain, advancing our

understanding of DC biology and MM pathogenesis could unlock

the full potential of DC-based immunotherapies, offering hope for

better outcomes in MM patients.
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