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microbial dysbiosis, and
immune dysregulation in
metabolic dysfunction-
associated steatotic liver
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In recent years, the prevalence of chronic liver diseases, particularly Metabolic

Dysfunction-Associated Steatotic Liver Disease (MASLD), has increased

significantly. This upward trend is largely associated with lifestyle-related

factors such as unhealthy dietary habits, physical inactivity, and various

environmental influences. Among the key elements contributing to the

pathogenesis of MASLD, the integrity of the intestinal epithelial barrier emerges

as a critical determinant, given its central role in maintaining immune

homeostasis along the gut-liver axis. Disruption of this barrier, often driven by

excessive consumption of saturated fats and refined carbohydrates in

combination with low dietary fiber intake, can lead to microbial dysbiosis. This

imbalance in the gut microbiota triggers immune dysregulation and promotes

systemic inflammation, thereby exacerbating hepatic injury. This review

discusses the contribution of epithelial barrier dysfunction to the development

and progression of MASLD, with a particular focus on how increased intestinal

permeability may initiate and sustain chronic liver inflammation. Additionally, the

influence of dietary and environmental factors on epithelial integrity, immune

responses, and the inflammatory cascade is addressed. A better understanding of

the complex interplay between gut barrier impairment, immune modulation, and

liver pathology may offer valuable insights into MASLD pathophysiology and

contribute to the development of more targeted therapeutic strategies.
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1 Introduction

Metabolic Dysfunction-Associated Steatotic Liver Disease

(MASLD) develops through complex interactions among metabolic,

environmental, and immune factors, posing a growing global health

challenge (1–3). MASLD includes various liver conditions, ranging

from simple steatosis to metabolic dysfunction-associated

steatohepatitis (MASH), cirrhosis, and hepatocellular carcinoma (4).

While traditional research has primarily focused on lipotoxicity,

oxidative stress, and inflammation, recent findings highlight the

critical role of epithelial barrier integrity in the pathogenesis of

MASLD (5, 6).

The pathogenesis of MASLD involves complex interactions

between metabolic dysfunction, immune activation, and epithelial

barrier integrity. A high fat diet is a well-recognized factor

contributing to hepatic lipotoxicity, characterized by the

accumulation of toxic lipid species in hepatocytes, which leads to

cellular damage, oxidative stress, and apoptosis (7, 8). Moreover,

dietary intake influences gut microbiota composition and intestinal

permeability, with dysbiosis induced by a high fat diet facilitating the

entry of microbial components, including endotoxins like

lipopolysaccharides (LPS), into the systemic circulation (9). The

disruption of microbial balance and increased LPS levels activate

Toll-like receptors (TLRs) along with other innate immune

pathways, driving inflammation and worsening liver damage (10,

11). Dysregulated immune responses continue to drive this cycle,

with pro-inflammatory cytokines like TNF-a and IL-6 contributing

significantly to the persistence of liver inflammation and the

progression of fibrosis (12).

The epithelial barrier of the gut plays a central role in maintaining

tissue homeostasis by preventing the passage of harmful substances and

microorganisms from the intestinal lumen into the circulation. When

this barrier is compromised, it can lead to changes in the gut

microbiota, weakened intestinal integrity, and increased translocation

of bacterial components such as endotoxins. These alterations

contribute to liver inflammation (13, 14). Several environmental

factors have been associated with epithelial barrier dysfunction.

Among them, dietary composition, exposure to pollutants, and

certain xenobiotics are known to disrupt barrier function,

intensifying immune dysregulation and promoting persistent

inflammation (15, 16).

In this review, the role of the epithelial barrier in MASLD is

examined, with a focus on the mechanistic connections between

intestinal permeability, immune activation, and liver pathology. By

integrating current evidence, this review highlights how

environmental and lifestyle factors compromise the integrity of

epithelial barriers and the subsequent impact on the progression of

metabolic liver disease.
2 Methods

This manuscript is a narrative review that aims to explore the role

of epithelial barrier dysfunction in the pathogenesis of MASLD, with a

focus on the interplay between nutrition, microbial dysbiosis, and
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immune dysregulation. A comprehensive literature search was

conducted across four electronic databases: PubMed, Scopus, Google

Scholar, and ScienceDirect. Studies published in English between 2000

and 2025, with a focus on publications from 2019 to 2025, were

included. The search was performed using the following keywords and

Boolean operators: (“Metabolic dysfunction-associated steatotic liver

disease” OR “MASLD” OR “Non-alcoholic fatty liver disease” OR

“NAFLD”) AND (“epithelial barrier dysfunction” OR “epithelial

barrier integrity” OR “epithelial barrier hypothesis”) AND (“gut

microbial dysbiosis” OR “gut microbiome dysregulation” OR “gut

microbiota imbalance”) AND (“gut-liver axis”) AND (“nutrition”)

AND (“immune dysregulation”) (Table 1). Articles were selected

based on title and abstract screening, followed by full-text evaluation.

Reference lists from these studies were manually searched for

additional relevant publications. In this review, findings from human

and animal studies are assessed separately to evaluate the potential

mechanisms involved. This approach was used to evaluate the

consistency of findings between the two models. Mechanisms

observed in animal studies were also explored in human studies,

which helped enhance the reliability and relevance of the results in

both contexts. The synthesis of the data was conducted narratively,

focusing on key themes related to epithelial barrier integrity, nutrition,

microbial dysbiosis, and immune response in MASLD progression.
3 The epithelial barrier hypothesis:
origins and development

The epithelial barrier hypothesis, first introduced in relation to

allergic diseases, underscores the essential function of epithelial

integrity in preserving immune balance and preventing pathological

immune responses (17). This hypothesis suggests that exposure to
TABLE 1 Literature search strategy.

Criteria Details

Databases
Searched

PubMed, Scopus, Google Scholar, ScienceDirect

Publication
Period

2000–2025, with a primary focus on publications from 2019–2025

Keywords (“Metabolic dysfunction-associated steatotic liver disease” OR
“MASLD” OR “Non-alcoholic fatty liver disease” OR “NAFLD”)
AND (“epithelial barrier dysfunction” OR “epithelial barrier
integrity” OR “epithelial barrier hypothesis”) AND (“gut
microbial dysbiosis” OR “gut microbiome dysregulation” OR “gut
microbiota imbalance”) AND (“gut-liver axis”) AND
(“nutrition”) AND (“immune dysregulation”)

Language English

Inclusion
Criteria

Studies published in English, focusing on epithelial barrier
dysfunction, nutrition, gut microbiota, immune dysregulation,
and their roles in MASLD pathogenesis.

Exclusion
Criteria

Studies not in English, unrelated to MASLD, or non-peer-
reviewed articles (e.g., conference abstracts).

Data
Synthesis

Human studies focused on clinical relevance to MASLD
pathogenesis; animal studies explored mechanistic insights and
therapeutic targets.
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various environmental stressors such as air pollutants, detergents,

microplastics, nanoparticles, and dietary components can

compromise the integrity of epithelial barriers, resulting in increased

permeability, microbial dysbiosis, and immune dysregulation (18).

While initially focused on respiratory and skin barriers, recent

research highlights the significance of intestinal epithelial barrier

dysfunction in the development of chronic inflammatory diseases,

including MASLD (5, 19). Furthermore, studies suggesting an

increased predisposition to allergic diseases in MASLD patients point

to a potential parallel between immune dysregulation in metabolic and

allergic diseases (20–22).

Epithelial barriers function as a primary defense mechanism,

creating both a physical and chemical shield against external insults.

The structural stability of epithelial layers is maintained by cellular

connections such as tight junctions (TJ), adherens junctions (AJ),

and desmosomes, while mucosal secretions, antimicrobial peptides,

and immunoglobulin A (IgA) provide additional protection (23).

Compromise of this barrier function, commonly referred to as

‘leaky epithelium,’ allows the entry of gut-derived molecules into

the bloodstream. These breaches in barrier integrity are implicated

in triggering innate immune responses via pattern recognition

receptors such as TLRs, which detect microbial components and

initiate inflammatory cascades (Figure 1) (24, 25),.

The epithelial barrier hypothesis has evolved with growing

recognition of the interplay between dietary patterns and epithelial
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integrity. Westernized diets, rich in saturated fats, refined sugars, and

low in fiber, are linked to the disruption of intestinal epithelial integrity

through alterations in gut microbiota composition and diversity (26,

27). Specifically, high-fat diets promote the overgrowth of pathobionts

and reduce beneficial commensals, leading to increased bacterial

endotoxin production and systemic inflammation (28). Additionally,

lipotoxicity associated with metabolic dysfunction further

compromises epithelial integrity by increasing oxidative stress and

apoptosis in epithelial cells (29).

In the context of MASLD, the epithelial barrier hypothesis provides

a compelling framework to understand the progression frommetabolic

dysfunction to liver inflammation. When intestinal barriers are

compromised, microbial components like LPS can enter systemic

circulation and activate hepatic Kupffer cells and stellate cells. This

activation triggers the release of inflammatory cytokines and fibrogenic

molecules, contributing to liver damage and fibrosis (30, 31). These

immune-mediated processes contribute to the development of

steatohepatitis, fibrosis, and ultimately cirrhosis in MASLD patients.
4 Gut-liver axis: bridging the intestinal
and hepatic inflammation

The gut-liver axis, a crucial communication network connecting

the gastrointestinal system and the liver, relies on anatomical
FIGURE 1

Disruption of the epithelial barrier by environmental toxic agents. Epithelial cells form protective barriers through the complex interaction of tight
junctions (TJs), adherens junctions (AJs), and desmosomes. The tight junctions are formed by proteins such as claudins, occludins, and junctional
adhesion molecules. Located beneath the tight junctions, adherens junctions contribute to cell-cell adhesion. Desmosomes, with their symmetrical
structure, connect adjacent plasma membranes and are crucial for the stability and maintenance of cellular junctions. Exposure to environmental
stressors, such as air pollutants, detergents, microplastics, nanoparticles, and dietary components, compromises epithelial barrier integrity. This leads
to increased permeability, microbial dysbiosis, and immune dysregulation. Disruption of tight junctions (TJ), adherens junctions (AJ), and
desmosomes allows the translocation of bacteria, endotoxins, and dietary antigens into systemic circulation. This breach activates innate immune
responses via pattern recognition receptors, including Toll-like receptors (TLRs), triggering inflammatory cascades. Additionally, the loss of
commensal Treg cell populations contributes to the dysregulation of Th1, Th2, Th17, and B cell immune responses, further promoting inflammation.
(Created with BioRender.com).
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connections and is involved in the regulation of immune responses,

metabolic functions, and hormonal balance. The gut and liver are

anatomically connected through the portal venous system. This

system transports venous blood absorbed from the intestines to the

liver, thereby delivering nutrients, microbial products, and

potentially harmful substances. The liver processes these

components by carrying out metabolic functions and facilitates

the elimination of harmful compounds. Additionally, bile produced

by the liver is delivered to the duodenum, where it contributes to

digestion and plays a role in regulating the intestinal environment

(32). This interaction is not limited to anatomical connections, but

is also mediated through hormonal signals. Various hormones play

a role in regulating the functions of both the gut and liver. For

instance, cholecystokinin, secreted by endocrine cells in the gut,

initiates bile production in the liver, while fibroblast growth factor-

19 (FGF-19) regulates bile acid synthesis (33). Additionally, insulin-

like growth factor (IGF), produced by the liver, helps maintain the

integrity of the intestinal epithelium, contributing to the

preservation of the intestinal barrier (34). The intestinal barrier is

a critical factor that reinforces this complex relationship. While the

gut facilitates the efficient absorption of nutrients and water, it is

also responsible for preventing the passage of harmful

microorganisms and toxins. The primary structural components

of the barrier include epithelial cells, the mucus layer, microvilli,

and associated proteins. These structures, through tight junctions

between intestinal epithelial cells, limit paracellular permeability,

thereby preventing the entry of harmful substances into the

systemic circulation (35). The disruption of intestinal barrier

function leads to the translocation of harmful microorganisms

and their metabolic products to the liver. This condition impairs

the liver’s ability to perform its normal functions and contributes to

the initiation of pathological processes such as inflammation

and fibrosis.
4.1 Gut microbiota and intestinal barrier in
the gut-liver axis

The gut microbiome and the integrity of the intestinal epithelial

barrier are essential for maintaining systemic balance. The intestinal

barrier, consisting of tight junctions, antimicrobial peptides, and

secretory immunoglobulin A, ensures tolerance to commensal

microorganisms while preventing the entry of harmful pathogens

and their products into the bloodstream (36). However, factors such

as high-fat and low-fiber diets, alcohol consumption, overuse of

antibiotics, chronic stress, and gastrointestinal infections can

disrupt the gut microbiota, causing an alteration in the microbial

balance (37). Dysbiosis is characterized by an overgrowth of gram-

negative bacteria, which produce LPS. This bacterial endotoxin can

compromise intestinal barrier integrity, resulting in increased

permeability (“leaky gut”). The entry of LPS and additional

microbial components into portal circulation triggers a cascade of

inflammatory responses in the liver (38).

Leaky gut has emerged as a topic of growing scientific interest due

to its reported involvement in a wide range of gastrointestinal and
Frontiers in Immunology 04
systemic conditions, including irritable bowel syndrome, various

neurological conditions, asthma, and MASLD (39, 40). This

increasing attention is also driven by the proposition that improving

intestinal barrier function through dietary changes, probiotic

supplementation, and other therapeutic approaches may offer

potential benefits in the management of such diseases (41). In

addition, it has been reported that the increase in intestinal

permeability is associated with visceral adiposity and liver fat content

in humans (42). Since visceral adiposity is also linked to other metabolic

issues such as insulin resistance and high LDL levels, it suggests that the

issue of “leaky gut” contributes to metabolic dysfunction.

The disruption of intestinal barrier integrity, commonly referred to

as “leaky gut,” has been associated with a range of biomarkers that

reflect bacterial translocation and immune activation. Among these,

zonula occludens-1 (ZO-1), a structural component of tight junctions,

has been reported to be significantly elevated in individuals with type 2

diabetes mellitus, reflecting increased intestinal permeability. In a study

conducted on Asian Indian subjects, serum ZO-1 levels were markedly

higher in patients with type 2 diabetes compared to healthy controls,

and showed positive correlations with circulating LPS, inflammatory

cytokines (TNF-a, IL-6), and markers of poor glycemic and lipid

control. These findings support the use of ZO-1 as an early biomarker

of impaired epithelial integrity and its potential role in the

inflammatory and metabolic disturbances associated with insulin

resistant states (43). Moreover, bacterial components such as LPS,

peptidoglycan, and bacterial DNA have been detected in the

bloodstream, pointing to microbial translocation from the intestinal

lumen into systemic circulation (44, 45). These bacterial products are

not only indicators of barrier dysfunction but also play a direct role in

immune system activation. For instance, they stimulate the production

of serum immunoglobulins IgG, IgA, and IgM which function as

indirect biomarkers of chronic endotoxin exposure (46). In parallel,

lipopolysaccharide-binding protein (LBP), an acute-phase protein

primarily secreted by the liver, binds to LPS and facilitates its

clearance. Its elevated levels in individuals with type 2 diabetes and

morbid obesity suggest a state of ongoing low-grade inflammation and

microbial translocation (47). However, recent human data indicate a

more complex relationship between LBP andmetabolic dysfunction. In

a cohort of obese individuals, circulating LBP levels were found to be

increased compared to non-obese controls, yet paradoxically, lower

LBP levels were independently associated with type 2 diabetes and

more advanced stages of hepatic steatosis and lobular inflammation.

Furthermore, LBP concentrations were inversely correlated with

markers of visceral adipose tissue inflammation. These findings

imply that, while LBP is elevated in obesity, it may reflect a

compensatory hepatic response to chronic caloric excess and serve a

protective role by enhancing hepatic LPS clearance, thereby attenuating

the metabolic consequences of obesity (48). Similarly, bactericidal/

permeability-increasing protein (BPI), produced by neutrophils,

neutralizes LPS and thereby mitigates its pro-inflammatory effects,

indicating its role as both a defensive molecule and a biomarker of

innate immune activity (49). In patients with liver cirrhosis, elevated

plasma BPI levels and increased neutrophil BPI mRNA expression

have been observed, particularly in those with advanced disease stages.

Moreover, BPI levels were positively correlated with TNF-a
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concentrations, and in vitro experiments demonstrated that higher

circulating BPI significantly attenuated LPS-induced TNF-a
production by monocytes. These findings suggest that BPI not only

reflects enhanced innate immune activation in the context of gut-

derived endotoxemia but also functions as a negative regulator of LPS-

mediated inflammatory signaling (50). Furthermore, soluble CD14,

which reflects monocyte activation, binds to the LPS-LBP complex and

mediates its transfer to the TLR4/MD2 signaling pathway. This

interaction triggers NF-kB activation and the release of pro-

inflammatory cytokines, thereby amplifying systemic immune

responses (51). Importantly, elevated levels of circulating sCD14 have

been shown to correlate with histological severity of liver inflammation

in patients with MASLD. In a liver biopsy-confirmed cohort, serum

sCD14 levels were significantly associated with MASH diagnosis,

MASLD activity score, and hepatic CD14 mRNA expression,

independently predicting the degree of hepatic inflammation (52).

Supporting these observations, another study using both murine

models of diet-induced MASH and clinical samples from biopsy-

proven MASLD patients demonstrated that sCD14 levels were

significantly higher in individuals with MASH compared to those

with simple steatosis. Moreover, sCD14 was positively correlated with

histological features such as lobular inflammation, hepatocellular

ballooning, and fibrosis (53).

The extent to which biomarkers associated with impaired

intestinal barrier function correlate with metabolic health

parameters remains an important yet insufficiently addressed

research question. To help fill this knowledge gap, a recent study

evaluated gut permeability-related biomarkers that can be measured

in serum and plasma samples and assessed their relationship with

metabolic health status. The study selected a total of 80 individuals

from a previously conducted large-scale cohort (n = 2048), based on

extreme values of waist circumference, fasting glucose, LDL

cholesterol, and gamma-glutamyl transferase (GGT) levels,

representing the most metabolically healthy and unhealthy

profiles. Eight leaky gut-related markers identified from the

literature were analyzed in serum or EDTA-plasma samples

obtained from these individuals. The findings demonstrated that

levels of zonulin, lipopolysaccharide-binding protein (LBP), soluble

CD14 (sCD14), bactericidal/permeability-increasing protein (BPI),

and peptidoglycan were significantly elevated in participants with

poor metabolic profiles. In contrast, no significant differences were

observed between the groups in terms of EndoCAb IgA, IgG, and

IgM levels. Stepwise regression analyses revealed that zonulin, in

particular, showed strong associations with body mass index,

fasting glucose, triglycerides, GGT, and C-reactive protein levels.

These findings suggest that zonulin may serve as a primary

biomarker for monitoring intestinal barrier dysfunction and

identifying individuals at increased risk for metabolic diseases (54).
4.2 LPS-mediated immune activation in the
gut-liver axis

LPS, an important molecule found in the outer membrane of

gram-negative bacteria, significantly contributes to the disruption of
Frontiers in Immunology 05
the gut-liver axis communication. When intestinal permeability is

compromised, LPS reaches the liver through the portal circulation,

triggering activation of Kupffer cells and various other immune cells

within the liver via TLRs (9). This activation triggers downstream

signaling pathways, such as MyD88 and NF-kB, resulting in the

release of pro-inflammatory cytokines (55). These cytokines

amplify hepatic inflammation and recruit additional immune

cells, including neutrophils and monocytes, to the liver.

The role of LPS mediated immune responses in the

pathogenesis of MASLD is supported by both clinical

observations and experimental data. Clinically, elevated serum

LPS levels have been strongly associated with the progression of

liver disease. Notably, a population-based study reported that

individuals with the highest LPS levels accounted for

approximately 30% of liver-related complications (56).

Experimental evidence further substantiates these findings.

Chronic exposure to LPS induces sustained hepatic inflammation,

hepatocyte apoptosis, and hepatic stellate cell activation, all of

which collectively promote fibrosis and cirrhosis (57–62).

Moreover, animal models with gut microbiota alterations exhibit

increased susceptibility to LPS-induced liver injury, highlighting the

contribution of intestinal dysbiosis to immune dysregulation.

Several studies have demonstrated that interventions targeting the

gut microbiota—such as polyphenols from Aronia melanocarpa

(63), rhein (64), Lactobacillus paracasei CCFM1223 (65), and

sulforaphane (66) can protect against LPS-induced hepatic injury

by modulating the gut-liver axis. In addition, host microbiota

composition has been shown to determine the extent of LPS-

driven hepatic inflammation (67).

One of the other key mechanisms of LPS mediated hepatic

inflammation is the indirect regulation of TREM1 and TREM2

expression through the TLR4 signaling pathway activated by LPS.

During LPS exposure, which leads to a systemic inflammatory

response, it has been reported that TREM1 expression is

increased in hepatic macrophages and endothelial cells, while

TREM2 expression is decreased (68). TREM1 enhances the

expression of inflammatory genes such as MyD88, CD14, and IL-

1b, triggering the release of TNF-a and IL-1b and activating

transcription factors like AP-1 and NF-kB (69, 70). On the other

hand, TREM2 expression is inhibited by TNF-a, and its levels are

significantly reduced under acute inflammatory conditions (68, 71).

However, this dynamic may differ in chronic liver injury. In chronic

inflammation, Kupffer cells have been reported to transform into

anti-inflammatory M2 macrophages, thereby protecting the liver

from chronic inflammation (72). In summary, TREM1 and TREM2

play different roles in inflammation processes. While TREM1 exerts

pro-inflammatory effects during acute inflammation, TREM2

generates a regulatory response under conditions of excessive

inflammation, thereby protecting hepatic tissue from damage.

Recently, the close association of TREM2 with insulin resistance

and type 2 diabetes, as well as its mechanistic role in MASLD, has

attracted considerable attention (73, 74). Also, it is known that 20%

of MASLD patients progress to the MASH stage with chronic

inflammation and fibrosis, which can lead to cirrhosis and HCC,

with TREM2+ macrophages playing a crucial role in this process. In
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a chemical cholestasis mouse model, TREM2 has been reported to

exert a protective effect by reducing liver inflammation and

preventing hepatocyte injury (75). Studies in animal models have

demonstrated that Trem2−/− mice develop insulin resistance,

glucose intolerance, adipocyte hypertrophy, and lipid

accumulation under diet-induced obesity conditions. Notably,

these mice fail to form crown-like structures (CLS), which play a

critical role in the clearance of apoptotic adipocytes and lipid debris

during obesity (74, 76, 77). Moreover, it has been reported that

Trem2−/− mice fed a long-term high fat diet develop more severe

hepatic steatosis (77). TREM2 is an important receptor that

regulates the transition of macrophages from an inflammatory

phenotype to a repair and regeneration focused phenotype

following liver injury. In a study using acute (acetaminophen,

APAP) and chronic (carbon tetrachloride, CCl4) hepatotoxic

injury models, it has been shown that in Trem2−/− mice,

compared to wild-type mice, higher levels of pro-inflammatory

cytokines (IL-6, TNF-a) and chemokines (MCP-1) are released

from Kupffer cells and hepatic stellate cells. This increase is reported

to lead to more severe liver damage. In contrast, in wild-type mice

where TREM2 expression is maintained, inflammation remains

more limited, and the recovery process begins more rapidly after

injury. During the recovery phase, it has been reported that

macrophages transitioning into Kupffer cells express high levels of

TREM2 and exhibit a unique transcriptomic profile that is sensitive

to oxidative stress and suppresses pro-inflammatory signals

(72, 78).

In addition to animal studies, human data also provide valuable

insights into the role of TREM2 in the progression of MASLD. The

liver tissue obtained from the MASH patient group and the control

group with hepatic hemangioma, which is known not to have been

diagnosed with MASH, shows that the upregulation of TREM2 in

MASH patients is associated with hepatic steatosis and

inflammation. However, this upregulation is suggested as a

protective effect. Additionally, it is highlighted in this study, based

on an animal model, that TREM2 promotes the resolution of

inflammation by providing immune modulation via TGFb1 (79).

On the other hand, recently, the soluble form of TREM2 (sTREM2)

has attracted attention due to its elevated levels in MASH patients

(80). It has been suggested that plasma sTREM2 levels in MASH

patients correlate with ALT and AST, are associated with MASH

risk status, and may serve as a reasonable biomarker for identifying

patients eligible for clinical trials in MASH (80, 81). However, data

regarding the mechanism of action of sTREM2 in the pathogenesis

of MASLD is limited. While it has been reported that sTREM2 may

have differential effects on macrophage cytokine expression in vitro

(82), in vivo studies validating these findings are still lacking.

Furthermore, in a recent study, preoperative and postoperative

plasma sTREM2 levels were measured in 108 patients undergoing

liver resection. The results showed that preoperative sTREM2 levels

were associated with advanced-stage liver fibrosis and post-

hepatectomy liver failure. Compared to traditional parameters

such as FIB-4, MELD, Child-Pugh, and LiMAx, sTREM2

demonstrated higher accuracy in predicting post-hepatectomy

liver failure. These findings suggest that TREM2 may be a
Frontiers in Immunology 06
clinically valuable biomarker for predicting early-stage liver

diseases and postoperative complications (83).

A recent study has reported that the function of TREM2 is

directly related to nutritional status. Chronic liver inflammation

induced by obesity is a hallmark of MASH, an aggressive form of

MASLD. However, the exact mechanism by which this low grade,

yet persistent inflammation is sustained in the liver remains

unclear. The animal study demonstrates that TREM2, a

macrophage phagocytic receptor induced by sphingosine-1-

phosphate derived from hepatocytes, plays a crucial role in the

clearance of lipid-laden apoptotic cells, thereby maintaining liver

immune homeostasis. However, prolonged overnutrition increases

the production of pro-inflammatory cytokines (such as TNF and

IL-1b) in the liver, leading to the loss of TREM2 function. This

process occurs through the proteolytic cleavage of TREM2 by an

enzyme called ADAM17. The loss of TREM2 impairs the proper

clearance of dead hepatocytes, resulting in their abnormal

accumulation. Consequently, this accumulation may trigger

further inflammation, accelerating the transition to MASH in a

vicious cycle (84).
4.3 Microbial metabolites and immune
regulation in the gut-liver axis

Microbial metabolites, particularly short-chain fatty acids

(SCFAs) including acetate, propionate, and butyrate, are essential

in influencing the gut-liver axis by regulating metabolic and

immune responses (85). These metabolites, generated through the

digestion of dietary fibers by gut microbes, show significant anti-

inflammatory effects (86). SCFAs modulate immune activity by

reducing the secretion of inflammatory molecules and promoting

the strength of the intestinal barrier (87–90).

The beneficial effects of SCFAs are mediated through multiple

mechanisms. A primary mechanism involves the stimulation of G

protein-coupled receptors (GPCRs), including GPR41 and GPR43,

which are found on various immune cells. Activation of these

receptors leads to the suppression of immune cell activation and

a balanced regulation between inflammatory and tolerogenic

responses (91, 92). Additionally, butyrate plays a key role in

modulating gene expression by inhibiting histone deacetylases

(HDACs), enzymes responsible for the removal of acetyl groups

from histones, thereby influencing chromatin structure and

immune cell function (93). By inhibiting HDACs, butyrate

promotes chromatin decondensation, increasing its accessibility

and enabling changes in gene expression. This epigenetic

modulation alters the transcriptional activity of immune cells,

promoting anti-inflammatory pathways and diminishing the

release of inflammatory factors (91, 94, 95). As a result, the

immune response is reprogrammed to favor tolerance over

inflammation, contributing to the suppression of excessive

immune activation.

SCFAs significantly influence immune cell function,

particularly in T and B cells. For example, butyrate encourages

the development of regulatory T cells (Tregs), crucial for sustaining
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immune balance and controlling inflammation, primarily by

increasing histone acetylation at the FoxP3 locus (96, 97). SCFAs

also influence the function of effector T cells, including Th1 and

Th17 subsets, through HDAC inhibition, leading to increased

mTOR activity and enhanced cytokine production (98, 99). In

antiviral immunity, SCFAs, especially butyrate, improve CD8+ T

cell memory formation, facilitating a more robust immune response

(100, 101). In addition, SCFAs promote the conversion of B cells

into plasma cells, enhancing antibody production through

metabolic pathways that support glycolysis and fatty acid

synthesis (102, 103). These effects are mediated by HDAC

inhibition, which alters gene expression related to B cell

differentiation (104, 105). Furthermore, SCFAs impact T cell

activity, especially T follicular helper (Tfh) cells, which play a

secondary role in modulating B cell function and antibody

production (106). SCFAs also support the differentiation of

regulatory B cells (B10 cells), contributing to immune

homeostasis by promoting acetylation processes (107, 108).

However, when the gut microbiota is disrupted, as seen in

dysbiosis, SCFA production is significantly reduced. This reduction

in SCFAs disrupts the gut-liver axis and immune regulation,

resulting in heightened intestinal permeability. As a result,

harmful bacteria and their byproducts are able to enter the

bloodstream, worsening systemic inflammation and liver damage

(109). The reduction in SCFA production disrupts the immune-

regulatory capacity of both the gut and liver, thereby exacerbating

inflammatory pathways and impairing anti-inflammatory

responses. This imbalance is involved in the initiation and

progression of liver disorders like MASLD, primarily through

enhancing liver inflammation and sustaining liver damage (110–

112). The understanding of this intricate interplay between

microbial metabolites, immune regulation, and liver disease

progression opens new avenues for therapeutic interventions

targeting microbial metabolites or their pathways to restore

immune homeostasis and mitigate liver pathology.
5 Impact of diet on gut barrier
integrity in MASLD

Dietary factors, intestinal health, and liver function are closely

linked and contribute significantly to the development of MASLD.

The gastrointestinal tract acts as the primary barrier to harmful

dietary and microbial substances, and its proper function is crucial

for preserving metabolic stability. However, modern dietary habits

characterized by high-fat, low-fiber, and fructose-rich foods can

disrupt gut homeostasis, alter microbiota composition, and

compromise the gut barrier, ultimately fueling systemic

inflammation and liver injury. On the other hand, bioactive

substances like omega-3 fatty acids, polyphenols, and probiotics

demonstrate protective properties by influencing gut-liver

communication (Figure 2). This section explores the complex

relationship between dietary components and gut barrier

function, shedding light on their implications for MASLD

pathogenesis and potential dietary interventions.
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5.1 High-fat diets

High-fat diets, especially saturated fats (e.g., red meat, butter,

full-fat dairy) and industrially produced trans fats (e.g., processed

and fast foods), are strongly linked to the progression of metabolic

dysfunction, including MASLD. These diets disrupt the gut-liver

axis through various interconnected mechanisms, contributing to

increased intestinal permeability, microbiota dysbiosis, and

systemic inflammation, all of which exacerbate liver damage.

Experimental studies conducted using animal models have

demonstrated that high-fat diets impair epithelial barrier integrity

at an early stage. Specifically, one study showed that a high-fat diet

induces disruption of the paracellular barrier in the proximal small

intestine before the onset of type 2 diabetes or endotoxemia. This

disruption was associated with a reduction in the levels of tight

junction proteins such as claudin-1, occludin, and ZO-1 (113). This

barrier disruption is supported not only by molecular changes but

also by structural alterations. A study conducted on middle-aged

mice revealed that after 14 weeks of a high-fat diet, there was a

reduction in the length of small intestine villi and the depth of colon

crypts, along with impaired colon barrier function. These findings

indicate that the epithelial structure is compromised both

morphologically and functionally. The study highlights that such

a diet may have lasting effects on epithelial integrity (114).

Additionally, a study investigating the acute effects of high-fat

diets on intestinal injury revealed that short-term exposure to

high-fat feeding exacerbated intestinal damage by impairing the

clearance of dead neutrophils by macrophages. This dysfunction in

macrophage activity hindered the activation of repair pathways,

including the production of IL-10, which is crucial for resolving

inflammation and promoting barrier repair. These findings suggest

that high-fat diets not only disrupt epithelial barrier integrity but

also interfere with immune cell-mediated repair mechanisms,

preventing proper recovery of the intestinal barrier (115).

The effects of high-fat diets on intestinal epithelial barrier integrity

not only trigger local inflammation but also facilitate the passage of

microbial products, particularly endotoxins such as LPS, into the

systemic circulation, potentially leading to endotoxemia. High-fat

diets increase intestinal permeability, allowing LPS to be transmitted

to the immune system. Experimental studies have demonstrated that

mice fed high-fat diets exhibit heightened sensitivity to LPS, with

inflammatory responses being aggravated through the activation of

TLR-4, a key receptor involved in mediating immune responses to

endotoxins (116). In parallel, human studies have elucidated the role of

LPS influx in metabolic dysfunctions. A study conducted on Japanese

males revealed a significant relationship between the daily influx of

LPS, originating from gut bacteria, and various metabolic parameters.

Notably, fasting plasma LPS concentrations were inversely correlated

with perceived fullness, whereas a positive correlation was found with

carbohydrate intake. Additionally, LPS levels were associated with

fasting breath acetone, a biomarker of fat metabolism, suggesting that

LPS influx may influence metabolic processes even in the absence of

significant changes in body weight (117). The effects of high-fat diets on

LPS-associated inflammation have also been reported in metabolic

diseases such as polycystic ovary syndrome (PCOS). A study conducted
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on women with PCOS has reported that a high-fat diet increases

circulating levels of LPS and TLR-4 (118).

High-fat diets also contribute to lipotoxicity in hepatocytes

through excessive accumulation of free fatty acids (FFAs), leading

to cellular damage (119). Experimental studies using hepatocyte

cultures treated with palmitic acid, a predominant saturated fat,

have shown elevated levels of reactive oxygen species (ROS) and the

initiation of apoptosis pathways through mitochondrial dysfunction

and endoplasmic reticulum (ER) stress (120–122). Additional

evidence highlights that palmitic acid exposure significantly

elevates ER stress markers such as CHOP and GRP78, further

contributing to hepatocyte dysfunction and injury (123). In vivo

studies in animal models, where mice were fed a high-fat diet

containing 60% fat for 12 weeks, show significant hepatic

triglyceride accumulation, alongside the activation of pro-

inflammatory signaling pathways like NF-kB and JNK (124).

These pathways trigger the production of cytokines like TNF-a
and IL-6, which exacerbate hepatocyte apoptosis and worsen liver

inflammation. Interestingly, genetic knockout models for NF-kB
signaling have demonstrated reduced inflammation and hepatocyte

injury, underscoring the critical role of this pathway in disease

progression (125). In human studies, the mechanisms observed in

animal models are also evident in patients with Metabolic

Dysfunction-Associated Steatotic Liver Disease (MASLD). Liver
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biopsies from MASLD patients reveal elevated ROS levels, ER

stress markers, and increased NF-kB activation (126–128).
5.2 Low-fiber diets

Dietary fiber, primarily sourced from whole grains, fruits,

vegetables, and legumes, supports microbial diversity in the gut

and helps maintain gut barrier integrity. A low-fiber diet, often

characteristic of Western dietary patterns, can have detrimental

effects on both gut health and overall metabolic function.

Clinical and observational studies have consistently

demonstrated that low-fiber diets contribute to gut dysbiosis,

characterized by a decline in beneficial commensals such as

Bifidobacterium and Lactobacillus, alongside an increased

abundance of pro-inflammatory taxa, including Escherichia and

Streptococcus (129, 130). This microbial imbalance can exacerbate

gut inflammation, which is a key contributor to the systemic

inflammation observed in MASLD. The disruption of gut

homeostasis and immune modulation can worsen liver injury,

accelerating the progression of fatty liver and fibrosis.

In MASLD patients, compositional shifts in the gut microbiota

include an overrepresentation of pro-inflammatory genera such as

Dorea and Bilophila, and a reduced abundance of anti-
FIGURE 2

Dietary modulation of gut-liver axis in metabolic dysfunction-associated steatotic liver disease (MASLD). The gut-liver axis plays a pivotal role in the
pathogenesis of MASLD, with dietary components acting as key modulators of gut homeostasis and immune regulation. A Western diet,
characterized by high fat, low fiber, and excessive fructose intake, disrupts intestinal barrier integrity, alters gut microbiota composition, and
promotes systemic inflammation, contributing to hepatic injury. In contrast, bioactive dietary components such as omega-3 fatty acids, polyphenols,
and probiotics enhance gut barrier function, support a beneficial microbiota, and mitigate inflammatory responses. (Created with BioRender.com).
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inflammatory taxa like Faecalibacterium, Akkermansia, and Alistipe

(131–133). These microbial alterations are associated with changes

in liver function. For example, Dorea abundance correlates with

elevated liver enzymes, including aspartate aminotransferase (AST)

and alanine aminotransferase (ALT), suggesting a potential role in

liver injury, whereas Alistipes appears inversely related to serum

glucose and ALT, indicating a possible protective effect (131).

Moreover, alterations in gut microbiota are linked to the

progression of liver fibrosis. Microbiota profiles in patients with

advanced liver fibrosis show increased proportions of Bacteroides,

while Lactobacillus and Bifidobacterium are less prevalent (134).

Specific species, including Bacteroides and Streptococcus, are

associated with fibrotic changes, while Escherichia and Shigella are

strongly correlated with advanced fibrosis (135, 136).

Another significant consequence of low-fiber diets is the

reduction in SCFAs synthesis, which are essential metabolites

produced by gut microbes during the fermentation of fiber.

Animal studies provide mechanistic insights into how low-fiber

diets may contribute to disease development. In murine models,

fiber deficiency leads to decreased production of short-chain fatty

acids (SCFAs), which are crucial microbial metabolites generated

during fiber fermentation (137, 138). Experimental studies have

demonstrated that mice on low-fiber diets exhibit severe

inflammatory responses in models of colitis, allergic airway

disease, and food allergy, partly due to the loss of SCFA-mediated

immune regulation (137, 139–141). SCFAs play an important role

in maintaining gut barrier integrity, regulating immune responses,

and supporting metabolic homeostasis. In mice, reduced SCFA

levels are associated with increased intestinal permeability, higher

endotoxin translocation, and chronic inflammation factors that

may contribute to liver damage (142).

These findings emphasize the importance of dietary fiber in

protecting gut and liver health. Low-fiber Western diets reduce

SCFA production, increase gut permeability, and promote chronic

inflammation factors that contribute to the development and

progression of MASLD. In contrast, fiber-rich diets help maintain

microbial balance, support immune regulation, and are associated

with lower rates of liver-related complications (143, 144).

Increasing fiber intake may be a simple but effective approach to

reduce the risk of MASLD.
5.3 High fructose diets

Fructose, a naturally occurring monosaccharide found in fruits,

has become a prominent component of modern diets through its

industrial use as high-fructose corn syrup (HFCS), especially in

sugary beverages and processed foods. While moderate fructose

intake through whole fruits appears to have minimal metabolic

impact (145), excessive consumption of processed fructose in mice

has been implicated in the pathogenesis and progression of MASLD

(146). Unlike glucose, fructose metabolism occurs largely in the

liver and bypasses the regulatory steps controlled by insulin, thereby

favoring unregulated de novo lipogenesis and hepatic triglyceride

accumulation (147). These mechanisms contribute to insulin
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resistance, lipotoxicity, and hepatocellular stress, all of which

promote MASLD development (148). Clinical studies have also

shown that individuals with MASLD tend to consume more

fructose than healthy controls, further reinforcing the association

between high dietary fructose intake and disease progression (149,

150). Furthermore, epidemiological data suggest that regular

consumption of fructose-rich soft drinks is associated not only

with hepatic steatosis and fibrosis but also with increased

cardiovascular risk, even in the absence of metabolic syndrome

(149–151). Beyond its direct effects on liver metabolism, fructose

consumption also influences gut microbiota composition, which

plays a crucial role in metabolic health. Animal studies have shown

that high-fructose diets alter the Firmicutes/Bacteroidetes ratio,

favoring the proliferation of bacteria associated with

inflammation and liver fat accumulation (152, 153).

The disruption of the intestinal epithelial barrier by high-

fructose diets is a key mechanism in the development of

metabolic dysfunction. Several animal studies have demonstrated

that excessive fructose intake impairs the intestinal barrier, leading

to an increase in gut permeability. In mice, a high-fructose diet

exacerbated colonic inflammation and intestinal damage,

particularly in the context of chemically induced colitis. Fructose

consumption reduced the expression of tight junction proteins such

as occludin, while increasing pro-inflammatory cytokines, including

IL-6, IL-1b, and TNF-a (154). Similarly, in rats, a dose-dependent

study revealed that high fructose intake reduced the expression of

key tight junction proteins (e.g., ZO-1, occludin), mucus layer

components (e.g., MUC2, TFF3), and induced colonic

inflammation. This was accompanied by an upregulation of IL-6

and IL-8 and a suppression of the anti-inflammatory cytokine IL-

10. Additionally, microbial changes were observed, including a

reduction in the abundance of beneficial bacteria such as

Lactobacillus and Blautia, along with decreased production of

SCFAs, indicating impaired intestinal barrier function (155). In

piglets, which serve as a more physiologically relevant model for

humans, 35 days of fructose supplementation resulted in the

downregulation of tight junction-related genes in the ileum and

colon. While overt inflammation was not observed, significant

alterations in gut microbiota composition were noted, including

an increase in Streptococcus and Faecalibacterium in the ileum and

Blautia and Clostridium sensu stricto 1 in the colon. These findings

suggest that the dysfunction of the intestinal barrier may precede

overt inflammation (156). Furthermore, a study that combined both

animal and human data demonstrated the critical role of JAM-A in

maintaining gut barrier integrity. In mice with genetic disruption of

JAM-A, a high-fat, fructose, and cholesterol diet led to more severe

steatohepatitis, characterized by increased gut permeability to

endotoxins, disruption of tight junctions, and intestinal

inflammation. In the same study, reduced JAM-A expression was

also observed in colon biopsies from patients with MASLD, where it

was associated with mucosal inflammation and absent in healthy

individuals, suggesting that the gut-liver axis mechanisms identified

in mice may also be relevant in humans (157).

Recent research has highlighted the role of gut microbiota in

modulating immune responses, particularly T cell balance, in the
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development of hepatic steatosis following fructose consumption. A

study in mice revealed that high-fructose diets induced an

imbalance in T cell populations, with a significant increase in

pro-inflammatory Th1 cells and a decrease in regulatory T (Treg)

cells. This shift in immune balance was accompanied by increased

colonic inflammation and intestinal damage (158). Moreover, the

gut microbiota plays a pivotal role in the modulation of systemic

inflammation and liver metabolism in fructose-induced metabolic

disturbances. Fecal microbiota transplantation from high-fructose

diet-fed mice into recipient animals was shown to alleviate systemic

metabolic dysfunction, suggesting that restoring gut microbiota

balance may help maintain liver and intestinal immune

homeostasis (159).
5.4 High cholesterol diets

Cholesterol, an essential lipid predominantly obtained from

animal derived foods such as yolks, shellfish, red meats, pork, and

various dairy products, has drawn considerable attention for its role

in the progression of MASLD. While cholesterol is necessary for

numerous cellular functions, excessive intake especially from foods

rich in cholesterol has been associated with the advancement of

MASLD. Studies indicate that individuals with elevated cholesterol

intake have a higher risk of developing fatty liver and experiencing

more severe liver complications, highlighting the need for dietary

changes to mitigate further liver damage (160).

Excessive cholesterol intake directly contributes to hepatic lipid

accumulation, a hallmark of MASLD. Studies have demonstrated that

high cholesterol consumption induces steatotic changes in

hepatocytes, leading to metabolic dysregulation and cellular stress.

Cholesterol-induced lipotoxicity disrupts mitochondrial function,

impairing oxidative phosphorylation and energy balance, which

contributes to the progression of liver damage and inflammation.

Experimental studies in murine models have shown that high

cholesterol diets increase liver weight and promote inflammatory

responses in liver tissues (161, 162). Furthermore, experimental

studies in murine models have shown that high cholesterol diets

result in increased liver weight and elevated serum levels of leptin and

IL-6, which are indicative of the inflammatory response in liver tissues

(161). Furthermore, a separate murine model of MASH fed a high fat,

cholesterol, and cholic acid diet demonstrated that after 1 week, mice

exhibited increased oxidative stress, liver steatosis, and systemic

inflammation, which worsened after 3 weeks of diet induction

(162). Moreover, cholesterol accumulation within hepatocytes

promotes lipotoxicity, contributing to hepatocyte dysfunction and

apoptosis. This process is largely mediated by oxysterols, toxic

cholesterol derivatives that impair mitochondrial function and

disrupt cellular energy production. Mitochondrial dysfunction, in

turn, exacerbates liver injury and facilitates progression from simple

steatosis to more advanced stages of MASLD. Additionally, the

presence of cholesterol crystals in the liver has been shown to

damage hepatocytes and activate inflammatory signaling pathways,

including hypoxia-inducible factor 1-alpha (HIF-1a), thereby

aggravating liver inflammation and fibrosis (163, 164).
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Dietary cholesterol contributes not only to disruptions in

hepatic lipid metabolism but also to the development of insulin

resistance, a critical factor in MASLD progression. Evidence from

animal studies indicates that excessive cholesterol intake impairs

hepatic insulin signaling, which leads to fat accumulation in liver

tissue and promotes metabolic dysfunction. Under insulin-resistant

conditions, the liver continues to drive lipid synthesis while

inadequately suppressing glucose production, contributing to

me t abo l i c imba l an c e s su ch a s hype r g l y c em i a and

hypertriglyceridemia features commonly observed in MASLD

(165). Additionally, experimental models have demonstrated that

high-fat, high-cholesterol diets rapidly induce liver inflammation,

steatosis, and fibrosis, with significant impacts on liver function and

immune cell populations. The use of a high-fat, high-cholesterol

diet in murine models has been shown to lead to liver inflammation

and MASH within a short timeframe, providing a rapid method to

evaluate potential therapeutic agents for MASLD (166).

In addition to its direct impact on hepatic lipid metabolism,

dietary cholesterol also influences gut microbiota composition,

which contributes to systemic inflammation and hepatic injury.

High cholesterol diets in animal models have been shown to alter

the gut microbiota, increasing the abundance of pro-inflammatory

bacteria such as Mucispirillum and Desulfovibrio, while reducing

beneficial microbes such as Bifidobacterium and Bacteroides. This

microbial imbalance has been linked to increased intestinal

permeability, allowing endotoxins to enter the bloodstream and

induce systemic inflammation. The resultant inflammation

exacerbates liver injury and accelerates the progression of

MASLD (167, 168). Moreover, experimental studies have shown

that a high-cholesterol diet aggravates intestinal barrier

dysfunction, as evidenced by studies in murine models that

demonstrate significant disruption in tight junction proteins, such

as occludin and ZO-1. These disruptions are mediated by the

modulation of sterol regulatory element-binding protein 2

(SREBP2), which regulates the endocytic degradation of tight

junction proteins, leading to greater gut permeability (169).

Interestingly, the activation of the inflammasome by cholesterol

intake further contributes to intestinal inflammation. Studies on

both mice and zebrafish have shown that dietary cholesterol triggers

acute inflammatory responses in the intestine, marked by the

activation of IL-1b and recruitment of myeloid cells. This local

inflammation initiates a cascade of immune responses that

exacerbate gut permeability and contribute to the translocation of

endotoxins into systemic circulation, which subsequently worsens

liver injury (170).
5.5 Omega-3 fatty acids

Omega-3 fatty acids, found in fatty fish like salmon and

mackerel, as well as walnuts and flaxseeds, support hepatic lipid

metabolism, reduce inflammation, and regulate fat metabolism.

Meta-analyses suggest that fish oil-derived omega-3 fatty acids

show promise in MASLD management, indicating their potential

as a therapeutic strategy (171). Omega-3 fatty acids protect against
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hepatic steatosis by regulating lipogenesis and inflammation. In a

murine model of total parenteral nutrition-induced liver injury,

omega-3 supplementation reduced fat accumulation and improved

liver function, with enteral administration showing the most

significant protective effect (172).

Several meta-analyses further support the therapeutic effects of

omega-3 polyunsaturated fatty acids (PUFAs) in MASLD. One

study demonstrated that omega-3 PUFA supplementation

significantly reduced hepatic lipid accumulation and AST levels,

although its impact on ALT was not statistically significant (173).

Another meta-analysis involving 10 randomized controlled trials

with 577 MASLD patients found that omega-3 PUFAs reduced liver

fat content, gamma-glutamyl transferase (GGT) levels, triglycerides

(TG) and increased high-density lipoprotein (HDL). However, they

did not show a significant impact on ALT, AST, total cholesterol

(TC), or low-density lipoprotein (LDL) levels (174). A recent

clinical study in individuals with type 2 diabetes and MASLD

showed that 12 weeks of omega-3 supplementation resulted in

notable decreases in liver fat accumulation, lipid storage markers,

and abdominal fat levels (175). Additionally, a large UK Biobank

cohort study found that omega-3 supplementation was linked to a

reduced risk of liver diseases, such as MASLD, alcoholic liver

disease, and liver failure, with more pronounced effects in women

and individuals carrying the PNPLA3 rs738409 risk allele (176).

These findings suggest that omega-3 PUFAs may help reduce

hepatic lipid accumulation and metabolic dysfunction in MASLD,

highlighting the need for further clinical trials to establish optimal

dosing and long-term efficacy.

Omega-3 polyunsaturated fatty acids (PUFAs) have been

implicated not only in hepatic metabolic regulation but also in

the modulation of the gut-liver axis, particularly through their

impact on intestinal barrier function. Evidence from human

studies indicates an inverse association between omega-3 intake

and serum zonulin concentrations, suggesting a potential role in

enhancing epithelial barrier integrity (177). In a sub-analysis of the

LIBRE clinical trial, greater adherence to a Mediterranean diet

enriched in omega-3 fatty acids was linked to elevated plasma

levels of docosahexaenoic acid (DHA), alongside reductions in

plasma lipopolysaccharide-binding protein (LBP) and fecal

zonulin both markers associated with intestinal permeability.

While these improvements were statistically significant, their

magnitude was somewhat less pronounced compared to the

effects attributed to short-chain fatty acid (SCFA) production (178).

Complementary findings from preclinical studies have further

elucidated the mechanisms by which omega-3 PUFAs exert their

barrier-protective effects. In senescence-accelerated mouse prone 8

(SAMP8) models, chronic dietary supplementation with

eicosapentaenoic acid (EPA) and DHA mitigated age-associated

increases in intestinal permeability, partially through restoration of

microbial diversity and enrichment of SCFA-producing bacteria,

thereby enhancing epithelial integrity (179). Similar effects were

observed in mice fed a high-fat diet, where omega-3 intake

preserved tight junction architecture, increased goblet cell

numbers, and attenuated colonic and systemic inflammation by

suppressing TLR4/NF-kB signaling pathways (180). Moreover, in a
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rat model of obstructive jaundice, omega-3 treatment improved

mucosal epithelial morphology and goblet cell density while

reducing inflammation via downregulation of the HMGB1/TLR4/

NF-kB axis, ultimately supporting both intestinal and hepatic

recovery (181). Together, these animal studies underscore the

mechanistic plausibility of the gut barrier stabilizing effects

observed in human data, and highlight the role of omega-3

PUFAs in modulating epithelial junction proteins, mucosal

immune responses, and key inflammatory signaling networks.
5.6 Polyphenols

Polyphenols, a diverse group of plant-derived compounds

abundant in fruits such as berries and grapes, vegetables like

spinach and broccoli, and beverages like green tea, are potent

antioxidants known for their anti-inflammatory properties. These

compounds have garnered attention for their potential therapeutic

effects in managing MASLD. Many reviews and meta-analyses have

studied the effects of polyphenols on MASLD, showing promising

results but also some inconsistencies that require further research.

A comprehensive meta-analysis assessed the impact of eight

different polyphenolic compounds, such as curcumin, resveratrol,

naringenin, anthocyanins, hesperidin, catechins, silymarin, and

genistein, in patients with MASLD. Curcumin was found to

significantly reduce BMI, liver enzymes (AST, ALT), TG, TC, and

HOMA-IR without adverse effects. Similarly, naringenin reduced

TG, TC, and LDL-C levels and enhanced HDL-C, though it had

minimal impact on liver enzyme activity. Catechin and hesperidin

also improved metabolic parameters, while silymarin effectively

reduced hepatic fat accumulation and liver stiffness (182).

However, the overall analysis indicated inconsistencies among

randomized controlled trials (RCTs), necessitating further studies.

Another systematic review examined 29 RCTs involving 1,840

pat ients and confirmed that curcumin and turmeric

supplementation improved liver enzymes, inflammatory

cytokines, lipid profile, and insulin resistance. Silymarin

consistently reduced liver enzymes and lipids but did not

significantly alter inflammatory markers. Resveratrol showed

inconsistent results, while hesperidin and naringenin improved

lipid and liver enzyme profiles (183). These findings suggest that

polyphenol supplementation may aid liver disease management, but

optimal dosages and treatment durations remain undetermined.

A cross-sectional study assessed the correlation between

polyphenol intake and disease prevalence in a large cohort of

9,894 adults. Increased consumption of total polyphenols,

phenolic acids, and lignins was linked to a reduced risk of liver

disease, especially in women. However, total flavonoid intake did

not show a significant association (184). These results suggest that

polyphenol-rich diets could play a preventive role, but

interventional studies are needed to confirm causality.

Polyphenols are essential in influencing the balance of intestinal

microbiota and supporting the integrity of the gut barrier, which is

essential for overall health, including the management of MASLD

and MASH. Certain polyphenolic compounds, including
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chlorogenic acid, curcumin, catechins from green tea, naringenin,

quercetin, and resveratrol, have been found to beneficially affect gut

health and the gut-liver interaction, providing potential therapeutic

avenues for managing metabolic disorders.

Chlorogenic acid (CGA), a compound found in coffee, supports

metabolic health by influencing gut microbiota and liver function.

In preclinical MASH models, CGA improves liver health by

reducing liver and blood lipids and inflammation. This effect is

largely attributed to CGA’s ability to regulate the gut microbiota,

promoting the growth of beneficial bacteria like Bacteroides and

Akkermansia, while inhibiting harmful species like Firmicutes

(185). In a separate study on high fat diet induced MASLD in

mice, CGA administration not only alleviated hepatic steatosis and

inflammation but also reduced serum transaminase levels, fasting

blood glucose, and blood lipids. Additionally, CGA reversed the

activation of the TLR4 signaling pathway and reduced

inflammatory cytokines, including TNF-a, IL-1, IL-6, and TNF-b,
in the liver. This effect was linked to an increase in gut microbiota

diversity, particularly promoting Bifidobacterium and reducing

Escherichia coli. Furthermore, CGA enhanced intestinal barrier

integrity by upregulating tight junction proteins, such as Occludin

and ZO-1, in intestinal tissue (186). Lastly, in a high L-carnitine

feeding mouse model, CGA was found to inhibit the formation of

trimethylamine-N-oxide (TMAO), a compound known to

contribute to liver dysfunction. By reducing TMAO levels, CGA

mitigated liver injury markers and inflammation. The gut

microbiota composition was also remodeled, with an increase in

beneficial bacteria like Bacteroides and Akkermansia, and a decrease

in harmful species such as Firmicutes and Erysipelotrichaceae. This

microbiota remodeling, combined with CGA’s antioxidant and

anti-inflammatory properties, contributed to improved liver

health and reduced liver enzyme levels (AST, ALT) (187).

Curcumin, a polyphenolic compound derived from Curcuma

longa, is known for its antioxidant, anti-inflammatory, and

hepatoprotective properties. Studies have demonstrated that

curcumin modulates the gut microbiota by increasing beneficial

bacteria such as Lactobacillus and reducing harmful species like

Proteobacteria (188, 189). In a high-fat diet (HFD)-induced rat

model of MASLD, curcumin alleviated hepatic steatosis and

metabolic endotoxemia, and improved intestinal barrier integrity

by upregulating tight junction proteins such as Occludin and ZO-1

(188). In a comparative study between curcumin and metformin in

HFD-induced obesity in rats, both compounds were found to

attenuate hepatic fat accumulation, reduce the Firmicutes/

Bacteroidetes ratio, increase the abundance of beneficial bacteria

including Butyricicoccus and Lactobacillus, and decrease

opportunistic pathogens. These microbiota changes were

accompanied by improvements in metabolic parameters and

reductions in inflammatory cytokines, such as IL-6, IL-1b, and
TNF-a (189).

Green tea catechins, particularly epigallocatechin gallate

(EGCG), are well-known for their antioxidant properties and

potential to modulate gut microbiota. In mouse models of

MASH, EGCG supplementation has been shown to significantly

alter the intestinal microbiota composition. Specifically, EGCG
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promotes the growth of beneficial bacteria such as Akkermansia

while reducing harmful species, including Firmicutes (190, 191).

Additionally, EGCG has been found to improve liver health by

reducing liver triglyceride content and fatty lesions, as well as

alleviating dysregulated bile acid metabolism. This effect is

associated with a shift in microbial composition, with EGCG

increasing the abundance of genera like Adlercreutzia and

A l l o b a c u l um , a n d d e c r e a s i n g t h e a b u n d a n c e o f

Desulfovibrionaceae (192). Moreover, EGCG enhances gut barrier

function by influencing gut microbiota and bile acid metabolism,

particularly by improving the balance of primary and conjugated

bile acids. It has been suggested that EGCG’s beneficial effects on

liver health are mediated, in part, through microbiota-driven

changes in bile acid composition, which can contribute to the

suppression of hepatic steatosis (191, 192).

Naringenin, a flavonoid found in citrus fruits, positively

influences gut microbiota by promoting the growth of beneficial

bacteria such as Allobaculum and reducing harmful species like

Fusobacterium (193). It also enhances gut barrier integrity, reduces

liver fat accumulation, and alleviates inflammation. In a study

conducted on C57BL/6J mice, naringenin supplementation

reduced body weight gain, liver fat accumulation, and lipogenesis,

while improving plasma biochemical parameters in high-fat diet-

fed mice. Analysis of the gut microbiota showed that naringenin

altered the microbial community composition, increasing beneficial

bacteria and decreasing harmful ones. Spearman’s correlation

analysis revealed that bacteria such as Allobaculum, Alloprevotella,

and Butyricicoccus were negatively correlated with serum lipid

levels, while Campylobacter, Faecalibaculum, and Fusobacterium

showed positive correlations (193). Further studies indicate that

naringenin enhances intestinal barrier function by promoting the

expression and cytoskeletal association of tight junction proteins in

Caco-2 cells. Naringenin significantly increased the expression of

claudin-4 and other tight junction proteins such as occludin and

claudin-1, which are essential for maintaining intestinal integrity

(194). Additionally, naringenin supplementation in colitic mice

demonstrated protective effects on the intestinal barrier,

attenuating the effects of dextran sulfate sodium (DSS) induced

colitis by reducing inflammation and improving tight junction

integrity. Naringenin supplementation attenuated the increase in

colonic permeability and prevented the disruption of tight junction

protein expression, including occludin and claudin-3, which are

critical for maintaining the intestinal epithelial barrier. By

stabilizing these TJ proteins, naringenin reinforced the intestinal

barrier function. Additionally, naringenin reduced the expression of

inflammatory cytokines, such as IL-6 and IL-17A, and mitigated the

clinical and histopathological signs of colitis, suggesting its dual role

in both barrier protection and inflammation modulation (195).

Quercetin, a flavonoid found in fruits and vegetables, has

demonstrated beneficial effects on gut microbiota composition and

liver health, particularly in animal models of MASLD. In mice fed a

high-fat diet, quercetin and its glycoside derivatives—especially

isoquercetin—promoted the growth of beneficial bacteria such as

Lactobacillus, Bifidobacterium, and Akkermansia, while counteracting

dysbiosis commonly associated with disease progression (196). These
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microbial changes were accompanied by improved gut barrier function

and reduced levels of systemic inflammation. In the same murine

model, quercetin administration led to a reduction in plasma LPS levels

and suppression of TLR4–NF-kB signaling, indicating decreased gut-

derived endotoxemia and leaky gut-associated inflammation (197). In a

separate rat model of early-stage MASLD, quercetin treatment was

associated with reduced body fat accumulation, improved hepatic lipid

profile, modulation of inflammatory gene expression, and restoration

of gut microbiota composition (198). Several studies have highlighted

the beneficial effects of quercetin on intestinal epithelial integrity. In

vitro experiments using human intestinal epithelial Caco-2 cells

demonstrated that quercetin enhances barrier function by increasing

transepithelial resistance and promoting the expression andmembrane

localization of tight junction proteins such as claudin-4, occludin, and

ZO-2 (199, 200). These effects were associated with a reduction in

paracellular permeability and involved modulation of the PKCd
signaling pathway (200). In aged breeder chickens, the combination

of dietary quercetin and vitamin E improved intestinal morphology

and reduced serummarkers of barrier disruption, such as D-lactate and

diamine oxidase, while enhancing the expression of mucosal tight

junction proteins including occludin, claudin-1, and ZO-1 (201).

Furthermore, in a mouse model of fructose-induced hepatic steatosis,

quercetin supplementation not only reduced hepatic lipid

accumulation and inflammatory cytokine levels but also led to

favorable shifts in gut microbiota composition such as a decreased

Firmicutes/Bacteroidetes ratio and increased abundance of

Parabacteroides and Alloprevotella. These changes were accompanied

by elevated levels of propionic acid, suggesting enhanced microbial

fermentation activity and improved gut barrier function (202).

Resveratrol, found in grapes and berries, exhibits anti-

inflammatory and antioxidant properties. Recent studies suggest that

its beneficial effects on gut microbiota and intestinal barrier integrity

may contribute to the amelioration of hepatic steatosis and metabolic

disturbances. In a study using a mouse model of MASLD, resveratrol

supplementation led to beneficial alterations in the gut microbiota.

Specifically, treatment increased the abundance of Bacteroidetes and

Bifidobacterium, while reducing Firmicutes. Functional metagenomic

analysis based on 16S rRNA sequencing revealed a downregulation of

microbial genes involved in lipid and glucose metabolism, suggesting a

shift toward a metabolically favorable gut microbial profile (203). A

comparative study employing animal models investigated the effects of

resveratrol and its glycosylated precursor, polydatin, on gutmicrobiota-

derived metabolites. The study reported increased levels of short-chain

fatty acids (SCFAs), particularly valeric and caproic acid, in the feces of

treated animals. These SCFAs were associated with activation of AMP-

activated protein kinase (AMPK), an important regulator of lipid

metabolism, indicating that resveratrol and its derivatives may

improve hepatic lipid handling via microbiota-mediated SCFA

production (204). In another mouse study modeling high fat diet

induced MASLD, resveratrol administration improved intestinal

barrier function. This was evidenced by enhanced intestinal

morphology and increased expression of tight junction proteins such

as ZO-1 and occludin. These changes were accompanied by reduced

serum levels of LPS, a biomarker of increased intestinal permeability,

and attenuated liver inflammation, suggesting that resveratrol reduces
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endotoxemia and systemic inflammation by restoring gut barrier

integrity (205). A recent animal study investigated how resveratrol

improves MASLD in high fat diet fed mice. Treatment reduced body

weight, hepatic steatosis, and insulin resistance, while enhancing gut

barrier integrity by improving mucosal morphology and increasing

barrier protein expression. The study also showed resveratrol

modulated gut microbiota, suppressing harmful bacteria (e.g.,

Desulfovibrio, Alistipes) and enriching SCFA-producing bacteria (e.g.,

Allobaculum, Bacteroides). Microbiota transfer from resveratrol-treated

mice to untreated mice reproduced these benefits, highlighting a

microbiota-mediated mechanism. However, low-dose resveratrol was

less effective in preventing steatohepatitis, indicating dose dependency

in its therapeutic effects (206).
5.7 Probiotics

Probiotics are live bacteria that provide health benefits if taken

in sufficient quantities. These helpful microorganisms are typically

present in fermented products such as yogurt, kefir, kimchi, miso,

and some cheeses. Additionally, probiotics are available in dietary

supplements and pharmaceuticals that promote gut health (207).

The gut microbiota, consisting of trillions of microorganisms, plays

a key role in maintaining metabolic and immune balance. Its

composition is influenced by various factors, including diet,

environment, and early microbial exposure during birth (208,

209). Major bacterial phyla include Firmicutes and Bacteroidetes,

with archaea primarily represented by Euryarchaeota (210).

Probiotics help modulate this microbiota composition, strengthen

the intestinal barrier, and regulate immune functions (211). Several

animal studies have demonstrated the beneficial effects of probiotics in

the context of MASLD. In a murine model of MASLD/MASH induced

by high-fat diet, oral administration of a proprietary probiotic mixture,

Prohep, was shown to alleviate hepatic steatosis, improve plasma lipid

profiles, and reduce hepatic lipogenesis and cholesterol biosynthesis

gene expression. Prohep also modulated the gut microbiota, altered bile

acid profiles, and increased fecal SCFAs. In a prolonged high fat diet

model, Prohep further ameliorated hepatic inflammation and fibrosis,

indicating potential in preventing MASLD progression to MASH

(212). In a separate rat model, probiotic rich yogurt containing

Lactococcus rhamnosus, Lactobacillus plantarum, Lactobacillus

acidophilus, and Bifidobacterium lactis significantly attenuated high

fat diet induced MASLD. Animals treated with the multi-strain yogurt

exhibited improved metabolic and liver function markers, including

reduced cholesterol, triglycerides, LDL, glucose, insulin, and ALT levels.

Liver histology showed near-normal architecture with reduced

steatosis. Notably, the probiotic formulation also improved the gut-

liver axis by lowering coliform and Staphylococcus counts in the small

intestine (213). In vitro mechanistic studies further support these

findings. A human “leaky gut-on-a-chip” model mimicking cytokine-

induced epithelial barrier dysfunction demonstrated that probiotic

administration restored tight junction protein expression (ZO-1,

occludin), enhanced mucus production, and reduced pro-

inflammatory signaling pathways (p65, pSTAT3, MYD88). This

model offers insight into the barrier restorative effects of probiotics
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under inflammatory conditions. Similarly, in LPS challenged piglets,

Lactobacillus supplementation improved intestinal histology,

upregulated tight junction proteins, reduced pro-inflammatory

cytokines (IL-1b, IL-6, TNF-a), and increased anti-inflammatory

mediators (IL-10, Arg1). These effects were partially mediated

through the modulation of macrophage phenotypes and enhanced

SCFA signaling via GPR43 (214).

Despite these promising results from animal and in vitro studies,

the clinical evidence for the efficacy of probiotics in treating MASLD

remains inconsistent. Several randomized, double-blind, placebo-

controlled studies have assessed the effects of probiotics on liver

function, metabolic parameters, and disease severity. In one set of

studies, probiotics were found to reduce the percentage of patients with

moderate and severe fatty liver, but they did not significantly improve

liver enzyme levels such as ALT, AST, TG, or insulin IR (215, 216).

This suggests that while probiotics might help in modulating the

progression of fatty liver, their effects on key metabolic markers

remain inconsistent. Nevertheless, other clinical trials have reported

more favorable outcomes. However, other clinical trials have provided

more positive results. A 3-month study demonstrated that probiotic

supplementation significantly improved several liver function markers.

Additionally, the probiotic group showed better fecal flora conditions

compared to the placebo group, indicating potential benefits for liver

function, glucose, and lipid metabolism in MASLD patients (217).

Similarly, a 12-week study showed significant reductions in TC, ALT,

AST, GGT, and alkaline phosphatase (ALP) levels following probiotic

intervention (218).

Meta-analysis studies also provide valuable insights. A meta-

analysis involving 21 randomized clinical trials with 1,037 MASLD

patients, demonstrated that probiotics significantly reduced liver

enzyme levels, blood lipid concentrations, and markers of glucose

metabolism. This suggests a beneficial role of probiotics in improving

hepatic steatosis. However, the study noted that probiotics did not

significantly affect BMI, inflammatory markers, or insulin resistance,

highlighting the need for more research into the long-term metabolic

effects of probiotics (219). Another systematic review involving 34

studies with 12,682 individuals identified beneficial effects of probiotics

on liver health, lipid regulation, and inflammatory markers in

individuals with MASLD. The study reported significant reductions

in markers of hepatic fibrosis, ALT, AST, ALP, TG, and TNF-a (220).

These findings suggest that microbiota-targeted therapies, including

probiotics, could contribute to delaying the advancement of MASLD.

6 Disruption of intestinal barrier
integrity and its role in the
progression of MASLD

Maintaining the integrity of the gut epithelial barrier is essential

in regulating immune responses and modulating inflammation.

Epithelial barrier dysfunction, microbial translocation, immune cell

activation, and disruption of tight junction proteins are among the

processes involved in MASLD (Table 2). In healthy states, this

barrier prevents the movement of microbial substances from the gut

into the bloodstream, which helps control immune system
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activation. In MASLD, a weakened barrier allows microbial

molecules like LPS to pass through and reach the portal

circulation. Once in the liver, these microbial components serve

as potent inducers of hepatic inflammation. In MASLD, disruption

of this epithelial architecture facilitates microbial translocation and

promotes systemic and hepatic inflammation (221, 222).

Clinical studies have consistently demonstrated impaired

intestinal barrier integrity in MASLD. Reduced expression of TJ

proteins (ZO-1 and occludin) in intestinal epithelial cells has been

documented in MASLD patients, particularly in those with elevated

serum transaminases, and inversely correlates with ALT and AST

levels, suggesting that epithelial barrier dysfunction is associated

with hepatocellular injury (223). A recent meta-analysis further

confirmed significantly elevated circulating LPS levels in both

simple steatosis and MASH patients, which correlated with

histological severity, serum C-reactive protein (CRP), and

markers of insulin resistance (224). These findings suggest that

circulating LPS may serve as both a surrogate biomarker of

increased intestinal permeability and an active driver of systemic

and hepatic inflammation in MASLD. In addition, human studies

using intestinal permeability tests (e.g., 51Cr-EDTA or lactulose-

mannitol ratio) and duodenal TJ protein expression analyses

demonstrated significantly increased gut permeability and

reduced ZO-1 or claudin expression in MASLD patients

compared to healthy controls, even at early disease stages. These

findings underscore the critical role of TJ dysfunction in MASLD

progression, with alterations in TJ integrity directly correlating with

disease severity (225, 226).

Experimental models of MASLD provide mechanistic support for

the causal role of gut barrier dysfunction in disease pathogenesis. Diets

rich in saturated fats and fructose induce intestinal dysbiosis

characterized by an increased abundance of gram-negative bacteria

and a reduction in beneficial commensals (e.g., Firmicutes and

Akkermansia muciniphila), leading to enhanced LPS production and

compromised epithelial renewal (110, 227, 228). Concomitant

reductions in goblet cell density and mucin secretion further impair

the mucosal defense layer, facilitating microbial interaction with

epithelial surfaces (227). Proteomic analysis of small intestinal

epithelial cells from high-fat diet-fed mice revealed downregulation

of TJ-associated proteins, including claudin-7 (Cldn7), and disruption

of the EpCAM/Cldn7 complex, linking diet-induced molecular

changes directly to increased gut permeability (229).

LPS translocation activates hepatic TLR-4 signaling, promoting

the expression of proinflammatory cytokines (e.g., TNF-a, IL-6)
and fibrosis-related mediators (e.g., TGF-b1, a-SMA) (230, 231).

TLR-4 activation has also been shown to upregulate hepatic

glutaminase 1 (GLS), increasing intrahepatic ammonia

production, which exacerbates mitochondrial dysfunction,

oxidative stress, and hepatocellular injury. Recent studies

demonstrated that pharmacological inhibition of TLR4 or GLS

attenuates hepatic inflammation and fibrosis and reduces systemic

ammonia levels in both in vitro hepatocyte cultures and murine

models of MASLD (62).

Beyond epithelial integrity, the gut-vascular barrier (GVB) a

specialized endothelial interface regulating the passage of
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macromolecules into the portal circulation is also impaired in

MASLD. Increased expression of plasmalemma vesicle-associated

protein-1 (PV-1), an indicator of endothelial hyperpermeability, has

been detected in intestinal tissues of MASLD patients (232).

Experimental disruption of WNT/b-catenin signaling, a pathway

essential for GVB maintenance, results in LPS dissemination into

the portal vein and exacerbates hepatic inflammation in murine

models fed Western diets (233, 234). These findings suggest that

combined epithelial and vascular barrier dysfunction underlies the

endotoxemic phenotype observed in MASLD.

The disruption of epithelial barrier integrity is associated with

both microbial translocation and immune cell imbalances. This

condition is particularly characterized by a reduction in regulatory

T cells (FoxP3+ Tregs) and an increase in Th1 and CD8+ T cells

within the lamina propria (13, 235). These immunological

alterations contribute to the formation of a pro-inflammatory

microenvironment, which further compromises epithelial integrity

and facilitates microbial translocation. In recent years, findings have

suggested that B cells originating from the gut microbiota may also

play a role in the development of liver inflammation and fibrosis.

Single-cell RNA sequencing analyses performed in MASH model

mice have revealed that intrahepatic B cells exhibit a pro-

inflammatory transcriptional profile. This suggests that these cells

are activated in a manner that supports hepatic inflammation.

Consistent with these findings, B cell depletion has been reported

to reduce MASH progression, whereas the adoptive transfer of B

cells isolated from MASH livers was shown to recapitulate disease

features in recipient mice. Additionally, fecal microbiota

transplantation from MASLD patients into recipient mice has

been shown to promote intrahepatic B cell accumulation and

activation, thereby facilitating MASH progression (236). In

another study, an increase in active B cells was observed in the
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gastrointestinal tissues of both MASH model mice and MASH

patients, while B cell depletion was shown to prevent or reverse

MASH pathology and liver fibrosis. It has been proposed that IgA

secretion activates CD11b+CCR2+F4/80+CD11c−FcgR1+ hepatic

myeloid cells, thereby initiating fibrotic processes. Indeed, in

MASH patients, a positive correlation has been reported between

IgA levels, hepatic myeloid cell activation, and the degree of liver

fibrosis (237). Mast cells residing in the intestinal mucosa also play a

critical role in this process by releasing histamine, cytokines, and

proteases such as tryptase and chymase, thereby promoting

increased intestinal permeability. These proteases have been

reported to degrade TJ proteins and suppress the expression of

junctional adhesion molecule A, leading to enhanced epithelial

permeability (238). Experimental models have demonstrated that

histamine directly increases gut permeability and induces bacterial

translocation, thereby promoting systemic inflammation (239).

The disruption of the intestinal epithelial barrier initiates a cascade

of events that contribute to the progression of MASLD. The weakening

of tight junction proteins (occludin, ZO-1, JAM) increases intestinal

permeability, allowing microbial products particularly LPS to enter the

systemic circulation. Alterations in the gut microbiota amplify this

cycle, leading to increased local and systemic immune activation, which

accelerates disease progression. In the gut, Th1 and CD8+ T cells

produce proinflammatory cytokines that contribute to the

inflammatory response. LPS, as a pathogen-associated molecular

pattern, is recognized by the immune system, activating Kupffer cells

and hepatic stellate cells in the liver. This activation enhances

inflammation and drives the transition from steatosis to

steatohepatitis and fibrosis (Figure 3). The gut-liver axis plays a

crucial role in MASLD progression, suggesting that targeting the

intestinal barrier and restoring microbial balance may offer potential

therapeutic strategies to halt disease progression.
TABLE 2 Mechanisms linking disruption of intestinal barrier in MASLD.

Process/Mechanism Description Key Findings/References

Intestinal Epithelial Barrier Dysfunction Impaired integrity of tight junctions (ZO-1, occludin)
increases permeability, allowing microbial components like
LPS to enter the bloodstream.

- Reduced ZO-1 and occludin expression in MASLD
patients (223)
- Increased circulating LPS in steatosis and MASH
patients (224)

Gut Microbiota Dysbiosis Alterations in gut microbiota composition increase the
abundance of gram-negative bacteria, leading to enhanced
LPS production.

- Diets rich in saturated fats and fructose induce microbial
dysbiosis and increased LPS production (110, 227, 228)

Immune Activation Increased microbial components activate immune
responses, including proinflammatory cytokine release and
immune cell imbalance.

- Reduced regulatory T cells (FoxP3+ Tregs) and increased
Th1/CD8+ T cells (13, 235) -Intestinal B cell
activation (236, 237)

Histamine and Mast Cells Mast cells release histamine, cytokines, and proteases (e.g.,
tryptase, chymase), increasing intestinal permeability and
promoting bacterial translocation.

- Histamine increases gut permeability and induces
translocation (238, 239)

Liver Inflammation and Fibrosis LPS and microbial metabolites activate Kupffer cells and
hepatic stellate cells, promoting inflammation and fibrosis.

- TLR-4 activation and upregulation of fibrogenic
mediators (TGF-b1, a-SMA) (230, 231)

Gut-Vascular Barrier (GVB) Impairment Altered GVB increases intestinal permeability, allowing LPS
to reach the liver, further promoting inflammation.

- Increased expression of PV-1 in MASLD patients (232)
- Disruption of WNT/b-catenin signaling enhances LPS
dissemination (233, 235)
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7 Therapeutic strategies targeting the
gut-liver axis

The management of MASLD remains challenging due to the

limited options for targeted treatments. While numerous strategies

focus on lifestyle modifications and pharmacotherapy, further

research is needed to establish effective treatments. Recent

advancements in MASLD research highlight the gut-liver axis as a

key therapeutic target (Table 3).
7.1 Dietary interventions

Dietary habits are fundamental in both the development and

management of chronic liver disease. Studies suggest that diets high

in refined carbohydrates, unhealthy fats, and cholesterol contribute

to the progression of MASLD. Conversely, diets abundant in whole

foods, healthy fats, and lean proteins are associated with a lower risk

of developing the condition (240, 241). One proposed regimen

focuses on a balanced intake of carbohydrates from cereals, fruits,

and vegetables, minimizing fat intake, and using vegetable-based
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fats. Importantly, alcohol consumption and smoking should be

avoided to improve liver health.

Diet can also influence the gut microbiota, a critical factor in

MASLD progression. A healthy diet promotes beneficial shifts in

the microbiome, such as an increase in species like Akkermansia

and Bifidobacterium, which are associated with improved gut

barrier integrity, reduced microbial leakage into the bloodstream,

and improved insulin sensitivity (242, 243). These beneficial shifts

can enhance gut homeostasis and reduce systemic inflammation,

which is pivotal in the treatment of MASLD (244). In a recent study,

it has been highlighted that sulforaphane (SFN), a bioactive

compound found in cruciferous vegetables like broccoli, reduces

weight gain, hepatic inflammation, and steatosis in mice fed high-

fat and fructose diets. The study reports that SFN alters the gut

microbiota composition, increases the expression of the intestinal

barrier protein ZO-1, reduces serum LPS levels, and suppresses the

LPS/TLR4 and endoplasmic reticulum stress pathways.

Consequently, intestinal inflammation is reduced, gut integrity is

preserved, and microbial product translocation to the liver is

prevented. Additionally, SFN was found to decrease LPS levels in

the liver and the associated inflammatory response (66).
FIGURE 3

Disruption of the intestinal epithelial barrier and its impact on metabolic dysfunction-associated steatotic liver disease (MASLD) progression. A
Western diet alters gut microbiota composition, leading to dysbiosis and increased intestinal permeability due to tight junction disruption (occludin,
ZO-1, JAM). This facilitates bacterial translocation and the release of lipopolysaccharides (LPS) into the portal circulation, triggering immune
activation. In the gut, Th1 and CD8+ T cells promote inflammation through interferon-gamma (IFN-g) and tumor necrosis factor-alpha (TNF-a)
secretion. In the liver, Kupffer cells and hepatic stellate cells respond to microbial products by releasing proinflammatory cytokines, recruiting
lymphocytes, and exacerbating hepatic inflammation. These processes contribute to the progression of MASLD, promoting steatohepatitis
and fibrosis.
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7.2 Physical exercise

Physical activity, particularly aerobic and resistance training,

has shown significant benefits in reducing hepatic steatosis and

alleviating cardiovascular risks associated with MASLD (245, 246).

Exercise not only improves liver function directly but also has

systemic effects, such as enhancing gut barrier integrity. Studies

suggest that regular physical activity promotes the proliferation of

beneficial gut microorganisms, enhances immune system function,

and reduces oxidative stress (247, 248). Animal studies have

indicated that exercise can restore gut-liver axis balance by

preserving the intestinal barrier, thereby preventing inflammation

and improving liver health (249, 250). Nevertheless, recent

experimental data indicate that excessive training may exert

deleterious effects on the liver. In a murine model, overtraining-

induced accumulation of lactate in skeletal muscle promoted the

lactylation and phase separation of SORBS3, leading to the

formation of lactate-enriched extracellular vesicles (“lactate

bodies”) that triggered hepatocyte apoptosis and hepatic stellate

cell activation via the MCL1–BAX/BAK signaling pathway (251).
7.3 Gut microbiome modulation

Restoring the balance of the gut microbiota is another therapeutic

avenue for MASLD. Dysbiosis, or microbial imbalance, is a hallmark of

liver diseases, and recent studies have suggested that correcting this

imbalance could alleviate MASLD symptoms. Clinical and preclinical

studies have explored the use of probiotics, demonstrating their

potential in reducing liver fat accumulation and improving metabolic

markers (252, 253). For instance, combining Bifidobacterium and

Lactobacillus strains has demonstrated a reduction in liver cholesterol

and TC levels. Moreover, probiotics may help restore intestinal barrier

function and reduce systemic inflammation, further supporting their
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potential in MASLDmanagement (254). Probiotics influence intestinal

barrier function by regulating the expression of genes and proteins

involved in TJ signaling in intestinal epithelial cells. In vitro and in vivo

studies have reported that probiotics enhance the expression of ZO1,

occludin, and claudin1, thereby strengthening the intestinal barrier and

providing protection against infections (255).
7.4 Fecal microbiota transplantation

Fecal microbiota transplantation (FMT) offers a novel method for

improving gut health, potentially leading to better liver function.

Animal studies have demonstrated that FMT from healthy donors

can reduce liver steatosis and inflammation in MASLD models

(256, 257).

However, clinical trials investigating FMT for MASLD and related

metabolic conditions have yielded mixed results. While some studies

report improvements in gut permeability and reductions in liver fat

accumulation, the clinical outcomes are still inconclusive (258–260). A

randomized, double-blind, placebo-controlled trial conducted in

adolescents with obesity (n = 87) evaluated the effects of a single-

dose oral FMT from lean donors. Although no significant effect was

observed on BMI standard deviation scores at six weeks, a reduction in

android-to-gynoid fat ratio was reported at weeks 6, 12, and 26.

Moreover, post hoc analyses suggested greater resolution of

undiagnosed metabolic syndrome in the FMT group compared to

placebo (258). In a pilot study involving adults with obesity and mild-

to-moderate insulin resistance, participants received weekly oral FMT

or placebo capsules for six weeks. Despite successful engraftment of

donor microbiota persisting up to 12 weeks, no significant

improvements were observed in insulin sensitivity (measured via

hyperinsulinemic-euglycemic clamps), body composition, or glycemic

markers (259). A separate randomized clinical trial directly targeting

MASLD patients compared heterologous FMT (administered via
TABLE 3 Therapeutic strategies targeting the gut-liver axis in MASLD.

Therapeutic
Strategy

Mechanism Impact on MASLD References

Dietary Interventions Balanced diet focusing on whole foods, healthy fats, and lean
proteins, reducing refined carbohydrates, unhealthy fats, and
cholesterol. Promotes beneficial shifts in the gut microbiota.

Inflammation reduction and insulin sensitivity
improvement. Gut barrier integrity enhancement
and microbial leakage reduction.

(66, 240–244)

Physical Exercise Aerobic and resistance training improve liver function and
enhance gut barrier integrity. Regular physical activity
promotes beneficial gut microorganisms.

Hepatic steatosis reduction and systemic inflammation
alleviation, leading to liver health improvement. Potential
risks associated with excessive training.

(245–251)

Gut
Microbiome
Modulation

Probiotics and other microbiome-modulating therapies aim to
restore balance in gut bacteria and improve metabolic markers.

Decreased liver fat accumulation and alleviation of
systemic inflammation, supporting gut barrier function.
Reduction in liver cholesterol and total cholesterol
(TC) levels.

(252–255)

Fecal Microbiota
Transplantation
(FMT)

FMT from healthy donors can restore gut health, potentially
improving liver function.

Liver steatosis and inflammation reduction in MASLD
animal models. Clinical outcomes remain inconclusive.

(256–260)

Bacteriophage
Therapy and
Synthetic Live
Bacterial Therapeutics

Phage therapy targets pathogenic bacteria while preserving
beneficial gut microbiota. Engineered probiotics like
SYNB1020 metabolize toxic compounds.

Enhancement of metabolic and inflammatory markers in
preclinical models.

(261, 262)
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colonoscopy and enemas) to probiotic therapy, with both groups

adhering to lifestyle modifications. FMT was associated with a

reduction in hepatic fat accumulation and improved gut microbiota

composition. Notably, the therapeutic effect was more pronounced in

lean MASLD patients compared to their obese counterparts (260).

While these findings highlight the potential of FMT to modulate gut

microbiota and influence metabolic parameters, the clinical efficacy in

MASLD remains inconclusive. Variations in study design, route of

administration, patient phenotypes, and follow-up durations may

account for the inconsistent outcomes. Further large-scale,

standardized clinical trials are warranted to evaluate the long-term

impact of FMT in MASLD patients.
7.5 Bacteriophage therapy and synthetic
live bacterial therapeutics

Bacteriophage therapy offers a targeted approach to eliminating

pathogenic gut bacteria that contribute to MASLD progression.

Specific phage cocktails are being developed to selectively modulate

gut microbiota without disrupting beneficial bacterial populations

(261). Similarly, engineered probiotics, such as SYNB1020, have

been designed to metabolize toxic intestinal compounds, improving

metabolic and inflammatory markers in preclinical models (262).
8 Conclusion remarks

The progression of MASLD is intricately shaped by a web of factors

that extend beyond the liver itself. Central to its pathogenesis is the

breakdown of the intestinal epithelial barrier, a key player in

maintaining gut homeostasis. When this barrier is compromised,

intestinal permeability increases, allowing harmful microbes and

toxins to infiltrate the bloodstream. This not only exacerbates liver

inflammation and fibrosis but also affects systemic health, linking gut

dysfunction to extrahepatic manifestations of the disease. Dysregulation

in tight junctions, microbiome imbalances, and immune activation at

the gut-liver axis collectively drive the progression of MASLD.

The gut microbiota is central to this complex system, serving as

both a mediator and regulator of immune responses. A well-balanced

gut flora is crucial for establishing immune tolerance and supporting

defense mechanisms, thereby maintaining the health of both the gut

and liver. However, dysbiosis disrupts this balance, leading to

heightened inflammation, metabolic dysfunction, and further

epithelial barrier damage. The intimate relationship between the

immune system, gut microbiota, and epithelial integrity underscores

the need for a comprehensive approach to MASLD that includes both

immune modulation and gut health restoration.

While therapeutic strategies, including dietary modifications and

physical exercise, have shown promising results in improving liver
Frontiers in Immunology 18
function and microbiome composition, much remains to be

understood. The potential of FMT as a therapeutic approach is still

unclear, with varying clinical results emphasizing the necessity for

more research on the mechanisms of microbiota-host interactions. The

future of MASLD management may lie in therapies that restore the

balance between the immune system, the gut microbiota, and epithelial

integrity, unlocking new pathways to alleviate both hepatic and

extrahepatic manifestations of this increasingly prevalent disease.
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