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Introduction: Colorectal cancer (CRC), the third most common cancer

worldwide, often shows limited responsiveness to immunotherapy due to its

predominantly immune-excluded phenotype. Despite increasing insights into

the complex tumor microenvironment (TME), the metabolic heterogeneity of

CRC cells and their interactions with tumor-infiltrating immune cells remain

poorly understood.

Methods: We analyzed 46,374 epithelial cells from 17 CRC patients treated with

PD-1 blockade to develop an amino acid (AA) metabolism score using the AUCell

algorithm. This score was applied to a separate single-cell RNA sequencing

(scRNA-seq) dataset from 23 CRC patients to investigate cell-cell interactions

and functions of tumor-infiltrating immune cells, revealing distinct immune TME

landscapes shaped by tumor metabolism. An in vitro co-culture assay of CRC

cells and CD8+ T cells was performed to validate the findings. Additionally, LASSO

and Cox regression analyses were conducted to construct an AA metabolism-

related risk score for predicting prognosis and drug sensitivity across multiple

bulk transcriptome cohorts.

Results: This study identified a link between elevated amino acid metabolism in

CRC epithelial cells and resistance to PD-1 blockade therapy. A 31-gene AA score

was developed by intersecting differentially expressed genes between

responders and non-responders to PD-1 blockade with amino acid

metabolism-related genes from the Molecular Signature Database (MSigDB).

Using this score, 23 additional CRC samples were classified into high and low AA

score groups. Comparative analysis revealed that the low AA group exhibited a

more robust immune response, characterized by a greater number and stronger

cell-cell interactions. Tumor-infiltrating immune cells in this group

demonstrated enhanced activation and anti-tumor functions. Furthermore,

CD8+ T cells showed increased Granzyme B levels when co-cultured with

CRC cells in which Psat1 or Shmt2 was knocked down. Finally, a machine

learning-derived risk score based on six genes was established to translate

single-cell findings to bulk transcriptomes. This risk score was found to
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correlate with immune checkpoint expression and immune cell infiltration, with

potential implications for predicting prognosis and drug sensitivity.

Conclusion: Our findings highlight the role of elevated epithelial amino acid

metabolism in shaping an immune-suppressive microenvironment, offering

insights for patient stratification and therapeutic decision-making.
KEYWORDS

colorectal cancer, amino acid metabolism, tumor metabolic reprogramming, tumor
immune evasion, immunotherapy, single cell RNA and transcriptome sequencing
1 Introduction

Cancer immunotherapies have revolutionized oncological

treatment, with immune checkpoint blockade (ICB) therapies,

such as PD-1 inhibitors, achieving significant success (1).

However, the efficacy of these therapies varies among cancer

patients and types (2). Colorectal cancer (CRC), often described

as a ‘cold’ tumor for its predominantly immune-excluded

phenotype (3), remains the second leading cause of cancer-related

deaths worldwide (4). CRC patients with defective mismatch repair

or microsatellite instability-high (dMMR/MSI-H) tumors generally

respond better to PD-1 blockade due to a higher tumor neoantigen

load and increased immune cell infiltration (5, 6). In contrast, the

majority of CRC patients with mismatch repair-proficient and

microsatellite-stable (pMMR/MSS) tumors show limited or no

response to ICB therapy, presenting a major challenge to clinical

management and patient survival.

Metabolic reprogramming is a well-established hallmark of

cancer (7). Advances in understanding of the TME reveal that

tumor metabolism not only fuels uncontrolled proliferation but also

facilitates immune evasion (8). Tumor cells compete with immune

cells for nutrients and release specific metabolites into the TME,

which impair the anti-tumor functions of tumor-infiltrating

immune cells (9–11). However, the metabolic heterogeneity of

colorectal epithelium and its interactions with immune cells

remain poorly understood. Nonetheless, scRNA-seq provides an

unprecedented opportunity to investigate key metabolic pathways,

cellular diversity, and phenotypic heterogeneity of various cell types

at single-cell resolution.

In this study, we explored the role of amino acid metabolism in

CRC epithelial cells, revealing its association with response to PD-1

blockade therapy through scRNA-seq. Our analysis identified

distinct immune TME landscapes shaped by tumor amino acid

metabolic reprogramming. We also applied these findings to bulk

transcriptome data, developing an amino acid metabolism-based

risk score that correlates with immune cell infiltration, immune

checkpoint expression, and patient survival. Our study revealed

how tumor cell amino acid metabolism reprogramming promoted

immune evasion by altering the tumor microenvironment, with
02
potential implications for risk stratification and personalized

treatment strategies in CRC.
2 Materials and methods

2.1 Data acquisition

The scRNA-seq datasets were obtained from GSE205506 (12)

and GSE132465 (13) in the Gene Expression Omnibus (GEO)

database (https://www.ncbi.nlm.nih.gov/gds). Bulk mRNA arrays

were also downloaded from GSE39582 (14) in GEO database.

TCGA-COAD bulk RNA sequencing (RNA-seq) data and

survival information were downloaded through UCSC Xena

browser (https://xenabrowser.net/datapages/).
2.2 scRNA-seq data processing and
analysis

Two publicly available scRNA-seq datasets, GSE205506 and

GSE132465, were included in the analysis. From GSE205506, 17

colorectal tumor specimens with deficient mismatch repair/

microsatellite instability-high (dMMR/MSI-H) status were

selected; these samples were collected following neoadjuvant PD-1

blockade therapy (toripalimab). The GSE132465 dataset included

tumor samples from 23 colorectal cancer (CRC) patients who

underwent surgical resection without prior treatment (4 MSI-H

and 19 microsatellite-stable [MSS] cases). Data processing and

analysis were performed using Seurat (v5.0.2) (15). Cells with

fewer than 300 detected genes and genes expressed in fewer than

5 cells were removed. The data were normalized using the

LogNormalize method (scaling factor = 10,000), and the 2,000

most variable genes were identified using the variance-stabilizing

transformation (vst) method. The dataset was scaled, and principal

component analysis (PCA) was carried out using these variable

genes. Batch effects between the two datasets were corrected using

the Harmony algorithm (v1.0) (16), with orig.ident specified as the

batch variable. Harmony was run with default parameters, using the
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top 30 principal components as input. Convergence of integration

was assessed visually, and the effectiveness of batch correction was

evaluated through UMAP plots before and after integration

(Supplementary Figures S1A, 2A). Cell clustering was based on

the first 30 Harmony-corrected principal components. A resolution

of 0.1 was used to identify major cell types, and a resolution of 2.0

was applied for sub-clustering of T cells, B cells, and myeloid cells to

define finer subpopulations. Dimensionality reduction for

visualization was performed using Uniform Manifold

Approximation and Projection (UMAP), with Barnes-Hut t-

Distributed Stochastic Neighbor Embedding (t-SNE) used where

appropriate. Cell types were annotated based on established

canonical marker genes.
2.3 Bulk transcriptome data processing and
analysis

Gene expression levels in the TCGA-COAD dataset were

normalized to TPM values and log-transformed using log2(TPM

+ 1). Microarray data from the GSE39582 dataset (14), obtained via

the Affymetrix Human Genome U133 Plus 2.0 Array, underwent

log2 transformation as well. Only patients with available survival

data, excluding those with survival times shorter than 30 days, were

included in the analysis.
2.4 Differential expression and pathway
enrichment analysis

DEGs between NR vs R and high AA vs low AA groups in the

scRNA-seq data were detected using Seurat’s FindMarkers function

(default parameters: log2 fold change threshold = 0.1). Adjusted p-

values were calculated for each gene. GO enrichment analysis of

upregulated and downregulated significant DEGs (adjusted P < 0.05

and log2 fold change > 0 or < 0, respectively) was conducted

separately using the clusterProfiler package (v4.13.0) (17) to identify

significantly enriched biological processes. The enrichment score

was determined by the proportion of DEGs within a given gene set.

Gene set enrichment analysis (GSEA) was conducted via the

GSEABase package (v1.66.0) (18), with genes ranked by fold

change. Pathways with an adjusted P < 0.05 were deemed

significantly enriched, with results visualized as bar plots.
2.5 Identifying of genes for AA score
development

A total of 142 amino acid metabolism-related genes were

retrieved from the MsigDB based on the GSEA results for non-

response (NR) and response (R) groups in the epithelial cells from

the GSE205506 dataset. These 142 genes were then intersected with

the epithelial differentially expressed genes (DEGs) between the NR
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and R groups, resulting in the identification of 31 genes. These 31

genes were subsequently used to construct the amino acid (AA)

score using the AUCell_calcAUC function from the AUCell

package (v1.26.0) (19).
2.6 Patient classification into low and high
AA groups

From the epithelial cell cluster of the GSE132465 dataset (13), a

total of 17,455 cells were selected. The AA score for each epithelial cell

was calculated using the 31 amino acid-related genes identified

earlier, with the AUCell_calcAUC function from the AUCell

package (v1.26.0) (19). The mean AA score for each patient was

then computed to reflect the patient’s amino acid metabolism activity.

Using the median AA score as a cutoff, 23 patients were divided into

two groups: 12 in the low AA group and 11 in the high AA group.
2.7 Scoring of cell properties

Exhaustion and angiogenesis signatures, representing the

functions of cell sub-clusters, were obtained from published

studies (20, 21). Gene set variation analysis (GSVA) was

performed to score each cell based on these gene sets using the

GSVA package (v1.52.3) (22).
2.8 Evaluation of cell differentiation levels

Differentiation potential of immune cell subsets was assessed

using CytoTRACE (v0.3.3) (23), which infers cellular

developmental potential based on transcriptional diversity. Higher

CytoTRACE scores indicate less differentiated states (e.g., stem-like

or memory-like), while lower scores reflect more differentiated cells.

The analysis was applied to T cell subclusters in GSE132465.
2.9 Cell-cell communication analysis

Intercellular communication networks for the high AA and low

AAgroups,basedon23CRCsamples fromtheGSE132465 scRNA-seq

dataset, were inferred, visualized, and compared using the CellChat

package (v2.1.2) (24) and prior knowledge from CellChatDB.
2.10 Estimation of immune cell infiltration
from bulk RNA-seq data

Immune cell infiltration from bulk RNA-seq data was assessed

using CIBERSORT (v0.1.0) (25). Immune cell abundance for each

sample was estimated based on a reference set of 22 immune cell

subtypes with 1,000 permutations.
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2.11 Amino acid-related risk score
construction

The risk score was developed from the TPM profile of CRC

patients with complete survival data in the TCGA-COAD training

cohort. The dataset was randomly split into training and test cohorts

using the ‘caret’ package (v6.0-94). Univariate Cox analysis first

identified survival-associated gene from DEGs in the scRNA-seq

dataset (GSE132465) correlated with the AA score (r > 0.5, P < 0.05).

LASSO regression then selected key genes, followed by multivariate

Cox analysis to establish the prognostic model. The risk score was

computed as: risk score = ∑ni Coef(genei) ∗ Expression(genei), where

Coef(genei) represents the multivariate Cox regression coefficient,

Expression(genei) is the corresponding gene expression, and n is the

number of selected genes. Specifically, the amino acid-related risk

score formula is: risk score = (-0.9095597 × MAPKAPK3) +

(0.6674284 × RBM17) + (-0.4121224 × DHFR) + (-0.5263833 ×

MCCC2) + (1.3370698 × ARPC5L) + (-1.0453494 × ALG14).
2.12 Drug response prediction

Drug responses in TCGA-COAD patients were estimated using

the oncoPredict package (v1.2) (26). The half-maximal inhibitory

concentration (IC50) of each drug was determined based on bulk

RNA-seq gene expression data and prior knowledge from the

Genomics of Drug Sensitivity in Cancer (GDSC) database.
2.13 Cell culture

The murine colorectal cancer cell lines MC38 and CT26 were

obtained from the ATCC and BMCR. MC38 and CT26 cells were

cultured in DMEM (Hyclone) and RPMI-1640 (Gibco) medium

supplemented with 10% fetal bovine serum (Corning), respectively.

Both cell lines were confirmed mycoplasma-free using Mycolor

One-Step Mycoplasma Detector (Vazyme) and maintained at 37°C

in a 5% CO2 incubator.
2.14 siRNA transfection

Small interfering RNAs (siRNAs) from GenePharma were

transfected into sub-confluent cells using the DharmaFECT-1

transfection reagent (Dharmacon). Transfections were performed

in six-well plates, where 30% confluent CRC cells were treated with

5 µL of 20 µM siRNA and 5 µL of DharmaFECT-1 reagent in Opti-

MEM medium (Gibco). A nonspecific siRNA served as a negative

control. The sequences of siRNAs targeting Psat1 and Shmt2 are

provided in Supplementary Table S4.
2.15 Reverse transcription-quantitative PCR
analysis

Total RNA was extracted using the RNAsimple Total RNA kit

(TIANGEN) and reverse-transcribed with Takara reagents and
Frontiers in Immunology 04
oligo(dT) primers. Quantitative PCR was performed on an ABI

Prism 7900HT Sequence Detection System (Applied Biosystems,

USA) using SYBR Premix Ex Taq II (Takara). Gene expression was

quantifed via the 2−DDCT method, with ACTB as the normalization

control. Primers sequences used in this study are listed in

Supplementary Table S4.
2.16 Western blotting

Cells were lysed in RIPA buffer (Epizyme) supplemented with a

protease and phosphatase inhibitor cocktail (MCE). Proteins were

separated via SDS-PAGE and immunoblotted. Primary antibodies

included anti-Psat1 (1:2000, Proteintech) and anti-Shmt2 (1:2000,

Proteintech), and peroxidase-conjugated anti-rabbit (1:5000,

Proteintech) was used as the secondary antibody. Bands were

detected with an ECL substrate (Epizyme) and scanned on a

ChemiDoc™ MP Imaging System (Bio-Rad).
2.17 Cell viability assays

2×103 murine colorectal tumor cells were seeded in 96-well plates

and cultured for 24 hours. Cell viability was then assessed by Cell

Counting Kit 8 (DOJINO) following the manufacturer’s protocol.
2.18 CD8+ T cell and tumor cell co-culture
assay

Naive CD8+ T cells were isolated from the spleens of C57BL/6

and BALB/c mice using the EasySep mouse CD8+ T cell isolation kit

(STEMCELL) according to the manufacturer’s protocol and were

then immediately activated with anti-CD3/CD28 antibody

(Biolegend) in RPMI-1640 (Gibco) containing 10 ng/mL mouse

IL-2 (MCE), 10% fetal bovine serum (Corning) and 1% Pen Strep

Solution (Gibco). T cells were stimulated in vitro for 2 days before

being co-cultured with tumor cells. 1 × 105 MC38 or CT26 cells

were seeded into 24-well plates with RPMI-1640 complete medium.

Activated CD8+ T cells were co-cultured with tumor cells at a 1:1

ratio for 24 hours.
2.19 Intracellular cytokine staining and
flow cytometry

After co-culturing for 24 hours, CD8+ T cells were collected and

stimulated with Leukocyte Activation Cocktail (BD) for 4 hours at

37°C. After washing, cells were sequentially stained with Fixable

Viability Stain 780 (BD) and anti-CD8 (BD) for 15 minutes at room

temperature, then fixed and permeabilized using the Fixation/

Permeablization Kit (BD) at 4°C for 30 minutes. After two

washes with staining buffer, anti-Granzyme B (Biolegend)

antibodies were added and incubated for 1 hour at 4°C. Samples
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were analyzed via flow cytometry, and results were processed via

FlowJo software (v10.10.0).
2.20 Statistical analysis

All analyses were conducted in R (v4.4.0). Group differences

were assessed using Wilcoxon rank-sum test or unpaired two-tailed

t-test. Kaplan-Meier survival curves were evaluated with the log-

rank test. Correlations were determined using Spearman’s test.

Statistical significance was set at P < 0.05, with levels indicated as:

* P < 0.05, ** P < 0.01, *** P < 0.001, **** P < 0.0001 and ns for not

significant (P > 0.05).
3 Results

3.1 Epithelial cell cluster in PD-1 blockade-
resistant CRC patients exhibits elevated
amino acid metabolism

To investigate the impact of tumor metabolic features on

immune responses, we analyzed a single cell RNA sequencing

(scRNA-seq) dataset GSE205506 from 17 colorectal cancer (CRC)

patients who underwent neoadjuvant PD-1 blockade therapy

(toripalimab) (12). Among these patients, 13 achieved a

pathological complete response (R), while 4 were classified as

non-responders (NR). After quality control and preprocessing,

103,066 cells were identified and classified into six major cell

types: T/I/NK cells (T cells/innate lymphocytes/NK cells), B cells,

myeloid cells, epithelial cells, endothelial cells, and fibroblasts, based

on the expression of well-established marker genes (Figure 1A;

Supplementary Figure S1B). Although tumor-infiltrating immune

cells were more abundant in the R group compared to the NR

group, epithelial cells remained the largest cluster in both groups,

comprising approximately 50% of all cells analyzed (Figure 1B). We

then isolated the epithelial cell cluster and conducted Gene Set

Enrichment Analysis (GSEA) to explore metabolic pathway

differences between the two groups. The enrichment analysis

revealed that epithelial cells in the NR group exhibited increased

amino acid metabolic activity, including upregulation of amino acid

metabolic processes and amino acid transporter activity

(Figures 1C, D).

To quantify amino acid metabolic activity, we developed an

Amino Acid (AA) score using AUCell algorithm. The score was

based on a gene set created by intersecting differentially expressed

genes between the NR and R groups with amino acid-related genes

from the Molecular Signatures Database (MSigDB) (Figure 1E). The

resulting gene set comprises 31 genes, roughly half of which encode

amino acid metabolic enzymes or transporters. Additionally, 9

genes are involved in energy metabolism and redox regulation,

with amino acids serving as substrates for energy production and

precursors to maintain redox homeostasis (27). 5 genes linked with

purine and pyrimidine metabolism, presenting downstream of
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amino acid metabolism (28), and the oncogene MYC, which plays

a pivotal role in coordinating metabolic changes to support rapid

cell proliferation (29), is also included. (Supplementary Table S1).

Next, we performed sub-cluster analysis of epithelial cells and

calculated the AA score for each cell. The NR group showed

significantly higher AA scores compared to the R group

(Figure 1F), and the mean AA scores of all 4 NR patients were

above the median value (Figure 1G). While substantial

heterogeneity was observed both between and within the NR and

R groups, epithelial cells mainly from NR patients (sub-cluster 1, 2,

3 and 5) exhibited higher AA score (Figures 1H, I). We also assessed

the AA scores across other major cell types and found that the

increased amino acid metabolic activity was most pronounced in

the epithelial cell cluster of the NR group (Supplementary Figures

S1C, D). These findings suggest a strong association between

elevated epithelial AA scores and the failure of PD-1 blockade

therapy, highlighting upregulated amino acid metabolism as a

potent ia l metabol ic hal lmark of a suppressed tumor

immune microenvironment.
3.2 Amino acid score differentiates immune
microenvironments in CRC

An effective anti-tumor immune response is a multi-step

process requiring the coordination of diverse immune cells (3).

Thus, characterizing immune cell abundance, function, and

properties within the tumor microenvironment is crucial for

identifying determinants of PD-1 therapy response. To investigate

how amino acid metabolism alterations shape the tumor

microenvironment, a total of 47,198 cells from 23 CRC patients

in the GSE132465 dataset were included for further analysis.

Epithelial cells, stromal cells, T cells, B cells and myeloid cells

were identified as 5 broad cell types (Figures 2A, B; Supplementary

Figure S2B). Mast cells, represented by only three cells, were

excluded due to their minimal presence in the samples. We

calculated the amino acid (AA) score for each epithelial cell using

31 previously identified genes (Figure 2C) and analyzed the average

AA activity within each patient. Based on the median value of

patients’ AA scores, the 23 CRC samples were divided into two

groups: 11 samples were classified as the high AA group, and 12 as

the low AA group (Figure 2D). While the overall cell composition

showed minimal variation between the groups, the high AA group

exhibited a higher number and percentage of epithelial cells

compared to the low AA group (Figure 2E).

To get an overview of the differences in biological activity

between the two groups, we performed GSEA analysis. The

results aligned with our previous findings, revealing a stronger

immune response in the low AA group. Pathways associated with

immune activation, cytokine production, and leukocyte migration,

differentiation, and activation were significantly enriched in the low

AA group (Figures 2F-H). In summary, these findings suggest that

amino acid metabolism of epithelial cells may serve as a potential

classifier for distinct immune microenvironments in CRC.
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FIGURE 1

Epithelial cell cluster in PD-1 blockade-resistant CRC patients exhibits elevated amino acid metabolism. (A) UMAP visualization of 103,066 cells from
17 CRC patients, colored by cell types. (B) Bar plots showing identified cell types’ number (left) in sum, cell number (middle) and relative proportion
(right) of 6 major cell types across NR and R groups. (C, D) GSEA analysis of metabolic pathways enriched in NR group. (E) Venn diagram of epithelial
DEGs and amino acid metabolism related genes from MsigDB. (F) Violin-boxplots showing AA scores between NR and R groups. (G) Violin-boxplots
of AA scores among 17 patients, red horizontal dashed line representing the median value of AA scores of all epithelial cells. (H, I) UMAP plots of
epithelial cells, split by group, colored by AA score and patients, respectively. T/I/NK, T cells/innate lymphocytes/NK. NR, non-response. R, response.
AA score, amino acid score. ***, P < 0.001.
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3.3 Variations in cell-cell interactions and
signaling pathways across amino acid
score levels

Growing evidence suggests that the dynamic interactions among

diverse cells in the tumor microenvironment collectively orchestrate

malignant progression (7). Thus, we used CellChat to infer cell-cell

communication networks and compare interaction patterns between

the two groups. The low AA group demonstrated a higher frequency

of nearly all types of intercellular interactions compared to the high

AA group (Figure 3A). While most interactions were stronger in the

low AA group, the high AA group displayed notably enhanced

signaling within the epithelial cell cluster and a modest increase in

interactions between epithelial cells and T cells (Figure 3B).
Frontiers in Immunology 07
To further explore the factors influencing cell-cell

communication networks, we examined the differences in specific

signaling pathways among the two groups. In the high AA group,

three immune-suppressive pathways, CD96, PVR, and GRN

signaling, were uniquely present (Figures 3C–F). Specifically,

epithelial cells in this group acted as the source of Poliovirus

receptor (PVR or CD155) signaling (30), which dampens the

anti-tumor activity of T cells (Figure 3D) (31). Similarly, CD96

signaling, an immune checkpoint receptor pathway (32), was

detected between epithelial cells and T cells (Figure 3E).

Granul ins (GRN) s igna l ing , known to promote the

immunosuppressive M2 macrophage phenotype (33), was

observed between epithelial cells and myeloid cells (Figure 3F). In

contrast, the low AA group exhibited enhanced activity in pathways
FIGURE 2

Amino acid (AA) score differentiates immune microenvironments in CRC. (A) UMAP plot of 47,198 cells from 23 CRC samples in GSE132465 dataset.
(B) Bar plot showing the cell number of 5 major cell types. (C) UMAP visualization of 17,455 epithelial cells, colored by AA score, labeled by patient.
(D) Violin-boxplot showing epithelial AA score for each patient, red horizontal dashed line representing the median AA score across 23 tumor
samples. (E) Bar plots of number and relative proportion of each cell type between the high and low AA groups. (F-H) GSEA analysis showing
pathways enriched in the low AA group. AA, amino acid.
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associated with antigen presentation (MHC-II signaling) (34),

immune cell adhesion and recruitment (ICAM, PECAM1, and

CXCL signaling) (35), and immune activation (complement,

CD45 and TNF signaling) (36, 37) (Figures 3C, G–J ;

Supplementary Figures S3A-C). Specifically, MHC-II signaling

from B cells and T cells to myeloid cells, along with interactions

within myeloid cells, was more pronounced in the low AA group

(Figure 3G). Elevated CXCL signaling from stromal cells may have

facilitated the recruitment of additional T cells, B cells, and myeloid
Frontiers in Immunology 08
cells to the tumor microenvironment (Figure 3H). CD45 signaling,

observed between myeloid cells, T cells, and B cells, likely

contributed to effective immune responses (Figure 3I).

Additionally, myeloid cells acted as senders of Tumor Necrosis

Factor (TNF) signaling, with T cells, epithelial cells, stromal cells,

and myeloid cells themselves as recipients, demonstrating a more

prominent interaction in the low AA group (Figure 3J).

Collectively, these findings reveal a fundamental shift in the

immune landscape across the two groups, with the high AA group
FIGURE 3

Variations in cell-cell interactions and signaling pathways across amino acid (AA) score levels. (A) Circle plots showing numbers of cell-cell
interactions inferred by CellChat in two groups. (B) Circle plot and heatmap showing differential interaction strength across two groups. Red and
blue indicating interactions upregulated and downregulated in high AA group, respectively. (C) Bar plots of relative signaling flow among two groups.
(D-F) Heatmap plots of signaling pathways only present in high AA group. (G-J) Circle plots showing differences of specific signaling pathways
networks between high AA group and low AA group. AA, amino acid.
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dominated by immune-suppressive mechanisms and the low AA

group displaying a stronger immune activation profile.
3.4 Enhanced T cell-mediated immune
response in the low amino acid group

To examine immune cell subtype composition and functional

differences between the two groups, we separately re-clustered and

analyzed three major immune cell types, T cells, B cells and myeloid

cells. A total of 16,739 T cells were categorized into seven

subclusters based on canonical markers (Supplementary Figures

S4A, B). Within the CD4+ T cells, distinct clusters were identified

for Treg (regulatory T cell), Tfh (follicular helper T cell), and Th17

(T helper cell 17), each defined by specific transcriptional markers

(Supplementary Figure S4B). The remaining CD4+ T cells were

grouped into a single CD4+ subcluster. Additional clusters included

CD8+ T cells, gdT cells, and NK/NK-like cells (Supplementary

Figure S4B). While the overall composition of T cell subtypes was

consistent between the groups, gdT cells were predominantly

observed in the high group (Figure 4A).

We first conducted differential expressed gene (DEG) analysis on

the major T cell clusters between the two groups, followed by Gene

Ontology (GO) enrichment analysis. Pathways associated with a

more active immune response, including ‘T cell activation involved

in immune response’, ‘T cell differentiation’ and ‘T cell proliferation’

were enriched in the low AA group (Figure 4B). Notably, lipid

metabolism pathways, specifically glycerophospholipid, glycerolipid,

and phospholipid biosynthesis, were also highly ranked in the low AA

group (Figure 4B). Given the essential role of these pathways in

supporting T cell function during anti-tumor immunity (38, 39), we

propose that their enrichment may contribute to the observed

cytotoxic phenotype in T cells from the low AA group by

facilitating TCR signaling, enhancing energy storage, and

promoting anti-tumor immune responses.

Given the central role of CD4+ and CD8+ T cells in anti-tumor

immunity and their predominance in our dataset, we focused our

analysis on these subsets. UMAP visualization confirmed that naïve

T cells were primarily composed of CD4+ T cells (Supplementary

Figure S4C). In the low AA group, CD4+ T cells showed increased

expression of naïve and memory-associated markers, including

CCR7, TCF7, and LEF1 (40) (Figure 4C), and exhibited lower

differentiation status as indicated by higher CytoTRACE scores

(Figure 4E). Further analysis of marker gene expression revealed

that Tfh and Treg cells in the low AA group expressed higher levels

of markers characteristic of IFNG+ Tfh cells and TNFRSF9+ Treg

cells (Figure 4C), which are identified as key tumor-reactive

subclusters (20). These findings suggest that CD4+ T cell subsets

in the low AA group may have enhanced anti-tumor activity.

In the CD8+ compartment, the low AA group displayed higher

expression of naïve, early activation, and cytotoxic markers,

including TCF7, CCR7, CD69, GZMK, and GZMH (Figure 4D).

Additionally, elevated expression of GZMK and IL7R, associated

with effector memory (Tem) and memory T cells (Tm), respectively,

suggests an enrichment of activated and memory-like populations.
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A subset of GZMK+ early Tem cells also co-expressed CXCR5 or

TCF7, indicating a transitional phenotype between naïve and

terminally differentiated states (20, 41). Consistent with these

patterns, CytoTRACE analysis showed that CD8+ T cells in the

low AA group had greater differentiation potential (Figure 4F). By

contrast, the high AA group exhibited elevated expression of

exhaustion markers (20), including TOX, TIGIT, LAG3, and

TNFRSF9, along with higher levels of ENTPD1, IFNG, and

GZMB, indicating a predominance of terminally exhausted CD8+

T cells (Figure 4D). GSVA analysis further confirmed that CD8+ T

cells in this group had significantly higher exhaustion scores (20)

(Figure 4G). Collectively, these results suggest that CD8+ T cells in

the low AA group are enriched for transitional states between naïve/

memory and terminal exhaustion, whereas the high AA group

contains a larger population of terminally exhausted CD8+ T cells.

To further investigate the role of tumor metabolism-driven

immune evasion, we chose two key enzymes in serine/glycine

metabolism (42), PSAT1 and SHMT2, which ranked among the

top five differentially expressed genes in the AA score gene set across

both scRNA-seq datasets (Supplementary Table S3) for in vitro co-

culture experiments with mouse spleen-derived CD8+ T cells. Small

interfering RNAs (siRNAs) were used to individually knock down

Psat1 and Shmt2 in twomurine colorectal cancer cell lines (CT26 and

MC38), with knockdown efficiency confirmed by RT-qPCR

(Supplementary Figure S4D) and Western blot (Figure 4H). To

validate metabolic perturbations following knockdown, we

performed qPCR of key downstream metabolic genes (Shmt2,

Mthfd2, Tyms, Dhfr, Gart, Mat2a, Gclc, and Gpx4) in CT26 and

MC38 cells. Knockdown of Psat1 or Shmt2 led to reduced expression

of multiple metabolic genes, confirming pathway disruption

(Supplementary Figure S4E). A CCK8 assay showed that depleting

Psat1 or Shmt2 did not significantly impact cell viability within 24

hours (Supplementary Figures S4F). However, co-culturing CD8+

T cells with Psat1- or Shmt2-deficient colorectal cancer cells showed

enhanced cytotoxic activity, as indicated by increased Granzyme B

levels detected via flow cytometry (Figures 4I-K; Supplementary

Figure S4G). Together, these findings suggested that T cells in

microenvironments with lower epithelial amino acid metabolism

activity exhibit enhanced anti-tumor functions.
3.5 Distinct traits of tumor-infiltrating B
and myeloid cells between amino acid
groups

For the major B cell cluster, 3,918 cells were included in the

downstream analysis. Classical CD19+ CD20+ B cells were divided

into naïve and memory subpopulations based on their distinct

expression patterns of IGHD, TCL1A, and TNFRSF13B (43)

(Supplementary Figures S5A, B). Plasma cells were further

classified into IgA+ and IgG+ subsets according to the expression

levels of IGHA1, IGHA2, IGHG1, and IGHG3 (Supplementary

Figures S5A, B). Notably, memory B cells were more abundant in

the low AA group, whereas the high AA group exhibited a greater

proportion of IgG+ plasma cells (Figure 5A).
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1575829
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Sun et al. 10.3389/fimmu.2025.1575829
To uncover functional differences, DEG and GO enrichment

analyses were performed on all B cells and plasma cells between the

two groups. Pathways associated with B cell activation,

proliferation, differentiation, and B cell receptor (BCR) signaling
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were enriched in the low AA group, suggesting a more robust

immune response (Figure 5B). Interestingly, pathway analysis

revealed contrasting cellular activities: the major B cell cluster

from the high AA group exhibited signs of endoplasmic
FIGURE 4

Enhanced T cell-mediated immune response in the low amino acid (AA) group. (A) Bar plots showing cell number of T sub-clusters (left) in total, cell number
(middle) and relative proportion (right) of subpopulations of T cells between high AA and low AA groups. (B) GO analysis of pathways enriched in low AA
group. (C, D) Heatmaps showing the expression of representative marker genes across T cell subsets between high AA and low AA groups. Color intensity
represents expression levels. (E, F) Boxplots showing CytoTRACE scores of CD4+ and CD8+ T cells among two groups. (G) Boxplots of exhaustion scores
calculated by GSVA of CD8+ T cells between high AA group and low AA group. (H) Protein levels were confirmed by Western blotting after siRNA
transfection. (I, J) Quantification of Granzyme B mean fluorescence intensity (MFI) in CD8+ T cells co-cultured with CT26 and MC38 colorectal cancer cells
following the indicated treatment (n=3). (K) Representative histogram showing Granzyme B fluorescence intensity in CD8+ T cells co-cultured with MC38
cells. AA, amino acid. Treg, regulatory T cell. Tfh, follicular helper T cell. Th17, T helper cell 17. *, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001.
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reticulum (ER) stress (44) and protein degradation (Figure 5C). In

contrast, B cells from the low-AA group showed increased protein

translation activity (Figure 5C). Further analysis of B cell

subclusters showed that multiple antigen-processing genes were

significantly upregulated in the low AA group, reflecting enhanced

antigen presentation capacity (Figure 5D). Notably, memory B cells

with a stress-response signature have been associated with poor

prognosis across various cancer types (43). In our data, stress-

associated genes—NR4A2, CD83, and HSPA1B—were elevated in

memory B cells from the high AA group, whereas ISG15, a marker
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of IFN-g response, was more highly expressed in the low AA group

(Figure 5E). These findings suggest that B cells in the low AA group

may be more functionally equipped for anti-tumor responses, while

those in the high AA group display features of cellular stress

and dysfunction.

A pool of 6,350 myeloid cells was identified and categorized into

four common major lineages: plasmacytoid dendritic cells (pDCs),

conventional dendritic cells (cDCs), neutrophils and monocytes/

macrophages (mono/macro), using canonical cell markers (45)

(Supplementary Figures S5C, D). While the number of tumor-
FIGURE 5

Distinct traits of tumor-infiltrating B and myeloid cells between amino acid (AA) groups. (A) Bar plots showing numbers of B subclusters (left) in total,
cell number (middle) and relative proportion (right) of subclusters of B cells between high AA and low AA groups. (B) GO analysis of immune-related
pathways in low the AA group. (C) GO analysis of top 5 pathways enriched in high AA and low AA groups. (D, E) Heatmaps showing the expression
of representative marker genes across B cell subsets between high AA and low AA groups. Color intensity represents expression levels. (F) Bar plots
showing the number and relative proportion of subclusters of myeloid cells between the two groups. (G) GO analysis showing pathways enriched in
low AA group. (H) Boxplots of angiogenesis scores of monocytes and macrophages among the two groups. AA, amino acid. Bn, naïve B cells. Bm,
memory B cells. IgA, IgA+ plasma cells. IgG, IgG+ plasma cells. pDCs, plasmacytoid dendritic cells. cDCs, conventional dendritic cells. mono/macro,
monocytes/macrophages. *, P < 0.05; **, P < 0.01; ***, P < 0.001; ****, P < 0.0001.
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infiltrating myeloid cells was significantly lower in the high AA

group compared to the low AA group, monocytes and macrophages

accounted for over 80% of the myeloid population in both groups

(Figure 5F). The dataset revealed a substantial presence of pro-

inflammatory monocyte-like macrophages with high FCN1,

S100A8, S100A9, and IL1B expression, alongside SPP1+ and

C1QC+ macrophages, which are associated with pro-tumorigenic

functions (Supplementary Figure S5E). Functional analysis

highlighted that pathways promoting myeloid cell activation and

differentiation were enriched in the low AA group (Figure 5G). In

contrast, monocytes and macrophages in the high AA group

displayed enhanced angiogenic activity, a feature linked to

resistance against myeloid-targeted therapies, such as anti-CSF1R

blockade (21) (Figure 5H).

Taken together, these findings demonstrated distinct

characteristics of tumor-infiltrating B cells and myeloid cells

between the two groups. Immune cells in the low AA group

exhibited higher activation and differentiation levels, suggesting a

more robust anti-tumor immune response.
3.6 Generation and validation of an amino-
acid related risk score to reveal prognosis,
immune characteristics and therapeutic
implications

To validate and expand previous findings using bulk RNA-seq

data, we collected all differential expressed genes from GSE132465

between high AA and low AA groups, and selected those with

expression correlated to the AA score. The TCGA-COAD dataset

was evenly split into training and test cohorts, each containing half

of the samples. Genes pooled from scRNA-seq data underwent

univariate Cox analysis, identifying 69 genes significantly associated

with survival (P < 0.05) in the TCGA training cohort. LASSO and

multivariate Cox analyses further refined the selection to six key

genes (MAPKAPK3, RBM17, DHFR, MCCC2, ARPC5L, and

ALG14) (Figure 6A; Supplementary Figures S6A-C).

A risk score was computed for each patient using the expression

levels and coefficients of the six genes. The training cohort was

stratified into high- and low-risk groups based on the median score.

Kaplan-Meier survival analysis revealed that high-risk patients had

significantly shorter long-term survival (Figure 6B). The risk score

demonstrated strong predictive accuracy for 1-, 3-, and 5-year

survival, with probabilities exceeding 0.7 (Figure 6C). These

findings were validated in both the TCGA-COAD test cohort and

the GSE39582 dataset (14) (Figures 6D, E; Supplementary Figures

S6D, E).

We also analyzed immune checkpoint gene expression across all

TCGA-COAD patients. High-risk patients exhibited significantly

elevated expression of PD1 (PDCD1), PDL1 (CD274) and LAG3

(Figure 6F). Additionally, immune cell proportions estimated by

CIBERSORT revealed differences in tumor immune infiltration:

while CD8+ T cells were more abundant in the high-risk group, low-

risk patients exhibited higher levels of activated dendritic cells,

CD4+ memory T cells, and fewer regulatory T cells (Figure 6G).
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Drug sensitivity analysis was conducted using the oncoPredict

package, integrating gene expression data with prior knowledge

from the GDSC dataset. Among the drugs with the greatest IC50

differences, low-risk patients showed higher sensitivity to ERK

inhibitor (Ulixertinib), EGFR inhibitor (Erlotinib), chromatin-

modifying agents (OF-1, GSK591), and cell cycle regulators (BI-

2536) (Figure 6H). Notably, high-risk patients were more resistant

to AGI-6780 (Figure 6H), an IDH mutation-targeting inhibitor that

disrupts the Warburg effect.

Together, the six-gene-based risk score effectively predicts

prognosis, correlates strongly with immune checkpoint expression

and immune cell infiltration, and may serve as a valuable tool to

guide therapeutic strategies.
4 Discussion

In this study, we demonstrated that elevated amino acid

metabolism in CRC epithelial cel ls contributes to an

immunosuppressive tumor microenvironment and is associated

with resistance to PD-1 blockade therapy. By leveraging scRNA-

seq data, we quantified metabolic activity at the single-cell level and

found that tumors with lower epithelial amino acid metabolism

exhibited more robust immune responses, including enhanced

activation and differentiation of tumor-infiltrating T, B, and

myeloid cells. Additionally, we developed an amino acid

metabolism-related risk score based on six genes, which

correlated with immune infiltration, immune checkpoint

expression, and patient prognosis. These findings highlight the

critical role of epithelial amino acid metabolism in shaping tumor

immunity and suggest potential metabolic vulnerabilities that could

be exploited for therapeutic interventions.

Growing evidence supports the notion that metabolic

reprogramming of amino acid pathways in cancer cells plays a

crucial role in tumor progression by fostering an immune-

suppressive microenvironment and facilitating immune evasion

(46). For instance, glutaminase or methionine adenosyltransferase

2A deletion in mouse models enhanced T cell–mediated tumor

control (47, 48). Cancer cells often overexpress SLC43A2, limiting

methionine availability for T cells (10), and IDO1 hyperactivation

promotes immunosuppression via kynurenine accumulation (49).

These prior studies align with our findings, highlighting the key role

of epithelial amino acid metabolism in modulating immune

responses within the tumor microenvironment.

In efforts to translate these findings into clinical applications,

several transcriptional signatures have been developed to predict

immune infiltration and disease outcomes across various cancers

(50–52). Many of these studies focus on specific amino acids, like

branched-chain amino acids, or examine broader amino acid

metabolism patterns in a pan-cancer context. While such

approaches have identified metabolic gene sets linked to patient

survival and treatment response, our study takes a more granular

perspective by specifically interrogating epithelial cell metabolism at

the single-cell level. Our findings indicate that epithelial amino acid

metabolism is not only a marker of resistance to PD-1 blockade
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therapy but also an active driver of immune suppression—a facet

that has not been fully explored in previous studies.

Despite these insights, several limitations should be noted. First,

the small sample size of non-responders to neoadjuvant PD-1
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blockade therapy limits statistical power and calls for cautious

interpretation. However, we still observed that lower AA scores

were associated with stronger immune activation within this

subgroup, lending support to the robustness of our findings.
FIGURE 6

Generation and validation of an amino-acid related risk score to reveal prognosis, immune characteristics and therapeutic implications. (A) Heatmap
displayed expression of the 6 genes between the two groups. (B, D) Kaplan-Meier analyses between high-risk groups and low-risk groups in the
training and test cohorts, respectively. (C, E) Time-dependent ROC curves of risk score predicting the 1-, 3-, and 5-year overall survival (OS) of the
patients from the training and test cohorts, respectively. (F) The expression of immune checkpoints between high-risk and low-risk groups from the
TCGA-COAD cohort. (G) Boxplots showing tumor-infiltrating immune cell proportions estimated by CIBERSORT across two groups. (H) The results
of drug sensitivity analysis between high-risk and low-risk groups. *, P < 0.05; **, P < 0.01; ***, P < 0.001; ns, not significant, P > 0.05.
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Second, translating single-cell insights into bulk RNA-seq models

presents inherent challenges. Bulk RNA-seq captures averaged

signals from mixed cell populations, making it difficult to

separate true gene expression changes from shifts in cell

composition. In addition, technical differences between bulk and

single-cell RNA-seq can complicate direct comparisons and

influence model performance. These factors may explain

discrepancies such as the differing patterns of CD8+ T cell

infiltration observed between bulk and single-cell analyses. While

our risk score model showed strong prognostic value and potential

to guide immune profiling and therapy decisions, further validation

in larger, independent cohorts and across diverse cancer types is

essential. Third, our study relied on transcriptomic data, which,

although informative, do not directly measure metabolic activity or

metabolite levels. Incorporating metabolomics and functional

assays would provide a more complete picture of how metabolic

changes impact immune responses. Finally, the precise mechanisms

by which amino acid metabolism shapes the immune landscape

remain unclear, particularly regarding cell-cell interactions and

metabolic competition. Future research should apply integrated

multi-omics and in vivo functional studies to deepen understanding

of these pathways.

In conclusion, our study reveals the impact of epithelial amino

acid metabolism on the immune landscape in CRC, linking high

metabolism to an immunosuppressive tumor microenvironment and

potential resistance to immune checkpoint blockade. We also

developed and validated a six-gene risk score, integrating scRNA-

seq and bulk transcriptomic data for clinical risk stratification and

treatment guidance. These findings highlight the influence of tumor

metabolic reprogramming on immune escape, offer new perspectives

for advancing immunotherapy, and lay the groundwork for future

studies to clarify the underlying mechanisms.
Data availability statement

The single cell RNA-seq data and bulk mRNA arrays are

accessible through the GEO database (https://www.ncbi.nlm.nih.gov/

gds) under accession numbers GSE205506, GSE132465 and

GSE39582. TCGA-COAD data was downloaded through UCSC

Xena browser (https://xenabrowser.net/datapages/).
Ethics statement

The animal study was approved by Shanghai Model Organisms

Center, Inc. Institutional Animal Care and Use Committee. The

study was conducted in accordance with the local legislation and

institutional requirements.
Author contributions

TS: Conceptualization, Formal Analysis, Investigation,

Methodology, Validation, Visualization, Writing – original draft,
Frontiers in Immunology 14
Writing – review & editing. YC: Investigation, Methodology,

Validation, Writing – original draft, Writing – review & editing.

Y-XC: Conceptualization, Funding acquisition, Supervision,

Writing – original draft, Writing – review & editing,

Project administration.
Funding

The author(s) declare that financial support was received for the

research and/or publication of this article. This study was supported

by the National Natural Science Foundation of China (No.

82273140), Shanghai Jiao Tong University “STAR” plan (20190102).
Acknowledgments

The authors would like to express their deepest appreciation to

Yanhong Deng and her team, as well as Woong-Yang Park and his

team, for publicly sharing the scRNA-seq data.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Generative AI statement

The author(s) declare that no Generative AI was used in the

creation of this manuscript.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fimmu.2025.

1575829/full#supplementary-material

SUPPLEMENTARY FIGURE 1

Epithelial cell cluster in PD-1 blockade-resistant CRC patients exhibits

elevated amino acid metabolism. Related to Figure 1. (A) UMAP plots of all
cells grouped by samples before and after Harmony batch effect correction.

(B) Dot plot showing average expression of known markers in indicated cell
types. (C) UMAP plots of all cells colored by AA score calculated between NR
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and R groups. (D) Violin plots presenting each cell type’s AA score across NR

and R groups. T/I/NK, T cells/innate lymphocytes/NK. AA score, amino acid

score. NR, non-response. R, response.

SUPPLEMENTARY FIGURE 2

Amino acid (AA) score differentiates immune microenvironments in CRC.

Related to Figure 2. (A) UMAP plots of all cells grouped by samples before and
after Harmony batch effect correction. (B) Dot plot showing the average

expression and percent expression of marker genes across cell types.

SUPPLEMENTARY FIGURE 3

Variations in cell-cell interactions and signaling pathways across amino acid
(AA) score levels. Related to Figure 3. (A-C) Circle plots of differences of

specific signaling pathways networks between high AA group and low
AA group.

SUPPLEMENTARY FIGURE 4

Enhanced T cell-mediated immune response in the low amino acid (AA)

group. Related to Figure 4. (A) UMAP visualization of cells from the major T
cluster, colored by T cell subsets. (B) Dot plot of representative cell markers

among each T subcluster; dot size represents abundance, and color
represents expression level. (C) UMAP feature plot of naive marker gene

expression of the major T cluster cells. (D)Gene expression levels validated by

RT-qPCR after siRNA transfection. (E) qPCR validation of downstream
metabolic genes in Psat1- and Shmt2-knockdown CRC cell lines.

Significance was assessed by comparing si-Psat1 vs NC and si-Shmt2 vs
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NC. (F) Histograms of relative cell viability in CT26 and MC38 cells 24 hours

post-seeding. (G) Representative histogram of Granzyme B fluorescence

intensity in CD8+ T cells co-cultured with CT26 cells. *, P < 0.05; **, P <
0.01; ***, P < 0.001; ns, not significant, P > 0.05.

SUPPLEMENTARY FIGURE 5

Distinct traits of tumor-infiltrating B and myeloid cells between amino acid
(AA) groups. Related to Figure 5. (A) t-SNE visualization of subtypes from

major B cell cluster. (B) Dot plot showing the average expression and percent

expression of marker genes across B cell subtypes. (C) t-SNE plot of
subpopulations from myeloid cluster. (D) Dot plot showing the average

expression and percent expression of marker genes across myeloid
subtypes. (E) t-SNE feature plots of marker genes of myeloid cells. Bn,

naïve B cells. Bm, memory B cells. IgA, IgA+ plasma cells. IgG, IgG+ plasma
cells. pDCs, plasmacytoid dendritic cells. cDCs, conventional dendritic cells.

mono/macro, monocytes/macrophages.

SUPPLEMENTARY FIGURE 6

Generation and validation of an amino-acid related risk score to reveal
prognosis, immune characteristics and therapeutic implications. Related to

Figure 6. (A) LASSO Cox regression analysis of the association between
deviance and log(l). (B) LASSO Cox regression analysis of the association

between coefficients of genes and log(l). (C) Forest plot showing hazard ratio

of 6 selected genes. (D, E) The OS discrepancy between the high-risk and
low-risk groups and the ROC curve of risk score predicting the 1-, 3-, and 5-

year OS using the GSE39582 dataset.
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