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the diverse functions of
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Medicine, Hangzhou, China, 2Zhejiang Key Laboratory of Pain Perception and Neuromodulation,
Hangzhou, China, 3State Key Laboratory of Transvascular Implantation Devices, the Second Affiliated
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The peripheral sensory nervous system (PNS) has been widely recognized for its

role in the collection, processing, and transmission of sensory information,

including thermal, mechanical, chemical, and proprioceptive stimuli. In recent

years, there has been a growing scholarly interest in the PNS attributable to its

multiple physiological and pathophysiological non-sensory roles in the organs it

innervates. The PNS exerts regulatory functions within the organs it innervates

through direct interactions with local cells or through microbe-nerve-cell

interactions that differ from the traditional feedback regulatory modes used by

the hormonal and sensory brain-sympathetic/parasympathetic systems. The

release of the neuropeptide calcitonin gene related peptide (CGRP) by nerves,

through its action on CGRP receptors in peripheral cells, constitutes a primary

molecular axis for PNS regulation of organ cells, maintaining tissue homeostasis,

facilitating pathological processes, and modulating innate and adaptive

immunity. This review highlights the non-sensory functions of the peripheral

sensory nervous system in various tissues and organs, focusing on phenotypes,

molecular mechanisms and their significance, while also exploring future

research directions, methodologies and potential preclinical studies aimed at

targeting these pathways for the development of novel therapies.
KEYWORDS

peripheral sensory nervous system (PNS), sensory signal transduction, nonsensory
regulatory functions, neuro-immune interaction, CGRP signaling pathway, microbe-
nerve-cell crosstalk
Introduction

The sensory nervous system is a critical component of the PNS, responsible for processing

and transmitting information about changes in both external environment and internal organ

functions to the central nervous system (CNS). It comprises two major subdivisions: the

somatosensory nervous system, which is responsible for detecting and responding to external
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stimuli such as touch, temperature, chemicals, light and odor (1), and

the visceral sensory system, which monitors internal physiological

states, including organ function, blood pressure, and internal

temperature (2, 3) (Figure 1). Therefore, the primary functions of

the peripheral sensory nervous system include the transmission of

sensory information from the periphery to the CNS by electrical

and chemical signals, allowing the body to perceive and respond

to changes in both the external and internal environments.

This capability is essential for maintaining homeostasis and

ensuring survival.

Beyond its well-established role in sensory perception, emerging

evidence suggests that the peripheral sensory system can be directly

activated by “danger signals”, such as microbial invasion, tissue

damage, or harmful environmental stimuli, without necessarily

forming conscious sensations (4, 5). These danger signals are

distinct from traditional stimuli, like touch or temperature, which

typically result in sensory perception and conscious awareness.

Instead, danger signals serve as critical indicators of potential

threats, triggering immediate physiological responses aimed at

protecting the body. Mechanistically, the peripheral sensory

neurons, which are extensively innervated within the skin and

visceral organs, possess peripheral terminals that are rich in

specialized transducer proteins, including transient receptor

potential (TRP) channels, G protein-coupled receptors (GPCRs)
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and pattern recognition receptors (PRRs), such as Toll-like

receptors (TLRs) (6–8). These molecular components enable

sensory neurons to directly detect and respond to danger signals

by initiating protective reflexes and immune responses.

Upon activation by harmful stimuli, these somatosensory

neurons engage in more than just sensory transmission; they

actively participate in local regulatory processes by releasing

neuropeptides and chemokines/cytokines from both their central

and peripheral terminals. For instance, neuropeptides like CGRP and

chemokines such as chemokine ligand 2 (CCL2) are released and can

bind to receptors on immune cells or visceral organs (9, 10). This

interaction allows the peripheral sensory neurons to exert direct and

localized regulatory effects, thereby facilitating communication

between the nervous and immune systems and influencing the

functions of other organs. The multifunctional molecules

expressed on sensory neurons enable the PNS to operate beyond

the realm of sensation.

The sensory system not only monitors overall internal and

external changes to maintain body homeostasis but also plays a dual

role in direct and localized regulation of organ functions, enabling

rapid responses to stimuli. On the other hand, the sensory system

transmits crucial information to the CNS as afferents, allowing for

comprehensive bodily responses to stimuli. It is well understood

that the PNS conveys both conscious sensations (e.g., gut distention,
FIGURE 1

Organization of the nervous system. The nervous system is divided into two main parts: the CNS and the PNS. The CNS is composed of the brain
and the spinal cord. The PNS consists of all the neural tissue outside the CNS, including nerves and ganglia. Functionally, the PNS is divided into the
somatic and autonomic nervous systems. The sensory nervous system, also known as the afferent nervous system, is a crucial component of the
PNS. Somatic sensory includes sensations of touch, pain, pressure, vibration and the special sensations of hearing, equilibrium and vision. Visceral
sensory includes stretch, pain, temperature, chemical changes, irritation in viscera, nausea and hunger, as well as special sensations of taste and
smell. Adapted from “The Major Components of the Nervous System”, by BioRender.com (2025) Retrieved from https://app.biorender.com/
biorender-templates.
frontiersin.org

http://www.BioRender.com
https://app.biorender.com/biorender-templates
https://app.biorender.com/biorender-templates
https://doi.org/10.3389/fimmu.2025.1575917
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Mei et al. 10.3389/fimmu.2025.1575917
cardiac ischemia, temperature, pain) and unconscious visceral

sensations (e.g., blood pressure, chemical composition of the

blood). However, recent findings reveal that the PNS also

transmits information regarding the microenvironmental status of

organs, including immune responses within the lungs and the

microbial environment of the gut (11–14). This highlights its

essential role in maintaining homeostasis and coordinating

complex physiological responses.

However, the functions of the sensory system are not always

beneficial. In fact, the multifunctional molecules released by the

sensory system may exacerbate certain diseases. For example, the

neuropeptide CGRP released by peripheral sensory neurons has

been implicated in supporting cancer cell growth (15).

In this review, we will explore the recently discovered functions

of the sensory system and delve into the cellular and molecular

mechanisms underlying the interactions between the sensory

system and various organs, with a particular focus on both the

physiological and pathological roles of the PNS in immune

responses, organ function, tissue repair, and metabolic regulation.
Anatomy and traditional physiological
function of the sensory system

Somatosensory nervous system

The somatosensory system, a specialized neural network also

termed the general body afferent system, mediates the transmission

and integration of sensory modalities including tactile perception,

nociception, and proprioception. Somatosensory (primary afferent)

neurons, characterized by their pseudounipolar morphology,

predominantly reside in peripheral sensory ganglia-specifically the

trigeminal ganglion (TG) and dorsal root ganglion (DRG). These

specialized cells exhibit bifurcated axons that enable simultaneous

signal transmission to central synaptic targets and peripheral

innervation fields (16).

From a neuroanatomical perspective, the general somatic

afferent nerves of the face and forehead originate from neuronal

cell bodies in the TG. Their peripheral axons form the trigeminal

nerve, which innervates sensory functions of the head and face,

while their central axons terminate in the spinal trigeminal nucleus.

In contrast, somatic afferent neurons from the caudal part of the

head and the rest of the body are located in the DRG of the spinal

cord. Their peripheral axons innervate sensory receptors in the skin,

muscles, and internal organs, while their central axons terminate in

the spinal dorsal horn or medulla, further transmitting sensory

information to higher-order centers for processing (17).

Based on nerve fiber diameter, cell body size, and degree of

myelination, the classical classification of somatosensory nerve

fibers is as follows. C fibers are the smallest-diameter nerve fibers

and are unmyelinated. They are responsible for carrying slow, dull,

and diffuse pain sensations, as well as transmitting information

related to temperature, especially cold sensations. Ad fibers are

myelinated and have a medium-sized diameter. They are involved

in the transmission of sharp, acute pain and play a role in detecting
Frontiers in Immunology 03
rapid temperature changes. Ab fibers are also myelinated and have a

relatively large diameter. They mainly mediate tactile sensations. In

this classification, C fibers and Ad fibers are attributed to

nociceptive fibers, primarily transmitting pain and temperature

signals, whereas Ab fibers mainly mediate tactile sensations (18).

Additionally, Aa and Ab proprioceptors are distributed in muscles

and joints, encoding the body’s spatial position and movement

status to maintain posture control and coordinated movement (19).

In recent years, key molecular markers and activation

characteristics of different sensory neuron subtypes have been

gradually identified, deepening our understanding of sensory

neuron function. Among them, an important subset of sensory

neurons are nociceptors, which are characterized by the expression

of various nociceptive ion channels, such as voltage-gated sodium

channels and transient receptor potential vanilloid 1 (TRPV1) (20–

22). Some nociceptors are thinly myelinated (Ad fibers), which

conduct signals relatively quickly, while most are unmyelinated (C

fibers), exhibiting slower conduction speeds. These nociceptive

neurons constitute the majority of sensory neurons in the

peripheral nervous system and play a key role in transmitting

acute and chronic pain signals, contributing significantly to

various pathological pain conditions.
Visceral sensory system

Visceral sensory neurons function to monitor dynamic changes

in the internal milieu (as opposed to external environmental

stimuli) and maintain physiological homeostasis through

regulatory effects on effector organs (23).

The somata of this system are bilaterally distributed in ganglia

structures, including DRG along with specific cranial nerve ganglia:

the geniculate ganglion of the facial nerve (cranial nerves VII),

petrosal ganglion of the glossopharyngeal nerve (cranial nerves IX),

and nodose ganglion (NG) of the vagus nerve (cranial nerves X).

The vagal ganglia (VG), composed of the NG and jugular ganglia

(JG), are specialized sensory clusters that differentially process

somatosensory signals from the head/neck region (via JG) and

viscerosensory inputs from internal organs (via NG) (24). In this

section, we focus solely on the innervation of the NG within the

viscerosensory system (Figure 2).

Anatomically, afferent projections from cranial nerves VII and

IX predominantly innervate the tympanic membrane, middle ear

cavity, and carotid body, while vagal afferents (cranial nerves X)

establish extensive networks in visceral organs including

the trachea, pulmonary parenchyma, hepatopancreatic complex,

gastrointestinal tract, and bladder. The central projections

of visceral afferents from cranial nerves VII, IX, and X

predominantly terminate at the nucleus of the solitary tract in the

medulla oblongata (25, 26). Visceral sensory fibers originating from

DRGs primarily project to lamina V-VII of the spinal dorsal horn,

forming multi-level neural networks within corresponding

spinal segments.

Murine studies reveal dual sensory innervation patterns in

tracheopulmonary, digestive, and pancreatic systems, with neural
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inputs derived from both segmentally matched DRG neurons and

vagal sensory neurons. The pulmonary system receives concurrent

innervation from VG and DRGs (27), while gastrointestinal

regulation involves coordinated inputs from NG and lumbosacral

(L3-S3) DRGs (28). Pancreatic sensory integration arises from NG

in combination with thoracic (T9-T13) DRGs (29). Functional

analyses demonstrate vagal afferents predominantly mediate

mechanoreceptive, chemosensory, and osmosensory transduction

underlying reflex responses (e.g., emesis and gastrointestinal

motility), whereas DRG neurons encode conscious perception of

visceral distension and nociceptive signaling in dually innervated

organs (30, 31). Organs with singular innervation patterns exhibit

distinct neuroanatomical features: renal nociception transmits via

sympathetic pathways to T11-L2 spinal segments (32, 33),

while prostatic sensation originates from thoracolumbar

(T10-S1) DRGs (34). Recent breakthroughs identified dense

nociceptive innervation of the spleen by left-sided T8-T13 DRG-

derived fibers (35), and lymph nodes demonstrate specialized

innervation by immunomodulatory-capable sensory neuron

subpopulations, providing new insights into neuroimmune

crosstalk mechanisms (36).
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Similarities and differences between vagal
afferent neurons and conventional sensory
neurons

Sensory neurons that mediate peripheral regulation originate

from distinct ganglia, including the DRG, TG, and vagal ganglia—

comprising both NG and JG. Among these, vagal afferents and

somatic sensory neurons exhibit both overlapping and divergent

anatomical and functional characteristics (37). Vagal afferents and

somatic sensory neurons share fundamental structural and signaling

features: both are pseudounipolar neurons located in the peripheral

ganglia (nodose/jugular ganglia and DRG, respectively), utilize

glutamate for neurotransmission, and exhibit neuroplasticity (38,

39). Functionally, vagal afferents innervate visceral organs such as the

heart, lungs, and gastrointestinal tract, where they sense mechanical,

chemical, and metabolic cues and relay signals to the brainstem

(notably the nucleus tractus solitarius) to regulate autonomic and

homeostatic processes. In contrast, DRG neurons target somatic

tissues including skin and muscle, detect external stimuli such as

pain, temperature, and touch, and project to the somatosensory

cortex, contributing to conscious perception (40–42).
FIGURE 2

Sensory nerve supply to organs. The images depict the sensory innervation of various mouse organs from DRG, TG, and NG. The peripheral nervous
system ganglia are organized symmetrically, and organs often receive innervation from the same ganglia from both sides of the body. Sensory nerve
fibers from DRG and NG are marked in green and orange respectively. TG, trigeminal ganglion; NG, nodose ganglion; DRG, dorsal root ganglion; GI,
gastrointestinal. Created with BioRender.com.
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Non-sensory functions

Immune system

Recent studies have revealed that sensory neurons, particularly

nociceptors, not only detect harmful stimuli but also actively

regulate immune responses (43–48). These neurons innervate key

immune organs—such as the bone marrow, spleen, and lymph

nodes—and communicate with immune and stromal cells through

the release of neuropeptides like CGRP and substance P (22, 49).

This interaction is now recognized as forming neuro-immune cell

units (NICUs)—anatomical and functional structures where

neurons, immune cells, and non-immune cells work together to

modulate local immune activity (50–53). Based on this framework,
Frontiers in Immunology 05
the following sections explore how the PNS engages in organ-

specific immune regulation, focusing on its roles within lymphoid

and hematopoietic tissues. Neuroimmune interactions in barrier

organs such as the skin, lungs, and gut are discussed in later

sections. In addition, this section comprehensively summarizes

the non-classical functions of sensory neurons in different

immune organs and tissues (Table 1).
Neuro-immune cell units
NICUs have been gradually recognized and discovered, which

exist in the lymphatic system, adipose tissue, mucosal barrier, and so

on. These units are characterized by the co-localization of

immune and neuronal cells in defined anatomical locations,

allowing for functional interactions that regulate tissue physiology
TABLE 1 Interaction between the PNS and the immune systems.

Organs/
Tissues

Sensory
neuron

Stimulus Neuropeptides/
Neurotransmitters

Interactors Functions Ref

Spleen Nociceptors PGE2 CGRP CALCRL-RAMP1 receptor
on B cells

Promote humoral immune responses and
host defense

(54)

Bone
marrow

Nociceptors / CGRP CALCRL-RAMP1 receptor
on HSCs

Promote the egress of HSCs (55)

Lymph
nodes

Peptidergic
nociceptors

Peripheral
Inflammatory

/ Endothelium, stromal cells
and innate leukocytes

Monitor LNs and regulate gene expression (36)

Skin GINIP
neurons

/ TAFA4 IL-10 produced
by macrophages

Reduce skin inflammation and promote
tissue regeneration

(56)

NaV1.8
nociceptors

/ CGRP RAMP1 on neutrophils,
monocytes and macrophage

Accelerate wound healing and promote
muscle regeneration

(9)

NaV1.8
nociceptors

Bacterial
products

CGRP Macrophages Decrease neutrophil and monocyte recruitment (57)

TRPV1
nociceptors

Bacterial
products

CGRP Macrophages Inhibit the recruitment of neutrophils and
opsonophagocytic killing of S. pyogenes

(58)

TRPV1
nociceptors

/ / A local type 17
immune response

Mediate an anticipatory immune response to
prepare the host for pathogen exposure

(59)

MrgprD
neurons

/ Glutamate Mast cells Suppress mast cell hyperresponsiveness and
skin inflammation

(60)

Lungs Vagal
sensory
neurons

Jak1 CGRP lymphoid cell Suppresses allergic lung inflammation (61)

NaV1.8
nociceptors

IL-5 VIP CD4+ and resident ILC2s Promotes allergic inflammation (11)

Vagal
sensory
neurons

NMU-Nmurl NMU ILC2s Modulate inflammation (62)

TRPV1
nociceptors

Bacterial
products

CGRP Neutrophil and gd T cell Suppress pulmonary gd T cell- and neutrophil-
mediated host defense

(63)

Gut TRPV1
nociceptor

Bacterial
(Salmonela)

CGRP M cell and segmentous
filamentous bacteria

Shape the gut microbiota to resist
Salmonella infection

(13)

Sensory
neuron

Bacterial
products

SP
CGRP

Walls of blood vessels Promotes neurogenic inflammatory responses (14)

TRPV1
nociceptor

/ CGRP RAMP1 receptor on
regulatory T cells

Inhibit the proliferation of Tregs in the gut (64)
frontier
Summary the non-classical functions of sensory neurons in different immune organs and tissues.
It includes different neurotransmitters released by sensory neurons after stimulation, as well as interacting substances and biological effects.
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and protection. When harmful or noxious stimuli activate

nociceptors, they can regulate the immune response by releasing

neurotransmitters (48, 65, 66). Mechanistically, nociceptor

activation triggers peripheral neuropeptide secretion (e.g., CGRP,

substance P), engaging cognate receptors on myeloid (dendritic

cells, macrophages) and lymphoid (T cells) populations, an

evolutionarily conserved mechanism forming functional

neuroimmune synapses (Figure 3). The latest research reveals

CGRP-mediated transcriptional reprogramming of dendritic cells,

enhancing their sentinel capacity through upregulation of
Frontiers in Immunology 06
interferon-response genes (e.g., pro-IF-1b) while priming

proinflammatory cytokine cascades via calcium-dependent

depolarization. Parallel nociceptor-derived CCL2 signaling governs

dual-phase immune regulation, synchronizing acute leukocyte

recruitment with antigen-presentation efficiency for adaptive

immunity induction (67). Other aspects of NICUs have been

thoroughly reviewed in Godinho-Silva C's article (65). Ongoing

research is uncovering the full extent of NICUs' influence on

health and disease. The potential of targeting NICUs for treatment

is an exciting frontier in immunology and neuroscience.
FIGURE 3

Neuro-immune cell units. (A) Substance P is released by nociceptors and acts on monocytes and macrophages through NF-kB activation mediated
by ERK-p38 mitogen-activated protein kinase (MAPK), driving the expression of pro-inflammatory cytokines (left). CGRP acts on CALCRL-RAMP1,
drives cAMP-protein kinase A (PKA) -dependent CREB regulation, upregulates IL-10 and induces cAMP early repressor (ICER)-dependent
transcriptional inhibition of proinflammatory cytokines (right). (B) Nociceptors release CGRP, reduce neutrophil recruitment to the lungs and skin,
and inhibit the ability of neutrophils to regulate phagocytosis and kill bacteria. (C) CGRP from nociceptive neurons drives dermal dendritic cells to
produce IL-23, which in turn leads to the activation of gdT cells and the production of IL-17 (left). Neuropeptide vasoactive intestinal peptide (VIP)
activates its receptor VPAC2 on ILC2s and drives the production of IL-5 and IL-13 (right). (D) Substance P activates MAS-related G protein-coupled
receptor member B2 (MrgprB2 receptor) on mast cells, leading to mast cell degranulation and pro-inflammatory mediator release. Created
with BioRender.com.
frontiersin.org
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The neuroimmune interaction is bidirectional
Pathogenic invasion or tissue trauma triggers localized release

of inflammatory mediators (e.g., cytokines, nerve growth factor,

prostaglandin E2, histamine) from resident and circulating immune

populations. Polymodal nociceptive neurons express cognate

receptors for these signals at peripheral terminals, with ligand

binding initiating dual modulation: 1) neuroplastic changes in

both electrical excitability and transcriptional programming; 2)

enhanced sensitivity of key nociceptive ion channels (e.g., TRPV1,

Nav1.8) through phosphorylation-mediated gating alterations (68).

Beyond inflammatory signaling, nociceptors directly detect

microbial motifs and cellular breakdown products through

pattern recognition receptors, constituting the neurobiological

basis of pathogen-induced pain (5). Notably, the innate immune

regulator stimulator of interferon genes (STING) is an

evolutionarily conserved cytosolic DNA sensor, which

orchestrates type I interferon production for antimicrobial and

antitumor immunity (69, 70). Emerging research positions this

pathway as a hierarchical regulator of nociception, demonstrating

its capacity to suppress voltage-gated sodium/calcium channel

activity within milliseconds through non-transcriptional

mechanisms, which is a survival-optimized strategy for rapid

analgesia during immune challenges (71).

Bone marrow
The ontogeny of immune cells traces back to hematopoietic

stem cells (HSCs), with bone marrow serving as the principal site of

hematopoiesis in postnatal mammals. Sympathetic innervation

constitutes the dominant neuronal regulatory network within

marrow stroma, critically modulating lymphoid and myeloid

lineage differentiation (72). Beyond canonical sympathetic control

over the HSC niche (73–75), emerging evidence highlights

nociceptive fibers as essential collaborators in stress-induced HSC

mobilization and synergistic maintenance of HSC retention.

Mechanistically, nociceptors release CGRP that engages the

receptor activity modifying protein 1/calcitonin receptor-like

receptor (RAMP1/CALCRL) receptor complex on HSCs,

triggering Gas-mediated adenylate cyclase activation and

subsequent cyclic adenosine monophosphate (cAMP) elevation to

facilitate marrow egress during granulocyte colony-stimulating

factor (G-CSF)-mediated mobilization (55).

Spleen
As the predominant lymphoid organ, the spleen orchestrates

critical immunological functions including immunomodulation,

extramedullary hematopoiesis, and inflammatory regulation (76).

Neuroimmune mapping studies reveal dual autonomic regulation

of splenic activities (77–79), comprising classical sympathetic

inputs from celiac ganglia-derived noradrenergic fibers that

modulate immune cell trafficking (80). Notably, cutting-edge

neuroanatomical investigations have identified specialized

nociceptive projections forming vascular-associated and follicular

neural networks within splenic parenchyma (35). These DRG-

originating sensory fibers employ a conserved CGRP-mediated

signaling mechanism through CALCRL/RAMP1 receptor
Frontiers in Immunology 07
complexes to potentiate antigen-specific antibody production

while maintaining immune tolerance. This neural-immune

crosstalk offers therapeutic potential for modulating vaccination

efficacy and rectifying pathogenic autoantibody responses in B cell-

mediated disorders.

Lymph nodes
As pivotal immunological filtering centers, lymph nodes (LNs)

coordinate the surveillance and processing of peripheral lymph

drained via afferent lymphatic channels. Neuroanatomical

investigations across mammalian species have identified dual

noradrenergic and peptidergic neural networks within LNs (81,

82). Emerging evidence proposes that sensory fibers may regulate

regional immunity by altering lymphocyte migration dynamics (81,

83, 84). Cutting-edge multi-omics approaches have unveiled a

specialized subset of LN-innervating neurons, predominantly

characterized as peptidergic nociceptors through transcriptional

profiling. Complementary single-cell RNA sequencing analyses

mapped their cellular interactome, revealing robust neuro-stromal

crosstalk with endothelial cells, fibroblastic reticular cells, and

innate immune populations. These findings delineate the

molecular signature of previously unrecognized sensory neurons

and elucidate a neuron-stromal signaling axis critical for

LN homeostasis.

In summary, the intricate interplay between sensory neurons

and the immune system is garnering growing recognition for

its profound significance. They act like the body’s “dual alarm

system” : both recognize harmful substances and cooperate to

protect the body’s tissues and maintain internal stability. It is

particularly noteworthy that sensory nerves not only transmit pain

sensation but also strengthen the body’s defense by regulating the

activity of immune cells. A deeper understanding of the interaction

between these two systems will offer new perspectives for disease

prevention and treatment, facilitating the development of more

targeted therapies.
Skin system

As one of the important barriers between the body and the

external environment, the skin system has two physiological

functions: one is to maintain the integrity of the physical barrier

to prevent pathogen invasion; the second is to decode

environmental information through the perceptual unit to initiate

adaptive responses. Recent findings suggest that the sensory

nervous system plays an important regulatory role in skin

immune defense mechanisms and tissue regeneration.

From the perspective of neuroanatomy, cutaneous nerve fibers

are mainly afferent fibers (85), and their neural networks form multi-

level projections among the epidermis, dermis, and subcutaneous

adipose tissue (86). Histological features analysis showed that nerve

fibers were mainly enriched in the middle part of the dermis and the

papillary layer region, while the epidermal basement membrane zone,

skin vascular network, and accessory microenvironment (such as hair

follicles, sebaceous glands, etc.) showed specific distribution
frontiersin.org
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characteristics of sensory nerves (87). The structural and functional

classification of cutaneous sensory nerves has been systematically

described by Winkelmann (88).

Skin host defense
Sensory neurons are able to sense the presence of

microorganisms and actively participate in skin immunity.

Cutaneous immune responses are typically initiated following

damage to the epithelial barrier due to microbial invasion or

allergen penetration, at which point the pathogen makes direct

contact with nociceptive neurons through pattern recognition

receptors to elicit pain (89, 90). However, sensory neurons in the

skin, such as TRPV1+ neurons, can also directly sense pathogens or

their associated proinflammatory cytokines, and play a crucial role

in the innate defense against skin pathogens.

Nociceptive neurons express a number of receptors that

recognize microorganisms, including formyl peptide receptors

and TLRs. For example, lipopolysaccharide (LPS), a component

of the cell wall of Gram-negative bacteria, binds to the classical

receptors TLR4 and CD14 on TRPV1+ sensory neurons (91). LPS

can also directly act on transient receptor potential ankyrin 1

(TRPA1) channels on sensory neurons, resulting in intraneuronal

calcium influx, calcitonin gene-related peptide release and

triggering local skin edema (92). Functionally, sensory neurons

interact with pathogens to suppress local inflammation. In response

to bacterial stimulation, Nav1.8+ nociceptive neurons release

CGRP, which subsequently acts on macrophages to inhibit tumor

necrosis factor a (TNFa) production and ultimately the

recruitment of neutrophils and monocytes to the site of infection

(57). In addition, TRPV1+ sensory neurons are directly activated by

the secreted perforin toxin streptococcin S (SLS) after streptococcal

infection, and activated TRPV1+ sensory neurons can release

CGRP, which subsequently inhibits neutrophil recruitment and

bactericidal activity (58). It has also been suggested that the

activation of TRPV1+ sensory neurons can trigger a local type 17

immune response, which not only enhances the body’s defense

against Candida albicans and Staphylococcus aureus but also

enhances the defense ability of adjacent unstimulated skin

through neural reflex arc (59).

Wound healing
DRG sensory neurons promote wound healing by regulating

neuroimmunity in a manner illustrated in Figure 3. For example,

sensory neurons expressing the Gai-interacting protein (GINIP)

can produce the neuropeptide TAFA4 to regulate IL-10 production

by dermal macrophages, thereby maintaining the survival and

function of dermal macrophages, ultimately reducing skin

inflammation and promoting tissue regeneration. In contrast,

ablation of GINIP+ sensory neurons leads to defects in tissue

regeneration and dermal fibrosis (56). In addition, CGRP released

by sensory neurons stimulates thrombospondin-1 (TSP-1)

expression via the RAMP1 receptor on the surface of

macrophages and neutrophils (9). This neuroimmune

response not only significantly improves the clearance efficiency

of neutrophils, but also promotes the transformation of
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macrophages into a pro-repair phenotype and accelerates

the process of tissue repair. Studies have shown that

neuroimmunomodulatory mechanisms accelerate the transition of

inflammatory response to anti-inflammatory and repair stages,

thereby promoting the process of wound healing.
Respiratory system

The lung receives innervation from various nerves (93). It has

been established that the sensory innervation in the lung is mainly

from the VG, with minor from the DRG (27, 94).

Breathing is the basic function of the respiratory system which

is tightly regulated by the sensory system. Among them, vagal

sensory nerves are the major fibers that innervate the lung. Research

has demonstrated that a specific subset of vagal afferent neurons

plays a crucial role in regulating breathing. When purinergic

receptor P2Y1+ (P2ry1) neurons in the vagus nerve are

optogenetically activated, this activation immediately halts

respiration, causing animals to remain in the exhalation phase.

Conversely, optogenetic stimulation of neuropeptide Y receptor

Y2+ (Npy2r) neurons in the vagus nerve leads to rapid and shallow

breathing patterns (95). In addition, the afferent vagus nerves,

which also innervate the airways, are critical for triggering airway

protective mechanisms such as bronchospasm and the cough reflex

(96–98).

Besides breathing and airway protective mechanisms, in the

lung, neuroimmune interactions especially sensory neurons can

help to preserve protective barrier functions while simultaneously

curbing pathological inflammation (11, 12, 99). For example, the

expression of janus kinase 1 (JAK1) in vagal sensory neurons helps

to inhibit airway inflammation. Specifically, a neuronal JAK1-

CGRPb signaling axis can suppress the functions of group 2

innate lymphoid cells (ILC2s) and thereby reduce allergic lung

inflammation (61). Besides CGRP, sensory neurons also release

other neuropeptides, such as vasoactive intestinal peptide (VIP),

and neuromedin U (NMU) to modulate inflammation (11, 100,

101). In addition, in pathological conditions such as S. aureus-

induced lethal pneumonia, TRPV1+ nociceptive neurons in the lung

can limit antibacterial immune responses through the action of

CGRP (63). These fibers can reduce inflammation and inhibit the

recruitment of immune cells. It is still unclear whether distinct

neuroimmune pathways regulate different types of lung

inflammation, such as that caused by viral infections or fibrosis.

In addition, some reports on the relationship between sensory

neurons and other lung diseases, such as pulmonary fibrosis.

TRPV1+ sensory neurons expressing Toll-like receptors (TLR2

and TLR5). These neurons have been implicated in bleomycin-

induced lung fibrosis and associated chronic cough symptoms

(102). In contrast, CGRP released by sensory neurons has been

shown to limit fibrosis by modulating fibroblast and macrophage

activation (103, 104), indicating a potential protective role.

Overall, sensory neurons, particularly those originating from

the VG, are primarily crucial for regulating breathing and

modulating immune homeostasis in the lung. Besides these local
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functions, it is widely recognized that pathogen infection induces a

typical state of sickness. Recent studies have shown that eliminating

petrosal gamma-aminobutyric acid type A receptor subunit a 1-

positive (GABRa1+) neurons or specifically knocking out the

prostaglandin E2 receptor 3 can prevent influenza-induced

reductions in food intake, water intake, and mobility during the

early stages of infection. Moreover, these interventions improve

survival rates. This finding highlights a key airway-to-brain sensory

pathway that detects locally produced prostaglandins and mediates

systemic sickness responses to respiratory viral infections (105). In

addition, one study revealed the complete neural conduction circuit

of allergic reactions in the lungs (99). When the respiratory tract is

stimulated by persistent allergens, the pathological signal is first

mediated by immune cells and then transmitted by the vagus

sensory afferent fibers to the dopamine-b-hydroxylase (DBH)

positive nucleus of the solitary tract integration center in the

brainstem. This center then constructs a descending pathway

through adrenergic Adra1a+/Adra1b+ efferent neurons, which

ultimately act on postganglionic neurons and regulate airway

smooth muscle tone (106).
Digestive system

The digestive system is a series of organs responsible for

converting food into energy and nutrients for the body. The

extrinsic sensory nerve terminals in the gastrointestinal (GI) tract

are located in the NG, T10-L1 DRG and L4-S1 DRG (107–109).

Sensory neurons participate in gastrointestinal
dilation response, regulating the transport of
gastrointestinal contents

First, the gastrointestinal dilation response requires sensory

neurons. Five genetic subtypes of DRG sensory afferents

innervated the distal colon and exhibit distinct physiological

properties in response to colonic dilation (110). Piezo2 is a

rapidly adapting mechanosensitive ion channel expressed in

sensory neurons of the DRG and is also expressed in TRPV1-

lineage nociceptors (111). Recent studies have demonstrated

that Piezo2+ sensory neurons play a crucial role in mediating

high-threshold colonic distension responses. Functional

silencing of TRPV1+ sensory neurons significantly attenuates the

visceromotor nociceptive responses evoked by colorectal distension,

which are mediated by Piezo2+ sensory neurons (112).

Second, sensory neurons are involved in the satiety response

after GI dilation. Piezo+ neurons are mechanically sensitive to sense

GI distension signals and rapidly transmit direct satiety signals to

the brain to inhibit further feeding (113). Vagal afferents innervate

the gut to form Intraganglionic laminar endings (IGLEs), which

sense intestinal stretch when the gut is distending and activate

satiety-promoting pathways in the brain stem. And by inhibiting

AgRP+ neurons in the hypothalamus (hunger-promoting agouti-

related peptide), ultimately inhibiting food intake (42).
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Third, sensory neurons are involved in intestinal peristalsis. The

lack of Piezo2 in sensory neurons accelerates gastric emptying and

intestinal transport, and Piezo2 knockout mice exhibit diarrhea in

bead-expulsion assays, suggesting that Piezo2+ sensory neurons are

important factors involved in normal intestinal motility (110, 114).

Sensory neurons are involved in the process of
intestinal pathogen infection, either inhibiting or
promoting it

Some studies suggest that gut-innervated nociceptors can

defend against intestinal pathogens and promote tissue protection

(13, 49). The dorsal root ganglion nociceptor exhibits resistance

against the bacterial pathogen Salmonella enterica serovar

Typhimurium (STm) during intestinal engraftment and attack.

The mechanism is as follows: CGRP is released from dorsal root

ganglion nociceptors. It regulates the number of microfold (M) cells

in the ileum Peyer’s patch (PP) follicle-associated epithelia and

segmentous filamentous bacteria (SFB). As a result, it limits

the invasion of STm. The administration of subcutaneous

resiniferatoxin (RTX) resulted in a significant reduction of

CGRP levels in the DRG and vagus nerve, and pathogen

resistance significantly decreased in mice (13). Through viral or

pharmacological ablation of TRPV1+ sensory neurons, it has been

observed in a mouse model of intestinal inflammation that there is

an exacerbation of inflammation and impairment in tissue repair

processes. This can be attributed to the reduced release of substance

P by damaged sensory neurons, which limits the protective effects

on intestinal inflammation (115, 116).

But some studies also suggest that sensory neurons promote

pathogen infection in the intestinal tract, sensory neurons play an

indispensable role in the process of neurogenic inflammation.

Sensory neurons can release pro-inflammatory neuropeptides

such as substance P (SP) and CGRP, which lead to vasodilatation,

increased permeability, inflammatory cell extravasation, tissue

edema, and other inflammatory manifestations (44, 48, 117). For

example, toxins such as toxin B (TcdB) released after Clostridium

difficile infection can stimulate neurons to secrete SP, CGRP and

pericytes to secrete pro-inflammatory cytokines, which ultimately

promote the development of colonic inflammation. Blocking SP

and CGRP signal transduction can reduce the severity of infection

(14). There is also a hypothesis that CGRP released after activation

of Trpv1+ sensory neurons binds to the RAMP1 receptor on

regulatory T cells (Tregs) in the gut and inhibits the proliferation

of Tregs in the gut, thereby affecting the intestinal inflammatory

response (64).

Furthermore, intestinal inflammation can disrupt the regulatory

role of gut sensory neurons in intestinal function. These neurons

directly perceive inflammatory signals and may initiate self-

destruction (ferroptosis) through specific molecular pathways

(e.g., interferon-mediated mechanisms), resulting in abnormal gut

motility (118). Pharmacological inhibition of these pathways could

potentially preserve neuronal integrity and ameliorate post-

inflammatory complications.
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Sensory neurons involved in gut-brain axis
mediated behavior regulation, regulating
gastrointestinal steady state

Recently, the significance of the gut-brain axis mediated by

sensory afferents has been recognized. The liver-brain-gut reflex

axis consists of hepatic vagal afferent, nucleus tractus solitarius and

enteric neurons. This axis maintains intestinal homeostasis by

regulating the differentiation and maintenance of peripheral

regulatory T cells (pTreg cells). Disruption of afferents to this

axis results in increased susceptibility to colitis (119). 5-

hydroxytryptamine receptor 3A positive-(Htr3a+) vagal sensory

neurons can detect intestinal bacterial toxins and transmit signals

to tachykinin precursor 1 positive-(Tac1+) neurons in the dorsal

complex (DVC) via the vagus nerve, ultimately leading to nausea

and retching behavior (120). Another intriguing study has

demonstrated that ingested water rapidly suppresses thirst

through osmoreceptors before being absorbed into the gut.

Specifically, the hypotonic signal of ingested water stimulates

enteric neurons to release VIP, which activates the vagus nerve

innervating the hepatic portal area (HPA) and regulates thirst via

vagal afferents to the brain (121). These mechanisms are

summarized in Figure 4 (Figure 4). In addition, the vagus nerve is

involved in the transmission of pain signals in the stomach-brain

axis, transmitting the gastric nociceptive signal to the first level

center: nucleus tractus solitarius (NTS) (54).
Metabolism system

The nervous system regulates metabolic activities of the body

through neurotransmitters, neuroendocrine cells, and neural
Frontiers in Immunology 10
networks. Research on sensory nerves in metabolism has focused

more on adipose tissue (122–126). Innervation in adipose tissue is

predominantly sympathetic and sensory. Sympathetic nerves

mainly release norepinephrine, while sensory nerves mainly

release neuropeptides such as CGRP and SP. The two coordinate

with each other and participate in the fat metabolism network

(127, 128).

Brown adipose tissue
Brown adipose tissue is an important thermogenic organ.

CGRP secreted by sensory nerves coordinates with sympathetic

nerves to maintain the stability of thermogenesis and adapt to

environmental temperature changes (127, 128). When the body

senses a low temperature, sympathetic nerves distributed in brown

adipose tissue are activated, resulting in the release of

norepinephrine, which eventually acts on the mitochondrial

membrane transmembrane protein uncoupling protein 1 (UCP1)

in brown adipose tissue, and UCP1 generates heat through

uncoupling (129). It was found that injection of the sensory

neurotoxin capsaicin into the interscapular adipose tissue of

Siberian hamsters destroyed sensory nerves, resulting in decreased

UCP1 protein levels, reduced brown adipose tissue mass, and

impaired thermoregulation (reduced thermogenic effect in

response to acute cold) (128, 130). In another study, intravenous

norepinephrine was used to mimic the thermogenic effect in rats,

whereas sensory denervation of brown adipose tissue with capsaicin

prolonged noradrenaline-induced thermogenesis. It is noteworthy

that intravenous CGRP mimics sensory nerve activation while

reducing the thermal effect induced by norepinephrine. This

indicates that sensory nerves in brown adipose tissue are likely to

form a feedback loop with sympathetic nerves, coordinating
FIGURE 4

Sensory neurons are involved in gut-brain axis-mediated behavioral regulation and regulate gastrointestinal homeostasis. The figure illustrates the
mechanisms by which two types of vagal sensory afferents regulate behavior. One mechanism is as follows: Changes in osmotic pressure in the gut
mediate VIP secretion by intestinal neurons, and high concentrations of VIP in the portal vein activate vagal sensory afferents innervating the HPA
region, thereby regulating thirst. The other is that Htr3a+ vagal sensory neurons can detect toxins secreted by intestinal bacteria and transmit signals
to the brain, causing nausea and vomiting. Created with BioRender.com.
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sympathetic neurotransmitter thermogenesis, promoting

sympathetic thermogenesis when ambient temperature or local

tissue temperature is too low, and inhibiting sympathetic

thermogenesis when the temperature is too high, thus adapting to

ambient temperature (131, 132).

White adipose tissue
White adipose tissue is a storage form of energy. Different from

brown adipose tissue, sensory nerves in white adipose tissue are

more involved in regulating the synthesis and decomposition of fat,

thereby regulating the homeostasis of fat metabolism, and this may

be achieved by inhibiting sympathetic nerves. After sensory

denervation with capsaicin, the expression of CGRP in white

adipose tissue was decreased (indicating successful sensory nerve

ablation), but the adipocytes became hypertrophic (127), indicating

that lipolysis was inhibited after sensory nerve ablation. Sensory

denervation with capsaicin also promoted the proliferation and

differentiation of white adipocytes (133). Injection of ROOT-Cre

adeno-associated virus into subcutaneous inguinal adipose tissue to

ablate the specific sensory projections of adipose tissue resulted in

increased markers of new adipose tissue (fatty acid synthase, acetyl

CoA carboxylase b) and increased fat content (134).

Maintenance of metabolism
The sensory nerve plays a crucial role in regulating the body’s

normal metabolic function, ensuring stable control of blood sugar

levels and metabolism rate, thereby preventing metabolic disorders.

It has been shown that glucagon-like peptide 1 receptor-positive

(GLP1R+) vagal afferent activation in the gut increases glucose

uptake in skeletal muscle and sends anorexigenic signals to the

brain stem, thereby lowering blood glucose. In contrast, G protein-

coupled receptor 65-positive (GPR65+) vagal afferent activation

promotes hepatic glucose production via phosphoenolpyruvate

carboxykinase 1 (Pck1), which raises blood glucose levels. This

implies that GLP1R+ and GPR65+ sensory neurons work together to

maintain blood glucose balance and the metabolic homeostasis of

the body (135–137).
Cancer

Under physiological conditions, the sensory neurons are vital

for tissue homeostasis. They detect diverse stimuli and transmit

signals. The PNS releases neurotransmitters/neuropeptides

like CGRP, which regulate blood vessels and immune cell

extravasation. It also modulates tissue repair by influencing stem

cells and the inflammatory response at injury sites. However,

sensory neurons are also involved in tissue homeostasis

imbalances, such as tumors. Previous studies have shown that

solid tumors can be innervated by autonomic and sensory nerve

fibers (138–140). In recent years, the mechanisms and effects of the

interaction between solid tumors and nerves have been gradually

revealed, especially in the crosstalk between sensory neurons and

solid tumors.
Frontiers in Immunology 11
It is noteworthy that sensory neurons are likely involved in

tumorigenesis and progression, primarily through the release of

CGRP and SP (141, 142). For instance, a recent study revealed that

sensory neurons promote gastric tumor development and

metastasis via the CGRP-RAMP1 axis (143). As research

progresses in exploring the regulatory mechanisms of sensory

neurons in tumors, evidence suggests that CGRP released from

sensory neurons may facilitate tumorigenesis by suppressing

immune regulation within the tumor microenvironment. Ru-

Rong Ji et al. demonstrated that sensory neuron-derived CGRP

interacts with cancer-associated fibroblasts to inhibit the infiltration

and cytotoxic function of natural killer (NK) cells, ultimately

promoting pancreatic ductal adenocarcinoma progression (144).

Sebastien Talbot et al. found that CGRP released by sensory

neurons promoted the depletion of cytotoxic CD8+ T cells,

thereby limiting their ability to eradicate melanoma. Conversely,

inhibition of CGRP expression or antagonism of the CGRP receptor

reduced the depletion of leukocytes in tumors, and finally, the

tumor growth was inhibited and the survival rate of mice was

improved (141). In addition, Laurel Darragh et al. found that CGRP

released from sensory neurons can directly inhibit immune cells

(Th1 CD4+ T cells and activated CD8+ T cells) in the environment

of head and neck squamous cell carcinoma (HNSCC), thereby

promoting tumor growth (15). Here, we summarize the

mechanisms by which CGRP released from sensory neurons

regulates tumor progression, as shown in Figure 5 (Figure 5).

Other mechanistic pathways have also been identified. In breast

cancer, sensory nerves release the neuropeptide SP, which binds to

tachykinin receptor 1 (TACR1) on cancer cells, inducing cell death

and the release of single-stranded RNA (145). Another study

revealed that deletion of the tumor suppressor gene TP53 causes

microRNA miR-34a to shuttle from cancer cells to tumor-

associated sensory neurons, driving the conversion of these

neurons to an adrenergic phenotype. Such crosstalk between

cancer cells and neurons promotes tumor development.

Conversely, sensory neuron denervation or blockade of

adrenergic signaling inhibits tumor growth, highlighting a

potential target for cancer therapy (142).
Cardiovascular system

Research on sensory nerves in cardiovascular regulation focuses

primarily on blood vessels, especially peripheral vessels. Sensory

neurons mainly release CGRP and SP to participate in vascular

dilatation. In addition, sensory neurons also participate in the

differentiation of vascular smooth muscle with weak contraction

function and promote angiogenesis. Many studies have also

suggested that sensory neurons are involved in the regulation of

cardiac structure and function during heart diseases (146–148).

Blood pressure
In general, sensory nerves maintain the stability of blood

pressure in the body. CGRP, a neuropeptide released by sensory
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1575917
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Mei et al. 10.3389/fimmu.2025.1575917
neurons, binds to vascular CGRP receptors, inducing vasodilation

and subsequent blood pressure reduction (149, 150). Evidence also

suggests that CGRP regulates blood pressure by indirectly inhibiting

sympathetic-mediated vasoconstriction (151, 152). In addition, it

has been found that non-peptide sensory neurons can also regulate

arterial blood pressure. Tropomyosin receptor kinase C positive

(TrkC+) sensory neurons in the spinal ganglia can project to the

distal artery, and local stimulation of TrkC+ sensory neurons can

reduce blood vessel diameter and blood flow, and can rapidly

increase blood pressure after chronic activation of this type of

neurons (153).

Angiogenesis
Sensory neurons promote endothelial cell proliferation and

participate in angiogenesis by secreting neuropeptides. In vitro

studies show that sensory neurons enhance angiogenesis through

two mechanisms: secreting CGRP and SP to promote extracellular
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matrix remodeling in endothelial cells. Specifically, CGRP upregulates

vascular endothelial growth factor A (VEGF-A) expression, while SP

upregulates angiopoietin 1 (Angpt1), collagen type IV (Col IV), and

matrix metalloproteinase 2 (MMP2) expression (147). Notably, these

genes are all angiogenic markers in endothelial cells. In addition, the

model of dry eye disease was established through inflammatory

stimulation, and then trigeminal ganglion sensory neurons were

isolated and co-cultured with corneal vascular endothelial cells.

Compared with the control group, sensory neurons stimulated by

inflammation expressed and secreted more SP and promoted the

proliferation of vascular endothelial cells (154). It has also been found

that CGRP secreted by sensory neurons of a trigeminal ganglion can

promote corneal angiogenesis and lymphangiogenesis in vivo, and

subconjunctival injection of CGRP antagonist CGRP8–37 reduces

secretion-induced corneal angiogenesis (148). These data suggest that

sensory neurons are involved in the formation of blood vessels by

secreting neuropeptides.
FIGURE 5

Sensory neurons promote tumor progression by releasing CGRP. Gastric cancer (GC) cells elevate the secretion of nerve growth factor (NGF), and
then NGF induces CGRP release from sensory neurons. CGRP then engages the Calcrl/Ramp1 on gastric cancer cells, triggering dual activation of
PI3K-Akt and CaMK-dependent signaling cascades. These pathways converge to amplify E2F-dependent transcriptional programs, fostering tumor
progression through cell cycle deregulation and survival mechanisms. In the tumor microenvironment of pancreatic ductal adenocarcinoma (PDAC),
cancer-associated fibroblasts (CAFs) secrete NGF that stimulates sensory neurons to release CGRP. This neuropeptide subsequently binds to
receptor RAMP1 on CAFs, triggering downregulation of interleukin-15 (IL-15) expression. The reduced IL-15 levels impair NK cell infiltration and
cytotoxic activity, ultimately fostering tumor progression in PDAC. In melanoma, tumor-derived secretory leukocyte protease inhibitor (SLPI) induces
pain hypersensitivity and stimulates nociceptor neurite outgrowth and sustained release of CGRP, which binds to RAMP1 expressed on tumor-
infiltrating CD8+ T cells, triggering upregulation of immune checkpoint receptors, driving functional exhaustion of cytotoxic CD8+ T cells, resulting
in uncontrolled melanoma cell proliferation. In the microenvironment of head and neck squamous cell carcinoma (HNSCC), CGRP released by
sensory neurons can directly suppress immune cells, namely T helper 1 (Th1) CD4+ T cells and activated CD8+ T cells, thereby promoting tumor
growth. Created with BioRender.com.
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Heart
Sensory neurons are also involved in the regulation of cardiac

structure and function. Firstly, sensory neurons in the heart are

involved in the cardiac reflex: the Bezold-Jarisch reflex (BJR) (155).

BJR is a cardiac depression reflex characterized by the classic triad of

hypotension, bradycardia, and respiratory depression (156, 157).

Recent studies have shown that vagal neurons expressing

neuropeptide Y receptor Y2 (NPY2R) are required for cardiac BJR:

when these sensory neurons are activated, they induce BJR responses

and cause syncope in animals. Secondly, TRPV1 receptors on cardiac

sensory neurons have garnered significant attention. When TRPV1+

sensory neurons are activated by injury, inflammation and other

factors, they can release CGRP, SP and pituitary adenylate cyclase-

activating polypeptide (PACAP). These neuropeptides can induce

vasodilation and inflammatory cell activation (158–160). In addition,

several studies have shown that TRPV1+ sensory neurons are involved

in atherogenesis and play an important role in structural remodeling

caused by acute myocardial infarction and heart failure (161–164).

Recent studies have also found that Piezo1 in thoracodorsal root

ganglion (TDRG) neurons mediates a neuroimmune response that

exacerbates ventricular remodeling after myocardial infarction (165).
Cellular and molecular cross-talking
coordination between DRG/VG with
organs

To investigate the interaction between ligands secreted by mouse

DRG cells and receptors in peripheral organs, we leveraged single-

nucleus RNA sequencing (snRNA-seq) data to analyze cell-cell

interactions based on ligand expression profiles of DRG cells. Using

Cellinker, a computational tool for predicting ligand-receptor (L-R)

gene crosstalk, we identified 123 valid L-R pairs, comprising 43 ligands

and 98 receptors, between DRG and various organs. Among the

identified ligands, the Calca gene, encoding CGRP, and the Tac1 gene,

encoding SP, were of particular interest, as both CGRP and SP are

secreted by sensory neurons to mediate various physiological

functions. Our analysis uncovered several neuropeptide-related L-R

pairs, including Calca_Ackr3, Calca_Calcr, Calca_Calcrl, Calca_Dclk3,

Calca_Ramp1 , Calca_Ramp2 , Calca_Ramp3 , Tac1_Dpp4 ,

Tac1_Tacr1, Tac1_Tacr2, and Tac1_Tacr3. Notably, these ligands

are primarily secreted by peptidergic nociceptors (PEP1/PEP2

subsets) and satellite glial cells within the DRG, while their

corresponding receptors are expressed in various organs,

predominantly in the brain, kidneys, and lungs. This suggests that

these L-R interactions are likely involved in the regulation of organ-

specific functions by sensory neurons (Figure 6).

To assess how cellular communication in the DRG is altered

under different conditions, we also analyzed differentially expressed

ligand and receptor genes using bulk RNA sequencing (RNA-seq)

data from both normal and sciatic nerve injury (SNI) conditions.

Our results showed that, after SNI, both Calca and Tac1 were down-

regulated in the DRG, and corresponding changes were observed in

the expression of their receptors. Specifically, Calca_Ramp2,

Tac1_Tacr1, and Tac1_Tacr2 were significantly down-regulated
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under injury conditions. Additionally, we identified several genes,

including Flrt1, Il1r2, Il4ra, Siglecf, and Sorl1, that act as both

ligands secreted by DRG cells and receptors expressed in target

organs. These dual functions underscore the complexity of DRG-

mediated signaling in organ regulation.

To complement the DRG-focused analysis, we next explored

ligand-receptor crosstalk originating from the VG, which plays a

central role in visceral sensory regulation. Using single-nucleus RNA

sequencing (snRNA-seq) data from VG neurons, we assessed cell-cell

communication based on ligand expression profiles across neuronal

subtypes (Figure 7). A total of 153 valid ligand-receptor (L-R) pairs

were identified through Cellinker prediction, comprising 48 ligands

and 104 receptors that potentially mediate VG-organ interactions.

Ligand expression was mapped across 10 transcriptionally

distinct neuronal clusters within the VG, revealing considerable

subtype-specific heterogeneity. This layered organization suggests

that molecular outputs from VG neurons are finely tuned by cell

identity, possibly reflecting differential projections to visceral

targets. The corresponding receptor expression data, integrated

from peripheral tissues, enabled the construction of a connectivity

matrix visualized via a Sankey diagram. This analysis uncovered

complex patterns of VG-to-organ communication, with multiple

ligands showing convergence onto specific targets, and vice versa.

Notably, several molecules—including Col3a1, Dcn, Fap, Ghr,

Gpc6, Igf1r, Lifr, Ptprz1, and Tnfrsf11b—were found to function

both as ligands in VG neurons and as receptors in peripheral

tissues. These dual-role genes may represent key nodes within

bidirectional neuro-visceral circuits. Collectively, this analysis

extends our mapping of sensory-derived signaling beyond

somatic DRG neurons and highlights the unique and system-

specific features of vagal sensory neurobiology.
Discussion

The expanding understanding of the PNS has revealed its

profound influence beyond traditional sensory perception,

particularly in the regulation of organ function and systemic

homeostasis. Recent advancements in technical tools have allowed

for more detailed exploration of the interactions between the PNS

and various organs, uncovering a spectrum of functions that extend

well beyond the classic sensory roles.
Newly discovered innervation patterns

Recent anatomical studies have uncovered unexpected patterns

of peripheral sensory neuron innervation in organs such as the

spleen, kidneys, lymph nodes, and gastrointestinal tract (35, 36, 49,

168). These findings, enabled by tissue clearing and genetic labeling

techniques, suggest that sensory neurons are strategically positioned

to regulate organ-specific functions. For instance, CGRP+ and

TRPV1+ nociceptors project from thoracic DRGs into B cell

zones in the spleen, while Nav1.8+ neurons interface with goblet

cells in the colon (35). Such close anatomical associations imply

direct modulation of immune and epithelial cell activity (10).
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However, the functional implications of these precise innervation

patterns remain largely unexplored. Do these neurons exert tonic

influence, respond only to stress or inflammation, or both? Are there

organ-specific differences in signaling modes? Future studies combining

functional imaging, optogenetics, and conditional ablation will be

critical for determining whether these structural connections translate

into dynamic, context-dependent regulation of tissue function.
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Direct activation of the peripheral nervous
system by unconscious stimuli

The PNS has garnered increasing recognition for its critical

role in detecting and responding to “danger signals” and

microenvironmental changes within various organs. This evolving

understanding extends the traditional view of the somatosensory
FIGURE 6

Crosstalk between ligands secreted by cells in the mouse dorsal root ganglia and receptors in the organs. Heatmap of ligands that were identified by
single nucleus RNA sequencing and bulk-seq analysis describes the expression levels of ligands within the cell clusters and dorsal root ganglia in
both sham and SNI states. Sankey diagram reveals the ligands and the corresponding receptors predicted by Cellinker. Heatmap of receptors
describing the expression levels of receptors within dorsal root ganglia in both sham and SNI states and different organs of an adult male C57BL/6
mouse (166).
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system from merely sensing external stimuli to actively monitoring

and modulating internal physiological states.

Such direct activation of the PNS is crucial for maintaining

organ health and defending against infections, particularly at

barrier surfaces like the skin, airways, and gastrointestinal tract,

which are frequently exposed to microbial invaders. The
Frontiers in Immunology 15
somatosensory neurons, especially nociceptors, are well-equipped

to sense and respond to these threats due to the wide range of PRRs

they express, such as TLRs. These receptors enable nociceptors to

directly detect microbial invasion, although nociceptors can also be

activated indirectly by microbial products (5). For example,

nociceptors are directly activated by pathogens such as Candida
FIGURE 7

Crosstalk between ligands secreted by cells in the mouse vagal ganglia and receptors in the organs. The left heatmap shows the expression levels of
ligands across cell clusters within the vagal ganglia, based on single-nucleus RNA sequencing (snRNA-seq) data from Forster et al (167). The central
Sankey diagram visualizes predicted ligand-receptor interactions, as computed using Cellinker, illustrating the diversity of VG-derived signals and
their potential targets across tissues. The right heatmap displays the expression levels of corresponding receptors in various organs of an adult male
C57BL/6 mouse, derived from reference transcriptomic datasets (166).
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albicans in the skin, Salmonella and Clostridioides difficile in the gut,

and Mycobacterium tuberculosis in the lungs (13, 14, 59, 169). This

activation triggers appropriate physiological responses, such as

inflammation and immune activation, that are essential for

host defense.

However, the activation of nociceptors by microbes is a double-

edged sword. While it is crucial for pathogen defense, it can also

contribute to the pathogenesis of diseases. For instance, TRPV1+

nociceptors in the lungs detect lipopolysaccharides (LPS) from non-

biofilm-producing Pseudomonas aeruginosa via TLR4, leading to

the activation of acute stress neurocircuits in the hypothalamus.

This process not only drives sickness behavior but may also

exacerbate inflammatory responses, contributing to the disease

burden (170).
Neuropeptides, chemokines/cytokines and
neurotransmitters released from the
peripheral nervous system to activate cells
outside the nervous system

A key discovery in recent years is that peripheral sensory

neurons release neuropeptides—such as CGRP and SP—that act

on diverse cell types beyond the nervous system. These molecules

have receptors widely expressed across organs, enabling them to

regulate immune responses, tissue repair, and homeostasis (61). For

example, CGRP modulates ILC2 activity in the lung, promotes type

17 immunity in the skin, shapes humoral responses in the spleen,

and contributes to gut barrier defense. It also influences

hematopoietic stem cell mobilization, mucus secretion, and

macrophage polarization in tissue repair. However, CGRP can

also impair anti-tumor immunity by promoting CD8+ T cell

exhaustion, highlighting its context-dependent effects (13, 35, 59).

Similarly, SP regulates intestinal inflammation and microbiota

balance, but may also exacerbate gut pathology during infection

(49). Other mediators—such as TAFA4, glutamate, and CCL2—

further illustrate the complexity of sensory neuron-derived signals

in shaping immune and stromal cell behavior (56, 60).

Despite these advances, key questions remain. Why do identical

mediators yield opposing outcomes across tissues? How do multiple

neuroactive molecules released simultaneously interact to influence

physiological or pathological states? Answering these questions will

be essential to fully understand the integrated regulatory roles of

the PNS.
The peripheral nervous system acts as
afferents to transmit new information to
the CNS

The PNS, long recognized for relaying sensory information to

the CNS, is now understood to transmit signals reflecting the

internal state of organs, including immune and metabolic cues.
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This afferent role is particularly evident in the visceral sensory

system, which supports gut-brain communication essential for

maintaining systemic homeostasis.

Recent studies have shown that vagal sensory neurons detect

signals from enterochromaffin cells, microbiota, and nutrient

content to influence CNS activity. For instance, Htr3a+ neurons

mediate toxin-induced nausea, while other vagal subsets modulate

gut sympathetic tone or promote dopamine release, affecting

gastrointestinal function and behavior (120, 171). Vagal afferents

in other organs also play specialized roles: they regulate hunger

through intestinal mechanosensation, induce cardiovascular

reflexes via NPY2R-expressing neurons, and trigger stress

responses during lung infection (155). In the liver, vagal pathways

help maintain gut immune balance by monitoring osmotic changes

(119, 121).

Notably, even afferents from the same organ exhibit distinct

molecular and functional profiles, underscoring the specialization

within the PNS. However, how these pathways are organized,

integrated centrally, and influenced by disease remains poorly

understood. Elucidating their molecular coding and projection

logic will be key to understanding how the PNS coordinates

body-wide homeostasis.
Pathological roles and disease involvement

While the PNS plays a vital role in maintaining homeostasis,

growing evidence suggests it can also contribute to disease

pathogenesis. Neuropeptides such as CGRP, released by sensory

neurons, have been implicated in promoting melanoma progression

and exacerbating chronic inflammation, highlighting how PNS-

mediated immune modulation may under certain conditions favor

pathology rather than protection (141, 170). Conversely, in breast

cancer, SP released from sensory nerves can induce tumor cell

apoptosis, illustrating the PNS’s capacity for both promoting and

suppressing disease (145).

This dualistic nature underscores the complexity of PNS

involvement in pathological states and the need to understand the

context-dependent mechanisms that govern its protective versus

harmful roles. Clarifying the molecular and cellular pathways that

mediate this shift will be essential for developing therapies that

harness the beneficial functions of the PNS while minimizing its

contribution to disease.
Advantages of PNS regulatory functions

The regulatory functions of the PNS offer distinct advantages,

particularly in its ability to provide rapid and localized responses to

environmental changes. By directly modulating organ function and

immune responses, the PNS can swiftly adapt to threats,

maintaining homeostasis without necessitating extensive systemic

alterations. This capability to fine-tune physiological processes at
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the local level is vital for survival in a constantly changing

environment, underscoring the PNS’s role as a central integrator

of bodily functions. Additionally, as an afferent pathway, the PNS

transmits critical information about the tissue microenvironment to

the CNS, enabling the CNS to make informed systemic and

behavioral decisions. This dual function—local regulation and

systemic communication—highlights the PNS’s essential role in

orchestrating a coordinated response to both internal and

external challenges.
Conclusion

The peripheral nervous system is increasingly recognized as a

critical player in the regulation of organ function and systemic

homeostasis, with roles that extend well beyond traditional sensory

perception. The complex interactions between the PNS and various

organs open new avenues for therapeutic interventions, especially in

diseases where PNS activity may be dysregulated. Understanding

these interactions and the mechanisms by which the PNS influences

health and disease is essential for developing innovative treatments.

Future research should focus on elucidating the molecular and

cellular pathways involved in PNS regulation, to leverage its

protective functions while mitigating its potential contributions to

pathology. As our knowledge of the PNS expands, so too will our

ability to harness its capabilities in the pursuit of improved

health outcomes.
Future directions

Research on the non-sensory functions of sensory neurons will

continue to deepen, revealing their potential roles in metabolic

regulation, immune response, and tissue repair. In the future, new

neuropeptides and receptor-ligand pairs other than CGRP and SP

may be found to further expand the understanding of the regulatory

mechanism of sensory neurons. The crosstalk between sensory

neurons and the immune system is an important research

direction. It has been shown that nerve damage or modulation

can affect inflammatory responses, such as relieving symptoms of

arthritis and inflammatory bowel disease. This suggests the key role

of sensory neurons in neuro-immune regulation and may provide a

new target for inflammation-related diseases. In addition, sensory

neurons may play a role in neurodegenerative diseases, tumors, and

metabolic diseases. Specific modulators, such as neuropeptide

release regulation and neuronal activation/silencing techniques,

are expected to become important directions for future treatment.

Non-invasive neuromodulation techniques, such as transcranial

magnetic stimulation and ultrasound modulation, have shown the

potential to more accurately regulate the function of sensory

neurons and promote the development of personalized treatment.
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