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The influence of high-fat diet
and energy-restricted diet on
hematopoietic stem cells:
mechanisms and implications
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Increasing evidence demonstrates a close relationship between daily diet and

homeostasis of the body’s internal environment, particularly hematopoietic

system homeostasis. Hematopoietic stem cells (HSCs) are located at the top of

the hematopoietic system and have the ability to self-renew and differentiate into

various types of immune cells. They play an important role in maintaining body

stability and health. Studies have shown that different diets can lead to changes in

HSC homeostasis, thereby affecting immune function and overall health status of

the body. However, there is a scarcity of comprehensive reviews on how different

diets affects HSC function. Therefore, this review summarizes the current

progression in research on the effects of a high-fat diet (HFD) and energy-

restricted diet on HSC function. HFD has a predominantly negative effect on

HSCs, as does severe energy-restricted diet (SERD). Conversely, moderate

energy-restricted diet (dietary restriction, DR) promotes the repopulation of

HSCs but seriously impairs the differentiation of HSCs into lymphoid lineage.

Further study of the influence of different diets on HSCs may aid in designing

rational dietary guidelines to optimize the hematopoietic and immune functions

of the body, which has significant implications for clinical medical practices.
KEYWORDS

hematopoietic stem cell, high-fat diet, dietary restriction, protein-energy
malnutrition, energy
1 Introduction

Hematopoietic stem cells (HSCs), renowned for self-renewal and multilineage

differentiation capabilities, are pivotal in sustaining the body’s homeostatic balance.

More than 90% of HSCs in adults are in a state of quiescence (1), and most of the

hematopoiesis in the body is completed by hematopoietic cells with a higher degree of

differentiation. HSCs (Lin-Sca1+c-Kit+) (2) include long-term HSCs (LT-HSCs) and short-

term HSCs (ST-HSCs), each with different self-renewal abilities and differentiation

potentials. LT-HSCs represent the most primitive state of HSCs, mainly in the cell-cycle-
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quiescent (G0 phase), and are located at the top of the

hematopoietic system with an enduring self-renewal capacity (3).

They are essential for maintaining the lifelong activity of the stem

HSC pool. LT-HSCs differentiate into ST-HSCs and multipotent

progenitors (MPPs). ST-HSCs possess some self-renewal abilities,

reconstructing the blood pool and maintaining hematopoiesis,

while MPPs cannot rebuild the bone marrow (BM) but can

differentiate into common lymphoid progenitors (CLPs) and

common myeloid progenitors (CMPs). CLPs and CMPs further

differentiate into mature blood cells (4). LT-HSCs, ST-HSCs, and

MPPs collaborate synergistically within the hematopoietic system,

each playing a distinct yet complementary role in the production

and maintenance of diverse blood cell lineages, collectively known

as hematopoietic stem and progenitor cells (HSPCs).

Liggett and Sankaran have proposed models for HSC

differentiation, including a “classical model,” a “continuum

model,” and a “punctuated continuum model.” Particularly, the

latter two models suggest different lineage biases in the

differentiation of MPPs (5). In these models, MPPs are classified

into four main groups: MPP1 are considered as ST-HSCs; MPP2

and MPP3 are myeloid-biased cells, which mainly differentiate into

granulocytes and monocytes; and MPP4 refers to lymphoid-biased

cells, responsible for the production of T, B lymphocytes, and NK

cells (6). However, after 2 weeks of irradiation, HSCs temporarily

overproduce myeloid-biased MPPs, accompanied by the fate of

MPP4 reprogramming to the myeloid lineage, to support the

expansion of myeloid cells and the rebuilding of the

hematopoietic system (7). In addition, other pathological

conditions such as inflammation (8, 9) and aging (10, 11) can

also lead to a myeloid differentiation bias in HSCs. Beyond

traditional flow cytometry, innovative single-cell multimodal

approaches are revolutionizing the analysis of HSCs (12).

Moreover, the single-cell transcriptome landscape of HSPCs is

progressively being elucidated, offering crucial insights into the

in-depth study of hematopoietic cell heterogeneity and

developmental processes (13).

HSCs are considered to be the “roots” of the hematopoietic and

immune systems, ensuring the proper functioning of critical

physiological processes such as oxygen transport, hemostasis,

immune defense, and tissue repair. The precise regulation of these

processes is essential for maintaining health and is of paramount

importance in disease treatment (14). However, the self-renewal

capacity and differentiation potential of HSCs are not permanently

maintained. With aging and interference from harmful external

stimuli, HSCs undergo a process of senescence (15). For instance,

chronic inflammation may cause a progressive and irreversible

depletion of HSC function, resulting in a sustained inhibitory

effect over time (16). Many features of HSC aging have now been

identified, including a significant decrease in the number of

quiescent HSC cells (i.e., G0 phase) (17); accumulation of DNA

damage and mutations in HSCs (18–20); a decrease in self-renewal

capacity; impaired hematopoietic reconstitution; clonal

proliferation; and myeloid-biased hematopoiesis (21). Given the

critical role of HSCs in hematopoiesis and immunity, investigating

the factors that regulate their activity is of particular importance.
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In recent years, the impact of diets on the body has been one of

the research hotspots, and numerous studies have reported that

different diets profoundly affect the functional homeostasis of

HSCs. Specifically, in mice, a high-fat diet (HFD) refers to a dietary

pattern in which fat provides at least 35% of the total energy intake

(22), and can even reach up to 60% (23). This kind of diet often leads

to obesity, indicating that mice are prone to excessive energy intake

when fed an HFD. In contrast, in a normal diet, fat typically accounts

for 10% of the energy intake (24). A 10-30% reduction in energy

intake is defined as a moderate energy-restricted diet or dietary

restriction (DR) (25). Severe energy-restricted diet (SERD) is

commonly defined as a substantial reduction in daily caloric intake,

such that it falls significantly below the threshold necessary to sustain

basal metabolic functions and routine physical activities, and

specifically, the energy restriction can exceed more than 40% of the

normal caloric requirement (26–28). Here, we aim to provide an

overview of the current understanding regarding the impact of HFD

and energy-restricted diet on HSCs (Table 1). We anticipate that this

review will not only clarify the existing knowledge but also inspire

novel clinical applications, such as more refined nutritional

interventions for patients with hematopoietic disorders, and

ultimately lead to improved therapeutic outcomes and patient well-

being in the clinical setting.
2 Effects of HFD on HSCs

Recent studies have reported that HFD significantly impacts the

health of HSCs (Figure 1). Studies on the effects of HFD on HSCs are

primarily conducted using mouse models. Both short-term and long-

term HFDs trigger a transition in self-renewing HSCs towards

differentiation into MPPs, and even enhance the ex vivo colony-

forming ability of lymphoid and myeloid cells. Furthermore,

prolonged exposure to HFD (18 weeks) significantly diminishes the

hematopoietic reconstitution capability of HSC in mouse BM,

indicating functional impairment of HSC (2). A 12-week HFD has

been proven to have adverse effects on HSPCs within the

interscapular brown adipose tissue (iBAT) and BM of mice,

implicating a connection between HSPCs and metabolic

dysfunction (29). In addition, long-term HFD increases the

expression of hepatic insulin-like growth factor-1 (IGF-1) in mice,

which may promote the activation of HSCs and exert deleterious

effects (30). Berg et al. have reported that even after the removal of the

obesogenic stimulus following long-term HFD, myeloid-biased

progenitor cells continue to be produced, suggesting that the effects

of long-term HFD on HSCs are difficult to reverse (2).
2.1 HFD induces an imbalance in HSC
quiescence via lipid rafts

The quiescent state of HSCs plays a crucial role in maintaining

their functional integrity and hematopoietic homeostasis. Appropriate

quiescence serves to preserve the HSC pool by preventing exhaustion,

regulates lineage differentiation balance, and ensures the stability of the
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TABLE 1 Effects of HFD* and Energy-Restricted Diet on HSCs*: phenotypes and mechanisms.

Other
erved Changes

Model References
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ytes, reduced osteoblasts;
sed DPP4* secretion and
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generation capacity.

Mice (C57BL/6)
Ambrosi et al.
(2017) (60)

nificant changes in body
ght or blood glucose.
ased LDL*-cholesterol
levels in plasma;

Mice (C57BL/6 &
congenic B6.SJL)

Hermetet et al.
(2019) (38)

ased Body weight and
body mass index;
ced bone volume and
trabecular number

Mice (C57BL/6) Luo et al. (2015) (68)

nificant weight gain;
ccumulation of pro-
nflammatory cells;
ase in adipocytes in the
bone marrow;

sulin resistance and
mal glucose metabolism.

Mice (C57BL/6) Bowers et al. (2021) (44)
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weight;
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cell production

Mice (C57BL/6)
Murphy et al.
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TABLE 1 Continued

Positive Effects Negative Effects Other
rved Changes

Model References

d liver mass, fasting
glucose, insulin, and
in resistance index
HOMA-IR*;
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ced DNA damage
signaling;

oved mitochondrial
function;
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d fatty acid oxidation;
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hematopoietic system. Multiple mechanisms participate in the

regulation of the HSC quiescence, including modulating cell cycle-

related factors, transcription factor networks, cellular metabolic states,

and signaling pathways related to the hematopoietic

microenvironment (31). Among them, forkhead box O (FOXO)

transcription factors and transforming growth factor-b (TGF-b) are
two pivotal regulators of HSC quiescence and cell cycle control.

Specifically, FOXO inhibits the expression of cell cycle proteins

(such as Cyclin D) and promotes the expression of cell cycle

inhibitors (such as p21 and p27), thereby preventing HSCs from

prematurely entering the proliferative cycle. However, after the

activation of the phosphatidylinositol 3-kinase - protein kinase B

(PI3K-AKT) pathway, AKT induces a conformational change in

FOXO protein through phosphorylation, thereby inhibiting its

function in maintaining cell quiescence (32). Under physiological

conditions, TGF-b acts as a guardian against HSC activation and cell

cycle entry by engaging with TGF-b receptor type I (TGF-bR1),
thereby maintaining the stem cell activity of HSCs. TGF-b regulates

HSC cell cycle through multiple mechanisms, including upregulating

cell cycle inhibitors such as p21 (33) and p57Kip2 (34), downregulating

cytokine receptors such as interleukin-1 (IL-1) and granulocyte-

macrophage colony-stimulating factor (GM-CSF), and interacting

with the stromal cell-derived factor-1 (SDF-1) signaling pathway.

These mechanisms collectively ensure that HSCs can maintain their

quiescent state while also entering the cell cycle to proliferate in

response to the body’s needs (35).

Additionally, lipid raft (LR), a membrane structure, plays a

critical role in regulating HSC quiescence. LRs contain

glycosphingolipids and protein receptors that form glycoprotein

microdomains floating freely within the membrane bilayer (36).

These LRs cluster signaling molecules with surface receptors such as

C-X-C chemokine receptor 4 (CXCR4), the a4b1 integrin (VLA-4)

that binds vascular cell adhesion molecule-1 (VCAM-1), and the c-

kit receptor for stem cell factor (SCF). This molecular clustering is

essential for retaining HSCs in the BM niche and maintaining their

quiescent state. Evidence shows that inhibiting LR clustering leads

to sustained elevation of FOXO nuclear concentration and induces

murine HSC quiescence ex vivo (37).

Recent evidence has revealed that HFD modulates HSC

quiescence through LR-mediated mechanisms. Research by

François Hermet et al. has revealed that a short-term HFD (1˜4

weeks) leads to the formation of LR clusters on the membrane of

HSCs and a pronounced condensation of TGF-bR1 within these LR

clusters. This finding results in a consequent decrease in the

phosphorylation of SMAD2/3, a downstream molecule of the TGF-

b signaling pathway, indicating that HFD-induced condensation of

TGF-bR1 in the HSC LR cluster leads to inefficient and impaired

TGF-b-mediated signal transduction. This transduction, in turn,

causes HSCs’ re-entry into the cell cycle and the loss of their ability

to maintain quiescence (Figure 1A) (38). This effect in turn results in

the altered transcriptional regulation of the aforementioned genes,

thereby disrupting HSC quiescence (39–41).

Additionally, fms-like tyrosine kinase 3 (FLT3) plays a critical role

in HSCs by regulating their proliferation and differentiation under

physiological conditions, which is essential for maintaining
T
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hematopoietic homeostasis (42). Another study has shown that a

short-term HFD induces the clustering of FLT3 receptors within LR

on the membrane of HSCs, thereby enhancing the downstream JAK3/

STAT3 signaling pathway and subsequently leading to a decrease in

the content of primitive HSCs and an increase in the incidence rate of

acute myeloid leukemia (AML) in a mixed lineage leukemia (MLL-

AF9) knock-in mouse model (43). However, how short-term HFD

affects LR content, and whether short-term HFD affects HSC function

through other factors, needs to be further investigated.
2.2 HFD-induced chronic inflammation and
metabolic disorders disrupt HSCs’
homeostasis

Long-term HFD (more than 16 weeks) leads to metabolic

abnormalities such as obesity and hyperlipidemia. Obesity
Frontiers in Immunology 06
manifests as a chronic low-grade inflammation characterized by

increased circulating levels of inflammatory factors such as tumor

necrosis factor-a (TNF-a), interferon-g (IFN-g), interleukin-1b
(IL-1b), and interleukin-6 (IL-6). The specific mechanisms by

which inflammatory factor-related signaling pathways affect the

HSC niche have been well elucidated (Figure 1B) (44, 45).

Researchers have observed that activation of inflammatory

pathways in HSCs leads to enhanced myeloid hematopoiesis with

HSC expansion. Moreover, chronic inflammatory cytokine

signaling can lead to HSC failure and may contribute to the

development of hematopoietic malignancies, indicating that

signaling pathways and BM niche impact both normal and

malignant HSCs (46).

Inflammation activates associated signaling pathways, leading

to oxidative stress in HSCs. The accumulation of ROS may disrupt

the RAS-MAPK pathway- a signaling axis critical for maintaining

the self-renewal capacity of HSCs through tightly controlled
FIGURE 1

Mechanisms by which a high-fat diet (HFD) affects hematopoietic stem cells (HSCs). (A) HFD induces clustering of lipid rafts (LRs) on the cell
membrane, thereby suppressing the transforming growth factor-b (TGF-b)/Smad2/3 signaling pathway, which in turn triggers the exit of HSCs from
the quiescent state. (B) Obesity-related chronic inflammation caused by HFD changes the HSC niche. (C) HFD can cause the accumulation of
cholesterol in LRs, thereby inducing the myeloid lineage bias of HSCs. (D) HFD promotes the adipogenic differentiation of bone marrow
mesenchymal stem cells (BMSCs) by activating the peroxisome proliferator-activated receptor g(PPARg) signaling pathway, thereby inhibiting the
production of HSCs. (E) HFD leads to alterations in the gut microbiota and the downregulation of related gene expressions detrimental to HSC
homeostasis. (Created by Figdraw). *The full names of other abbreviations appearing in Figure: IFN-g, interferon-g; IL-1b, interleukin-1b; IL-3,
interleukin-3; IL-6, interleukin-6; TLR4, toll-like receptor 4; GM-CSF, granulocyte-macrophage colony-stimulating factor; Ang-1, angiopoietin-1;
SDF-1, stromal cell-derived factor-1.
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activation. This dysregulation subsequently induces excessive DNA

damage and senescence, as well as apoptosis of HSCs (47). Spred1, a

negative regulator of the RAS-MAPK signaling pathway, negatively

modulates the self-renewal and adaptive capacity of HSCs under

homeostatic conditions. However, under HFD conditions, Spred1

protects the homeostasis of HSCs, preventing HSC dysfunction

induced by diet-induced systemic stress. Specifically, the protective

effect of Spred1 on HSCs under HFD conditions is achieved by

inhibiting the activity of the extracellular regulated protein kinases

(ERK) and RhoA/Rho kinase (ROCK) pathway. ROCK pathway

controls actin polymerization, which can lead to abnormal

activation and proliferation of HSCs in Spred1-deficient mouse

models (48).

When being exposed to HFD, the toll-like receptor 4 (TLR4) of

HSPCs can be activated by sensing endogenous ligands such as

damaging associated molecular patterns (DAMPs) (49), which are

released during inflammation caused by hypercholesterolemia. This

activation of TLR4 consequently inhibits the expression of

apolipoprotein E (apoE) and ATP-binding cassette (ABC)

transporters A1 and G1, which are indispensable for the efflux of

cholesterol in cells. The insufficiency of these proteins results in the

accumulation of cholesterol within the LRs of HSCs, and thereby

promotes the activation of GM-CSF and interleukin-3 (IL-3) signaling,

which aids in the proliferation of HSCs, especially in the production of

inflammatory myeloid cells (Figure 1C). The production of

inflammatory myeloid cells may drive their differentiation into

macrophages with a pro-inflammatory phenotype, thereby

exacerbating the development of atherosclerosis and forming a

vicious cycle (50, 51). Furthermore, under hypercholesterolemia,

sterol regulatory element binding protein 2 (SREBP2) activation is

enhanced, and Notch1 is upregulated in human HSPCs, which

contribute to HSPC emergence (52). However, exendin-4 (EX-4)

prevents HSC proliferation induced by hypercholesterolemia via

regulating cholesterol metabolism and inhibiting inflammation (53).

In summary, we propose that cholesterol metabolism exerts a

significant influence on the regulation of HSCs, offering new

perspectives for the treatment of related diseases.
2.3 HFD modulates HSCs via BM niche
remodeling

The BM niche is composed of a variety of cell types and

extracellular matrix, including stromal cells, immune cells, and

extracellular matrix. Specifically, it refers to the local tissue

microenvironment in the BM that provides support and

regulation for HSCs (54). A critical aspect of the BM niche is the

dynamic balance between osteoblasts and adipocytes, which

collectively govern HSC functional regulation. Bone marrow

adipocytes (BMAs) secrete factors, such as neuropilin1 (55) and

lipocalin 2 (56, 57), have been shown to impair hematopoiesis (58).

Meanwhile, BM osteoblasts, considered as key regulators of the

HSC niche, express SDF-1, Notch, and jagged 1 (Jag1) (59),

facilitating HSC mobilization and differentiation and thus

protecting hematopoiesis (23, 58, 60).
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HFD leads to the activation of peroxisome proliferator-activated

receptor g (PPARg), which increases the adipogenic differentiation of

bone marrow mesenchymal stem cells (BMSCs). This results in

overproduction of BMAs, which in turn inhibits osteoblastogenesis

and negatively affects hematopoiesis (60) (Figure 1D). Consistently,

long-term HFD increases adipogenic progenitor cells’ expansion in

the BM, inhibiting HSC repopulation (61).
2.4 HFD influences HSCs by manipulating
the gut microbiota

Gut microbiota has a tremendous influence on HSCs and

immune homeostasis (62, 63). The metabolic byproducts of the

gut microbiota, inflammatory signals, and their interactions with

the BM niche have profound implications for the function and fate

of HSCs (64, 65). HFD, as an energetic stressor, can indirectly affect

gut microbiota, leading to a loss of HSC stemness (Figure 1E). In a

healthy body, gut microorganisms promote hematopoiesis through

complex mechanisms. In both mice and humans, distal gut

microbiota is comprised of two major bacterial phyla:

Bacteroidetes and Firmicutes (66, 67). A report showed that the

abundance of Bacteroidetes and Firmicutes decreased in the cecum

and ileum of mice after HFD, while the abundance of

Verrucomicrobia, Proteobacteria, and Actinobacteria increased.

Correspondingly, the expression levels of angiopoietin-1 (Ang-1),

SDF-1, and Notch1 decreased, and the expression of kit ligand

(KitL) increased, which was detrimental to HSC homeostasis.

Moreover, the gut microbiota promotes myeloid-biased

differentiation by enhancing the number and differentiation

potential of GMP in the BM. Transplantation of gut microbes

from normal mice was able to restore the adverse effects of HFD on

HSCs (68). Moreover, the defective phenotype of aging HSCs is

ameliorated by the fecal microbiota transplantation from young

mice. This phenomenon indicates the significant importance of

intestinal microbial barrier integrity for HSC function (69).
2.5 Impact of HFD on embryonic
hematopoiesis

Epidemiologic and experimental evidence suggests that

overweight mothers and long-term prenatal HFD can lead to fetal

reproductive defects, growth restriction, hypothalamic

developmental defects (70), cardiac abnormalities, and endocrine

dysfunction (71–74). Studies have shown that in addition to its

negative effects on the maternal BM HSCs and hematopoiesis, HFD

also impacts the hematopoiesis of unborn offspring. A study of

pregnant mice fed on HFD has demonstrated that a short-term

HFD leads to an increase in HSPCs in fetal liver, but these fetal liver

HSCs exhibit decreased proliferative potential. Meanwhile, long-

term HFD in pregnant mice decreases fetal liver HSCs, and

maternal weight loss cannot reverse it. Both pregnant and

neonatal mice receiving HFD show a myeloid bias in HSCs, thus

leading to hematopoietic dysplasia (75). It is worth noting that in
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another study, the impact of maternal obesity on offspring HSPCs

was found to be sex-related. Specifically, male offspring exhibited

reduced HSPC numbers and impaired engraftment, whereas female

offspring showed no significant alterations in HSPC numbers or

engraftment efficiency, but an increase in immune-related gene

expression in HSPCs (76) (Figure 2A). Overall, these findings

suggest that habitual intake of high-fat foods during pregnancy or

prenatal obesity may impair the function of fetal liver HSCs. Late in

gestation, the fetus establishes its initial immune function through

hematopoiesis in the BM. However, this study did not focus on

whether HFD negatively affects HSC function in the fetal BM of

fetal mice, which requires further investigation.
2.6 Exercise reverses the detrimental
effects of HFD on HSCs

There is evidence that exercise can reverse the negative effects of

HFD on HSCs, primarily by altering the BM microenvironment,

thereby benefiting hematopoiesis. Experiments conducted in both

mice and humans have shown that exercise can increase the

number of HSPCs in the BM and peripheral blood (77), and

decrease BM adipose tissue (78). These phenomena have been

associated with the regulation of adipogenic and osteogenic

differentiation of MSCs. Mechanistically, exercise decreases the levels

of miR-193 in extracellular vesicles within the BM of mice fed with

HFD. These microRNAs are implicated in the inhibition of

osteoblastogenesis (79). Specifically, high mobility group box

protein-1 (HMGB1) is targeted by miR-193a to inhibit osteogenic

differentiation of human BM-derived stromal cells (80), and the

upregulation of miR-193b in HSCs can prevent the exhaustion of

human HSCs by limiting proliferation and self-renewal (81).

Moreover, a study also suggests that exercise reduces the production

of inflammatory cells, as well as the abnormal proliferation and

differentiation of HSCs (82). Adipose tissue is an important source

of leptin in the BM microenvironment (83), and leptin promotes the

maintenance of inflammation (84, 85). Exercise reduces leptin

production in adipose tissue, thereby enhancing leptin receptor-

positive BMSCs to produce hematopoietic factors that promote HSC

quiescence. The reduction of leptin also increases CXCL12 expression

(54, 86), which interacts with CXCR4 to anchor HSCs in the BM

niche, thus facilitating the hematopoietic function of HSCs (87, 88).

Additionally, researchers found that although exercise reduces

circulating leukocytes in the blood, it does not lead to a decrease in

the body’s resistance to external infections (78). Therefore, exercise not

only reduces HFD-induced obesity and systemic inflammation but

also mitigates the negative effects of HFD on HSC function.
3 Effects of moderate energy-
restricted diet on HSCs

DR, also referred to as calorie restriction (CR), is a well-

recognized anti-aging intervention that extends lifespan.

Currently, there are differences in the specific experimental
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approaches to moderate energy-restricted diet across different

studies. Omodei and Fontana have stated that experimental DR

does not lead to nutritional deficiencies (25). In animal studies,

control animals are typically fed an ad libitum (AL) diet. This

controlled approach allows researchers to better understand the

effects of dietary intake on health and longevity.

Current DR studies rarely specify precise limitations for the

three major macronutrients (carbohydrates, proteins, fats).

Research on the effects of a diet solely restricting carbohydrates

on HSC function remains limited. Protein restriction may lead to

protein-energy malnutrition (PEM) in mice and is excluded from

typical DR research. Regarding fat restriction, limited studies show

that a fat-free diet promotes HSPC mobilization (89, 90). However,

the impact of fat restriction on HSC remains largely unknown.

Based on existing evidence from DR studies, we propose that an

effective moderate energy-restricted diet requires balanced,

moderate limitation of all three macronutrients, aligned with

normal dietary nutrient composition.
3.1 DR promotes HSC quiescence and
rejuvenation

Abundant evidence demonstrates that DR is instrumental in

delaying or even reversing immune aging and bolstering immune

function (91). For instance, thymic immature T-cell precursors

were more effectively preserved in mice subjected to DR compared

to those with AL feeding, thus sustaining a stable reservoir of naïve

T cells (92). Another study demonstrated that DR mitigated the

accumulation of dysfunctional, aging T cells over time (93),

implying a link between immune aging delay and DR. In

addition, DR has been shown to enhance the protective function

of memory T cells against secondary infections (94). Furthermore, a

two-year DR regimen, reducing caloric intake by approximately

14% in a healthy cohort, was found to enhance human thymic

function (95). DR has also been proven to alleviate the reduction in

the diversity of the B cell receptor repertoire associated with aging

in mice (96). Additionally, time-restricted feeding (TRF),

characterized by a daily 10-hour feeding window followed by a

14-hour fast, has exhibited potential in preserving immune cell

homeostasis in the BM and peripheral circulation, particularly in

the context of obesity induced by HFD (97). Although the overall

impact of DR on the immune system is perceived as beneficial, the

precise mechanisms remain largely unelucidated.

Several studies have reported that DR can promote the

repopulation of aging HSCs and enhance their functionality

(Figure 2B) (98). DR has been shown to increase HSC quiescence

and reduce their proliferation in response to stress, in contrast to

the AL group (99). Furthermore, the duration of DR influences its

effects on the function of HSCs. Short-term DR, lasting for 4

months, rejuvenated aging HSCs but did not significantly impact

cell chimerism after BM transplantation. In contrast, long-term DR,

extending for 9 months, not only rejuvenated aging HSCs and their

associated hematopoietic progenitor cells but also enhanced cell

chimerism following BM transplantation, indicating a substantial
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improvement in the body’s medullary hematopoietic function (17).

This indicates that the long-term reconstitution capacity of HSCs is

significantly influenced by the duration of DR. Still, there is a need

for more systematic and comprehensive research to elucidate the

impact of DR on HSCs.

The molecular mechanisms of how DR promotes the rejuvenation

of aging HSCs are gradually being elucidated. DR has been observed to

partially reverse the age-related increase in ST-HSCs, yet the impact of

DR on HSCs varies among individuals with different genetic

backgrounds (100). While DR ameliorates hematopoietic aging, this

effect does not appear to rely on telomerase regulation (101).

Improvements in HSC quiescence and regeneration under DR

conditions are implicated to be linked to a decrease in serum IGF-1

level, as evidenced by the observation that IGF-1 supplementation

reduces both the HSC proportion of G0 phase and the long-term

reconstitution capacity to levels those observed with an AL diet (99).

However, the precise molecular mechanisms through which IGF-1

regulates these HSC properties remain to be fully elucidated.
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Mitochondria, as pivotal players in energy metabolism,

significantly influence HSC functions. The mitochondrial

unfolded protein response (UPRmt) has been shown to have

negative effects on HSC homeostasis, which is activated during

the transition of HSCs from quiescence to proliferation (102). Long-

term DR has been proven to restore the expression of UPRmt-

related genes, such as heat shock protein-10 (HSP10), HSP60, and

sirtuin7 (SIRT7), to normal levels, thus promoting the rejuvenation

of HSCs (Figure 2B) (17). Specifically, heat shock factor 1 (HSF1) is

essential for the activation of mitochondrial chaperone protein

genes, including HSP60 and HSP10. The occupancy of HSF1 is

significantly enhanced during UPRmt activation (103). SIRT7 has

been identified as a key regulator of a branch of the UPRmt pathway,

with its inactivation leading to impaired HSC regeneration (104,

105). Furthermore, the accelerated accumulation of oxidized by-

products with ROS stimulates mitochondrial dynamics through

mitochondrial proteases and UPRmt (106), which aggravates the

aging of HSCs. Nevertheless, the precise mechanisms by which DR
FIGURE 2

High-fat diet (HFD) and energy-restricted diet modulate the function of hematopoietic stem cells (HSCs). (A): HFD causes HSCs to leave their
quiescent state and generate myeloid differentiation. HFD feeding during pregnancy leads to impaired engraftment capacity and decreased numbers
of HSPCs in offspring. (B): Dietary restriction (DR) promotes the self-renewal of aging HSCs by reducing serum insulin-like growth factor-1 (IGF-1)
levels and inhibiting the mitochondrial unfolded protein response (UPRmt). DR downregulates lymphoid-specific gene expression, which can lead to
an increased myeloid differentiation of HSCs. (C): Severe energy-restricted diet (SERD) leads to a reduction in the number of bone marrow (BM) cells
and erythroid progenitor cells, resulting in BM atrophy and suppression of hematopoiesis. The absence of the seizure threshold 2 (SZT2) and
tuberous sclerosis complex 1 (TSC1) leads to the activation of reactive oxygen species (ROS) and mechanistic targeting of rapamycin complex 1
(mTORC1) signaling pathways, which causes depletion of HSCs. (Created by Figdraw).
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modulates HSC homeostasis via the alteration of mitochondrial

function still require further investigation.
3.2 Fasting promotes the self-renewal
capacity of HSCs

Fasting, as a form of DR, is one of the most prominent energy-

restricted diet manipulation methods. This type of caloric

restriction is typically achieved through periodic fasting,

intermittent fasting, fasting mimicking diet (FMD, which includes

very low calorie and low protein intake (107, 108). Current evidence

indicates that fasting exerts pleiotropic effects on HSCs, enhancing

their functional competence via coordinated modulation of self-

renewal, stress adaptation, and lineage differentiation capacities.

Fasting has been recognized as a modality capable of promoting

hematopoietic regeneration in both mice and humans (109, 110),

which modulates metabolic homeostasis and mitigates

inflammatory injury, thereby enhancing the functional capacity of

HSCs. For instance, a study in mice indicated that prolonged fasting

(lasting 48–120 hours) reduces circulating IGF-1 levels and protein

kinase A (PKA) activity, thereby triggering signaling changes in LT-

HSCs, which in turn modulate cellular stress resistance, self-renewal

capacity, and balanced lineage regeneration (111). In another study,

researchers demonstrated that aging-induced remodeling of the BM

niche leads to suppressor of cytokine signaling 3 (Socs3)-mediated

inhibition of the AKT/FOXO signaling axis, thereby suppressing

glycolytic activity in HSCs. During this process, autophagy is

activated as a protective mechanism to enable HSCs to adapt to

this metabolic change and maintain quiescence. A short-term

fasting (lasting 24 hours)/refeeding paradigm not only normalizes

glycolytic flux but also enhances the regenerative potential of aging

HSCs through autophagy induction (112). Additionally, regulation

of inflammatory signaling may also be one of the important factors

through which fasting affects the function of HSCs. The aberrant

activation of the NLR family pyrin domain-containing protein 3

(NLRP3) inflammasome induced by mitochondrial stress regulates

the functional deterioration associated with HSC aging (113). Since

fasting has been proven to activate SIRT3 in monocytes, reduce the

production of ROS, and thereby suppress the activation of the

NLRP3 inflammasome and mitigate inflammatory responses in

humans (114), we postulate that fasting may modulate HSC

function via analogous mechanisms. However, additional

experimental validation is necessary to confirm this hypothesis.

While fasting has traditionally been regarded as beneficial for

overall health, emerging evidence suggests that cycles of fasting and

refeeding may adversely affect peripheral immune function.

Mechanistically, this immune impairment appears to be mediated

through activation of the NLRP3 inflammasome and NF-kB
signaling pathways, along with the induction of endotoxemia

(114). Moreover, fasting triggers corticosterone-dependent Ly-

6Chi monocyte homing to BM via CXCR4 upregulation in mice,

causing post-refeeding inflammatory bursts (115). Although direct

evidence linking fasting/refeeding cycles to HSC dysfunction

remains limited, the observed effects on peripheral immune cells
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suggest that such dietary interventions may not uniformly enhance

immune competence. These findings underscore the necessity for

more comprehensive investigations to elucidate the precise impact

of intermittent fasting on immune regulation.
3.3 DR disrupts balanced lineage
differentiation in HSCs

While DR has been shown to promote HSC regeneration-

demonstrating its beneficial effects-emerging evidence suggests it

may also disrupt balanced lineage differentiation (Figure 2B). For

instance, Tang et al. demonstrated that the long-term DR promotes

HSC quiescence while reducing CLP frequency, impairs

lymphopoiesis, but enhances myeloid differentiation. However,

supplementation with IGF-1 fails to restore balanced lineage

differentiation, suggesting that the decline in IGF-1 is not the

primary driver of the lineage differentiation imbalance observed

under DR condition. Moreover, long-term DR progressively

downregulates lymphoid-specific genes (e.g., Blnk, Rag1, IL-7Ra,
and Ly6d) in lymphoid-biased HSCs within the BM of aged mice,

sequentially impairing lymphoid lineage differentiation in a stepwise

manner - first affecting CLPs (IL-7Ra+Flt3+c-Kitmid/lowSca-1mid/

lowlineage−), followed by pro-B cells (B220+CD24+AA4.1+TER-

119−Gr-1−CD11b−CD3−), and ultimately compromising mature

B cell development. However, no alterations in other immune cells,

such as T cells or NK cells, are observed, highlighting lineage-specific

impacts (99). These findings challenge the notion that DR universally

delays immune aging, instead revealing its time-dependent

detrimental effects on B-lymphopoiesis that contrast sharply with

its protective thymic effects, suggesting DR may exert lineage-specific

regulation of lymphocyte development through distinct mechanisms

governing T-cell versus B-cell homeostasis, though the current lack of

data on DR’s effects on BM T-cell precursors represents a critical

knowledge gap in understanding its differential immune modulation.

DR-induced imbalanced lineage differentiation in HSCs has

been confirmed by other studies. For example, long-term DR has

been shown to more markedly decrease lymphoid lineage-biased

HSCs (CD150lo HSCs and CD41- HSCs) (17). Consistently, fasting

leads to the accumulation of naïve B cells in the BM. This

phenomenon was attributed to the migration of peripheral naïve

B cells into the BM, rather than an enhanced differentiation of B

cells in the BM, because CLP, B220+ B cell precursors, as well as

immature B (B220+lgM-lgD-) cells in the BM decreased during

fasting (116). Additionally, research demonstrated that DR alters

gut microbiota composition, increases intestinal butyrate levels,

downregulates glycolytic pathway genes in BM B cells, reduces

glucose uptake, and ultimately decreases lymphocyte counts (117).

Although DR impairs B-lymphoid differentiation and

negatively affects the adaptive immune system, particularly in

aging contexts - these effects are thought to be reversible. Dietary

interventions such as refeeding represent effective strategies: when

mice initially subjected to DR were subsequently returned to an AL

diet, DR-induced myeloid bias in HSCs was reversed, while changes

in myeloid differentiation genes remained insignificant (99). One
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study demonstrated that prolonged fasting/refeeding increases

lymphocyte counts and reverses myeloid bias in mice (111).

Additionally, IL-6/IL-7 supplementation has been shown to

restore the impaired B lymphopoiesis in mice under DR,

suggesting a link between cytokines and the hematopoietic

changes (99). Besides, broad-spectrum antibiotic treatment (e.g.

ampicillin) has been shown to reduce bacterial richness and the

abundance of Lactobacillus and Bacteroides in DR mice,

significantly increasing the number of CLPs, pro-B cells, and B

cells (especially immature B cells) in the BM, with increased

peripheral B and T cell levels (117). Another study showed that

during starvation, serum leptin (a nutritional status sensor

regulating hypothalamic energy homeostasis) decreases, while

hypothalamic neuropeptide Y (NPY) increases, elevating

corticosterone. After 48 hours of fasting, B-cell development in

the BM was impaired, but intracerebroventricular leptin injection

normalizes corticosterone levels and rescues B-cell defects. Oral

administration of the glucocorticoid receptor antagonist RU486 has

the same effect as intracerebroventricular leptin injection (118).

Taken together, these results reveal that dietary or pharmacologic

interventions represent promising approaches to restore DR-

induced imbalanced lineage differentiation. Mechanisms

regulating lymphoid differentiation in HSC are being further

clarified—for instance, expression of key transcription factors like

FOS, IKZF1, and KLF9 enhances lymphoid differentiation potential

in human induced pluripotent stem cell (hiPSC)-derived

hematopoietic stem and progenitor cells (iHSPCs). These findings

may facilitate developing new strategies to improve lymphoid

differentiation (119).
4 Effects of SERD on HSCs

SERD, which excessively restricts the body’s energy intake, may

impair the body’s immune function. Nutritional intake is known to

modulate immune cell activity through the action of adipokines. For

example, adiponectin and leptin, both adipokines predominantly

secreted by white adipose tissue, play pivotal roles in modulating

immune functions. Leptin tends to promote inflammation, while

adiponectin exerts a potent anti-inflammatory effect (120, 121).

Under conditions of SERD, a decline in leptin levels is observed,

while adiponectin levels remain stable. This imbalance can lead to a

reduction in the number and functionality of effector immune cells

(122). The compromised immune response associated with severely

insufficient energy intake may also be partially due to a decline in

medullary hematopoiesis.

SERD can lead the body to break down proteins for energy

supply (123). If the body remains in severe energy deficiency for a

long time, it can result in PEM (124). Protein serves as a crucial

structural component for functional biomolecules, and its

deficiency can adversely impact hematopoietic function (125). It

is noteworthy that while the adequacy of protein intake from

vegetarian diets has been a subject of debate, classic vegetarian

diets are capable of providing enough protein for adult individuals
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(126). However, it is also observed that human vegetarians may be

at a higher risk of being underweight (127). Mice on a 4% low-

protein diet exhibited a reduction in BM cells, a depletion of

progenitor cells, and an increase in cells in the G0/G1 phase.

These malnourished mice also showed a decrease in reticulocytes,

leukopenia, and indicators of anemia compared to the control

group fed with a 20% protein diet (128). In another study,

malnourished mice displayed severe BM atrophy, diminished

expression of proliferating cell nuclear antigen, and evidence of

gelatinous degeneration, as well as a reduction in hematopoietic

tissue and an abnormal deposition of extracellular matrix

components. This indicated a compromised hematopoietic

microenvironment, which was further evidenced by a reduced

capacity of the hematopoietic stroma to support the growth of

HSCs (CD34+) in vitro (129). During PEM, the downregulation of

cell cycle protein D1 inhibited the cell cycle in hematopoietic

progenitor cells; however, this does not imply that PEM increases

the quiescence of HSCs, but rather reflects the detrimental effects of

protein deficiency on hematopoiesis (130). Furthermore, PEM leads

to a reduction in erythroid progenitor cells, thereby causing anemia

(131). These findings highlight the detrimental impact of PEM on

the structural integrity and functional capacity of the hematopoietic

microenvironment (Figure 2C).

PEM exerts a particularly pronounced impact on HSCs at the

metabolic level. The homeostasis of HSCs is regulated by nutrient

sensing and the mechanistic target of rapamycin complex 1

(mTORC1) signaling pathway (132). Seizure threshold 2 (SZT2)

and tuberous sclerosis complex 1 (TSC1), as inhibitory molecules of

mTORC1, play a crucial role in the homeostasis of HSCs during

nutrient deficiency. Specifically, SZT2 is an essential protein for the

downregulation of mTORC1 during nutrient scarcity, and its

absence can lead to a reduction in HSC reserves and impaired

regenerative capacity. Furthermore, the dual loss of SZT2 and TSC1

results in rapid exhaustion of murine HSCs, a decrease in all blood

cell types, and premature death. Mechanistic studies indicate that

the single loss of SZT2 or TSC1 only leads to a mild increase in

mTORC1 activity and ROS production in HSCs, whereas the

simultaneous loss of both results in a significant synergistic effect,

causing a substantial increase in mTORC1 activity and ROS

production, which rapidly depletes the HSC pool (133)

(Figure 2C). PEM also compromises the activation of the MAPK

signaling pathway in HSCs, with a marked effect on ERK1/2

activation, by perturbing intracellular metabolic homeostasis,

particularly through disruptions in amino acid availability and

energy supply. This metabolic dysregulation results in the

suppression of the key hematopoietic transcription factors, such

as GATA1/2, PU.1, C/EBPa, NF-E2, and IKZF3, thereby impairing

the proliferative and differentiation capacities of HSCs and

ultimately contributing to the pathogenesis of BM dysplasia (134).

Elucidating the mechanisms by which PEM affects HSCs

contributes to a deeper understanding of the metabolic regulation

and functional impairments of HSCs under nutritional stress and

provides potential therapeutic targets for the prevention and

treatment of hematopoietic disorders caused by SERD.
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5 Conclusion and perspective

In summary, the influence of different diets on HSC function is

substantial. Excessive dietary fat is recognized as a detrimental

stressor for HSCs, and exposure to HFD may result in the loss of

HSC stemness, consequently diminishing their proliferative

capacity and differentiation potential. Although DR may disrupt

the balance between myeloid-biased and lymphoid-biased cells, it

has been shown to promote the rejuvenation of aging HSCs. The

precise mechanisms underlying these effects warrant further

investigation. SERD, which can lead to PEM, also negatively

impacts HSCs and the immune function of the body.

However, numerous critical questions remain unresolved. For

example, how do high-sugar or high-protein diets impact the

function of HSCs? Whether restricting a single nutrient category

(e.g., carbohydrates, proteins, or fats) selectively affects HSC activity

also requires clarification. Additionally, it remains unclear whether

altering dietary patterns can promote HSC homeostasis, thereby

contributing to the maintenance of organismal homeostasis. With

advancing research, new dietary patterns have been shown to confer

benefits to human health, offering new non-pharmacological

avenues for promoting hematopoietic system health and

managing related disorders (135). The dietary approaches to stop

hypertension (DASH) diet, characterized by a low glycemic index

and high nutrient density, enhances satiety and reduces food intake,

thus aiding in the control of human obesity (136). The ketogenic

diet (KD), meanwhile, mitigates endoplasmic reticulum stress,

improving HFD-induced skeletal muscle insulin resistance (137).

Notably, however, direct research on the effects of these alternative

dietary regimens on HSC function remains scarce.

Furthermore, hematopoietic stem cell transplantation (HSCT)

is a pivotal treatment for hematological diseases. Though the

regulation of energy metabolism can significantly impact HSC

function, clinical research in this field remains relatively limited,

and numerous challenges persist. For instance, ensuring that

patients adhere to energy restriction criteria without falling into

severe energy deficiency and minimizing the negative effects on

immune function are critical issues. For example, studies could

explore how to enhance the self-renewal and regenerative capacity

of HSCs by modulating energy metabolism, thereby improving the

success rate of HSCT and reducing post-transplant complications.

A multitude of studies have demonstrated a strong correlation

between nutritional status and the prognosis of patients undergoing

HSCT (138–140). Therefore, further clinical research on the energy

metabolism regulating HSC function is urgently needed. Besides,

omics analysis could be employed to assess the energy metabolism

status of patients with hematopoietic system diseases, enabling the

development of personalized treatment plans to optimize HSC

function, ameliorate symptoms, and enhance therapeutic

outcomes. Optimizing dietary intervention strategies to enhance

post-transplant BM hematopoiesis and improve patient outcomes

may open new auxiliary therapeutic pathways for the treatment of

blood disorders, holding significant translational medical value.
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