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Background: CD28+PD-1+ Tc cells (CD8+ T cells) constitute a dysfunctional

subset of T cell; however, the mechanisms underlying their dysfunction and their

significance in hepatocellular carcinoma (HCC) remain unclear. We aimed to

elucidate the prognostic significance andmolecular characteristics of CD28+PD-

1+ Tc cell infiltration in HCC.

Methods: We established a single-cell HCC transcriptional map, focusing on

cell-cell communication and trajectory analysis of CD28+PD-1+ Tc cells. We

assessed the correlation between CD28+PD-1+ Tc-cell enrichment and

prognosis and investigated potential molecular mechanisms using enrichment

analyses. Flow cytometry was used to compare CD28+PD-1+ Tc-cell infiltration

between HCC and adjacent normal tissues and cytotoxic factors and immune

checkpoint expression were evaluated.

Results: Overall, 25,644 T cells were identified from single-cell RNA sequencing

data from 10 HCC samples and corresponding normal samples. Overall T-cell

infiltration was lower in HCC tissues, with significantly higher CD28+PD-1+ Tc-

cell infiltration. Bulk RNA sequencing data integration revealed a correlation

between higher CD28+PD-1+ Tc-cell infiltration and significantly worse

prognosis. Flow cytometry confirmed higher CD28+PD-1+ Tc-cell enrichment

in HCC tissues. Additionally, cytotoxic factor expression was significantly lower in

CD28+PD-1+ Tc cells than in CD28-PD-1+ Tc cells, with lower expression of

TIGIT and TIM-3 immune checkpoint molecules.

Conclusions: Significantly high CD28+PD-1+ Tc-cell enrichment in HCC

indicates potential immune dysfunction. CD28+PD-1+ Tc-cell enrichment may

serve as a sensitive prognostic marker and indicator for predicting

treatment responses.
KEYWORDS

hepatocellular carcinoma, t cell exhaustion, CD28, PD-1, single-cell RNA-seq,
tumor microenvironment
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1 Introduction

Liver cancer is the fourth leading cause of cancer-related deaths

and the sixth most frequently diagnosed cancer annually (1).

Hepatocellular carcinoma (HCC) accounts for 85–90% of primary

liver cancers. At onset, HCC is often insidious, and it lacks typical

early symptoms, with most patients having missed the optimal

treatment window at the time of diagnosis (2). This delay

contributes to its low 5-year survival rate and poor prognosis.

Immunotherapy has emerged as a promising strategy for treating

HCC; however, HCC’s complex tumor microenvironment (TME)

and high heterogeneity significantly contribute to resistance and

recurrence (3, 4). A comprehensive understanding of this TME

heterogeneity is necessary for developing effective treatment strategies.

The TME comprises various immune and stromal cells that

contribute to HCC progression (5). Cytotoxic CD8+ T cells are

abundant within the TME and play a pivotal role in anti-tumor

immunity by secreting granzyme B and interferon-g (IFN-g) to

eradicate tumor cells (6). However, prolonged antigenic

stimulation, coupled with the TME’s immunosuppressive

characteristics, results in a gradual decline in immune efficacy.

CD8+ T-cell functionality decline is characterized by reduced

immune effector functions and heightened inhibitory receptor

expression, particularly programmed cell death protein 1 (PD-1),

culminating in T-cell exhaustion (7, 8). Exhausted CD8+ T cells rely

on CD28 co-stimulatory signals for self-renewal and play a pivotal

role in tumor immune evasion (9–11). Therefore, examining the

characteristics and roles of CD8+ T-cell subsets within the TME is

instrumental in predicting patient prognosis and establishing

personalized therapeutic approaches.

CD28+PD-1+ Tc cells (CD8+ T cells) represent a state of

functional exhaustion of CD8+ T cells caused by prolonged

antigenic stimulation. These cells constitute a key component of

immune evasion, particularly in tumor immunity and chronic viral

infections. Continuous immune stimulation prompts certain CD8+

T cells to transition into CD28+PD-1+ Tc cells within HCC. These

cells continue to express CD28, suggesting retained activation

potential under certain conditions; however, their immune

function is impaired by PD-1 expression, resulting in a loss of

cytotoxicity and proliferation capacity (12–14) and rendering them

less effective at eliminating tumor cells. CD28+ PD-1+ Tc cells

contribute to the exhausted T-cell reservoir and serve as a

significant marker of immune suppression (15). However, the

specific functions and mechanisms related to the CD28+ PD-1+

Tc-cell subset in HCC remain unclear.

Therefore, we employed single-cell RNA sequencing (scRNA-

seq) to delineate different T-cell types and their distinctions within

HCC samples. We used CellChat and pseudotime analysis to

examine the characteristics and dynamic evolution of the

CD28+PD-1+ Tc-cell subset and integrated RNA-seq data from

The Cancer Genome Atlas (TCGA) to predict CD28+PD-1+ Tc-cell

infiltration in HCC and their association with patient prognosis.

Moreover, we explored potential molecular mechanisms using

enrichment and immune infiltration analyses. Finally, we
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confirmed the presence of these cells in HCC tissues and assessed

their cytotoxic functions and immune checkpoint expression using

flow cytometry.
2 Materials and methods

2.1 Transcriptomic data download and
organization

The utilized datasets were primarily sourced from TCGA

databases (https://portal.gdc.cancer.gov/). We employed the

“TCGAbiolinks” package to download whole-genome expression

profiles in TPM format and obtained clinical and single nucleotide

variation data predicted using the “VarScan2 Variant Aggregation

and Masking” tool for HCC (16). Overall, 374 tumor and 50 normal

samples (n = 424) from the TCGA-LIHC project were included.
2.2 Single-cell sequencing data processing

We obtained scRNA-seq datasets from HCC from the Gene

Expression Omnibus database, comprising tissue samples from 10

HCC cases. The filtered single-cell data from GSE140228 were

imported using the Seurat package (17). Clustering was performed

using the “FindClusters” tool, resulting in 18 clusters across 21 principal

component components, with a resolution of 0.2. The “RunUMAP”

function was applied to validate cell aggregation. Differentially expressed

genes (DEGs) in each cell cluster were identified using the

“FindAllMarkers” function. Subsequently, cell types were classified

based on specific biomarkers, and the proportions of each type were

calculated. The sub-clustering process for T cells followed the same

methodology as that for the entire cell dataset.
2.3 Constructing cell trajectories using
pseudotime analysis

We conducted pseudotime analysis using Monocle 2 to

construct cellular trajectories and identify key gene expression

programs driving HCC progression (18). Regarding T-cell

pseudotime analysis, the raw count data underwent normalization

via size factors estimated for trajectory inference. Trajectories were

constructed using genes exhibiting both high expression and

significant variability (dispersions ≥ 1 and average expressions ≥

0.1) (19). The default DDRTree algorithm parameters were

employed for this purpose. Branching Expression Analysis

Modeling feature in Monocle 2 was utilized to pinpoint genes

significantly dependent on branching expression (18). This

process allowed us to elucidate the transcriptional features of

HCC cells in different states. Additionally, we explored the genes

determining different transcriptional states, with a focus on

analyzing gene expression differences in T-cell trajectories

between HCC and normal tissues.
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2.4 Cell-cell communication analysis and
receptor expression

The “CellChat” package was used to create CellChat objects from

UMI count matrices of HCC and adjacent tissue samples (https://

www.github.com/sqjin/CellChat) (20). We performed intercellular

communication analysis using the “CellChatDB.human” database.

The “mergeCellChat” tool merged the CellChat objects from each

group to facilitate comparisons of the total number and intensity of

interactions. Differences in interaction quantities or intensities

among various cell types across groups were visualized using the

“netVisual_diffInteraction” tool. The “netVisual_bubble” and

“netVisual_aggregate” tools were utilized to depict the

distribution of signaling gene expressions across groups.
2.5 Enrichment analyses

We used the “clusterProfiler” package to conduct Gene

Ontology (GO) analysis (encompassing biological processes,

molecular functions, and cellular components) and Kyoto

Encyclopedia of Genes and Genomes enrichment analyses on

DEGs (P < 0.05) (21–23). The intersection of DEGs identified in

CD28+ PD1+ Tc cells and HCC samples was considered the set of

DEGs associated with CD28+ PD1+ Tc cells in HCC.
2.6 Survival analysis

The CD28+PD-1+ T-cell enrichment score was calculated based

on marker genes identified in GSE140228 and was inferred in

TCGA-LIHC samples using the single-sample gene set

enrichment analysis (ssGSEA) method (24). We quantified the

relative enrichment scores of these cell types based on each

sample’s gene expression profiles to assess the prognostic value of

significantly upregulated genes associated with CD28+PD-1+ Tc

cells in HCC. Enrichment scores for upregulated gene sets

associated with specific cell types were calculated using ssGSEA.

The “surv_cutpoint” tool was employed to select the optimal cutoff

value, classifying samples into low and high-enrichment groups for

the specific cell type. Kaplan–Meier survival curves were

constructed, and log-rank tests were performed to assess

statistical significance. Time-dependent receiver operating

characteristic curves were utilized to assess the predictive efficacy

of the enrichment score.
2.7 Nomogram construction and validation

We extracted clinical data, including sex, age, and tumor

staging, from patients in the TCGA cohort. Age was categorized

using 65 years as the cutoff (25). Cox regression analyses were

conducted by integrating clinical data (such as age, sex, T stage, N
Frontiers in Immunology 03
stage, M stage) with enrichment scores derived from the survival

analyses. Multivariate Cox regression analysis identified factors

with statistical significance (P < 0.05) for inclusion in the

prognostic model. A nomogram was developed using the “RMS”

package to predict overall survival at 1, 3, and 5 years. Calibration

curves were employed to evaluate the nomogram’s accuracy.
2.8 Gene set variation analysis and gene
set enrichment analysis

Differential expression analysis was performed between high and

low-enrichment groups using the “limma” package (26). Gene set

enrichment analysis (GSEA) was subsequently performed using the

“clusterProfiler” package. The “GSVA” package was utilized to

conduct gene set variation analysis (GSVA) to examine the

biological functional discrepancies between low- and high-

enrichment cohorts. The results were visualized using the

“pheatmap” package. We referenced the “c2.cp.kegg.v7.5.1.symbols”

gene set derived from the Molecular Signatures Database (27–29).
2.9 Immune infiltration analysis

Data on 28 distinct immune cell types were sourced from the

Tumor and Immune System Interactions Database for the immune

infiltration analysis (http://cis.hku.hk/TISIDB/index.php). This

method integrates multiple Gene Expression Omnibus datasets,

including GSE140228, for deconvolution-based inference (30).

Differences in immune cell infiltration between high- and low-

enrichment groups for specific cell types were illustrated using the

“ggplot2” package (31).
2.10 Drug sensitivity analysis

Half-maximal inhibitory concentration (IC50) data and

corresponding gene expression profiles were obtained from the

Genomics of Drug Sensitivity in Cancer database (https://

www.cancerrxgene.org/) (32). The “oncoPredict” package was

employed to forecast potential drug sensitivity in patients with

varying levels of specific cell type enrichment in HCC (33).
2.11 Tumor mutation burden

Mutation data were analyzed to illustrate the landscape of

genomic variations. Somatic variations, including single

nucleotide polymorphisms, insertions and deletions, the tumor

mutation burden (TMB), and mutation frequency, were presented

using the “maftools” package (34). The top 20 frequently mutated

genes are generally considered principal driver genes in

malignancies (35).
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2.12 Tumor immune dysfunction and
exclusion

We conducted a Tumor Immune Dysfunction and Exclusion

(TIDE) analysis (http://tide.dfci.harvard.edu/) to assess the

immunotherapeutic response (36). Immune checkpoints

constitute molecules on immune cells that modulate levels of

immune activation. We compared immune checkpoint gene

expression between the two groups.
2.13 Clinical sample collection

We collected nine pairs of HCC samples and corresponding

adjacent tissues from the Fourth Hospital of Hebei Medical

University (Shijiazhuang, China). The inclusion criteria included

patients diagnosed with primary HCC undergoing their first

treatment who had received partial hepatectomy and had not

undergone interventional therapy, targeted therapy, or

immunotherapy before surgery. The exclusion criteria included

individuals with a history of other malignancies. This research

was approved by the hospital’s ethics committee (No. 2023KS181)

and was conducted following the principles outlined in the

Declaration of Helsinki, with informed consent acquired from

all participants.
2.14 Magnetic bead separation and CD8+

T-cell enrichment

A tissue digestion solution was prepared, and a single-cell

suspension was obtained by filtering through a mesh. The

suspension was centrifuged at 500×g for 10 min, and the pellet

was retained and washed 1–2 times with pre-cooled phosphate-

buffered saline. Lymphocytes were isolated using the Percoll

method. In total, 1×10⁷ lymphocytes were resuspended in 150 µL

of buffer, gently mixed with 50 µL of CD3 magnetic beads,

incubated, washed, and resuspended. Next, 3 mL of the cell

suspension was added to an LS column to collect CD3+

lymphocytes (T-cells). The same steps were repeated to enrich

CD8+ T cells, which were counted and reserved for further use.

The sorted CD8⁺ T cells were considered to be ab T cells rather

than gd T cells. This procedure aimed to detect the ratios of

CD28−PD-1+ and CD28+PD-1+ Tc-cell subsets in HCC tissues

relative to normal tissues.
2.15 Flow cytometry

CD8+ T cells enriched using magnetic beads were stained with

surface antibodies for CD8, PD-1, and CD28, followed by flow

cytometry. Voltage adjustments were made using a blank tube, and

compensation was set using single-stained tubes before running the

sample tubes. CD28+PD-1+ and CD28-PD-1+ Tc cells were sorted and
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analyzed using flow cytometry to determine the proportion of

CD28+PD1+ Tc cells in HCC and normal tissues. After sorting

CD28+PD-1+ and CD28−PD-1+ Tc cells from HCC tissues, the cells

were resuspended in buffer, and 1 µL of eBioscience cell stimulation

components was added. The cells were incubated at 37°C for 3 h to

facilitate their activation and subsequent cytokine secretion. After

incubation, anti-PD-1 and anti-CD28antibodies were used for

staining. The cells were incubated in the dark at room temperature

for 30 min and subsequently washed to remove unbound antibodies.

Next, cells were treated with eBioscience intracellular fixation and

permeabilization buffer and stained with antibodies against tumor

necrosis factor a (TNF-a), IFN-g, granzyme B, perforin, CTLA4,

TIM3, and TIGIT. Flow cytometry was performed, with voltage and

compensation adjusted as previously described.

Specific antibody details and information regarding the

microbeads are provided in Supplementary Table S14, and gating

strategies are provided in “Supplementary Material”. An Attune

NXT flow cytometer (Thermo Fisher Scientific, Waltham, MA,

USA) was used for detection, and data were analyzed using FlowJo

V10 software (Treestar, San Carlos, CA, USA).
2.16 Real-time PCR

Total RNA was extracted from the samples using the Trizol

reagent, and RNA quality and concentration were assessed using a

BioPhotometer (Eppendorf, Eppendorf, Germany) to ensure RNA

integrity. Reverse transcription was performed using the HiFiScript

gDNARemoval cDNA Synthesis Kit (CW2582M, CWBio, Taizhou,

China), converting RNA into complementary DNA. The target

gene and reference gene primers (Supplementary Table S14) were

used for amplification. Reverse transcription-PCR (RT-PCR) was

conducted using ChemoHS qPCR Mix (No ROX, MQ00101S,

Monad, Suzhou, China) according to the manufacturer’s protocol.

Relative mRNA expression levels were calculated using the 2−DDCT

method for data analysis.
2.17 Enzyme-linked immunosorbent assays

Supernatant samples from CD28+PD-1+ T cells and CD28−PD-

1+ T cells were collected and analyzed using the Human Enzyme-

Linked Immunosorbent Assay (ELISA) Kit (Supplementary Table

S14) to measure the levels of Granzyme B, IFN-g, Perforin, and
TNF-a, following the instructions provided in the kit. Statistical

analysis was performed using t-test, with P < 0.05 considered

statistically significant. All data were processed using Microsoft

Excel 2016 (Microsoft Corp., Redmon, WA, USA).
2.18 Statistical analysis

R (version 4.1.2) was utilized for statistical analyses. Comparisons

of categorical data between the two groups were performed using the
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chi-squared test. Kaplan–Meier curves and log-rank tests were used

to compare survival rates, utilizing the “survminer” package to

generate survival curves. Univariate and multivariate Cox

regression analyses were performed to assess prognostic variables.

Data visualization was performed using the “ggplot2”

package, and heatmaps were generated using the “Pheatmap”

package. We utilized t-tests or one-way analysis of variance to

determine significant differences in normally distributed data.

Wilcoxon or Kruskal–Wallis tests were used for non-normally

distributed data. The threshold for statistical significance was set

at P < 0.05.
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3 Results

3.1 Single-cell dimensionality reduction,
clustering, and annotation

Overall, 36,193 cells were extracted from the single-cell

transcriptome and subsequently clustered into 18 distinct clusters

(Figure 1A), with cell types annotated according to gene expression

profiles and cell-specific biomarkers (Supplementary Table S1).

Figure 1B illustrates the identification of eight unique cell types.

The expression patterns of specific genes corresponding to each cell
FIGURE 1

Identification of cell subsets from single-cell sequencing data. (A) UMAP plot displaying the distribution of HCC cell subsets. (B) UMAP plot showing
annotation results for HCC cell subsets. (C) Expression of marker genes in each cell type. (D) Heatmap illustrating cell group-specific expressed
genes. (E) Cumulative histogram showing the distribution of cell types in HCC and normal tissues. HCC, hepatocellular carcinoma; UMAP, Uniform
Manifold Approximation and Projection.
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type are represented using dot plots (Figure 1C), whereas the

expressions of three characteristic genes for each cell group are

illustrated using a heatmap (Figure 1D). Figure 1E depicts the

proportions of different T-cell types in HCC samples compared to

normal controls. We observed a significant reduction in T-cell

abundance in HCC samples (P < 0.05).
3.2 Gene expression characteristics of T-
cells

Overall, 25,644 T cells were obtained and re-clustered into 11

clusters (Figure 2A), with cell types annotated based on gene
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expression profiles and cell-specific biomarkers (Supplementary

Table S2). Four distinct T-cell subsets were identified, including

CD28+PD-1+ Tc cells, gd T cells, CD4+ T cells, and CD8+ T cells.

The CD28⁺PD-1⁺ Tc cells referenced here represent ab CD8⁺ T

cells, rather than gd T cells (Figure 2B). Dot plots were used to

visualize specific genes associated with each T-cell subset

(Figure 2C). The comparative proportions of various T-cell

subsets in HCC samples against normal tissues are illustrated in

Figure 2D, the proportion of CD28+PD-1+ T cells was significantly

higher in HCC tissues than in normal tissues (P < 0.05). GSVA was

performed to select the three most significantly different pathways

for each T-cell subset to create a pathway activity heatmap

(Figure 2E; Supplementary Table S3).
FIGURE 2

Characterization of gene expression profiles within T-cell subsets. (A) UMAP plot illustrating the distribution of T-cell subsets. (B) UMAP plot
displaying annotation results for T-cell subsets. (C) Expression levels of marker genes across various cell types. (D) Cumulative histogram showing
the distribution of T-cell subpopulations in HCC and normal tissues. (E) Visualization of GSVA analysis results through heatmap. HCC, hepatocellular
carcinoma; UMAP, Uniform Manifold Approximation and Projection; GSVA, gene set variation analysis.
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3.3 Pseudotime analysis

Analysis of transcriptional states revealed five distinct T-cell

states, each corresponding to a specific transcriptional phase

(Supplementary Figures S1A–C). Supplementary Figure S1D

illustrates the proportions of different T-cell states in HCC and

normal samples, revealing a higher proportion of certain T-cell

states within the HCC samples. We identified genes that define

Monocle 2 in HCC cells to elucidate the molecular determinants

responsible for these transitions. Genes highly expressed in the pre-

branch phase were primarily enriched in GO biological processes,

such as “T-cell activation”, “leukocyte cell-cell adhesion”, and

“regulation of T-cell activation”. Genes associated with “positive

regulation of lymphocyte activation” were highly expressed in

Branch 1, whereas those enriched in “cytoplasmic translation”,

“ribosome biogenesis”, and “ribonucleoprotein complex

biogenesis” were dominant in Branch 2 (Supplementary Figure

S1E). These findings suggest that the various T-cell states are closely

associated with their function and progression in HCC. Pseudotime

analysis demonstrated the dynamic transcriptional patterns of T

cells in HCC and their significant differences from normal tissues.
3.4 Cell-cell communication analysis

The total number and strength of cellular interactions was higher

in HCC than in normal controls (Supplementary Figure S2A), with

most interactions exhibiting higher quantity and intensity

(Supplementary Figures S2B, C). Signaling patterns were compared

between normal and HCC tissues were compared, with the overall

signaling patterns shown in Supplementary Figure S3D. For example,

the CXCL signal intensity derived from CD28+PD-1+ Tc cells was

different in HCC. Moreover, the MHC-II signal intensity acting on

CD28+PD-1+ Tc cells and the ITGB2 signal intensity from these cells

were higher in HCC (Supplementary Figures S3, S4). We further

analyzed potential interactions between CD28+PD-1+ Tc cells and

other cell types. Significant signaling pathways identified in HCC

included HLA-E and CLEC2C. Notably, the interaction between

HLA-E expressed by CD28+PD-1+ Tc cells and the corresponding

NKG2C receptor on gd T cells was enhanced in HCC(Supplementary

Figure S5A), whereas that between CLEC2C from CD28+PD-1+ Tc

cells and KLRB1 on CD4+ T cells was lower in HCC (Supplementary

Figure S5B). The interaction between the LGALS9 ligand from DC2

cells and its CD28+PD-1+ Tc cell receptor was higher in HCC

(Supplementary Figure S6A), whereas that between the MIF from

Mac3 and its CD28+PD-1+ Tc cell receptor was lower in HCC

(Supplementary Figure S6B). Furthermore, CD69 expression in

CD28+PD-1+ Tc cells was significantly lower in HCC, whereas the

receptor KLRB1 showed low expression in CD4+ T cells. This may

explain the development of the CLEC2C pathway involving both

CD28+PD-1+ Tc cells and CD4+ T cells in HCC (Supplementary

Figure S7A). The receptorNKG2C forHLA-Ewas highly expressed in

gd T cells in HCC, elucidating the formation of the HLA-E pathway

involving both CD28+PD-1+ Tc cells and gd T cells in HCC

(Supplementary Figure S7B).
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3.5 Enrichment analysis of DEGs related to
CD28+PD-1+ Tc cells

We identified 1,222 DEGs (P < 0.05 and |Log2FC| > 0.25)

between CD28+PD-1+ Tc cells and other cell subtypes in HCC

(Supplementary Table S4). The heatmap displays the top 10

upregulated genes in CD28+PD-1+ Tc cells (Supplementary

Figure S8A). A comparison between HCC and normal tissues

revealed 3,293 DEGs with significant differences between the two

groups (P < 0.05, |Log2 fold change| > 1, Supplementary Table S5).

The heatmap presents the top five upregulated (PLVAP, DIPK2B,

CD34, TOMM40L, SLC26A6) and downregulated (CLEC4M,

CLEC1B, STAB2, BMP10, BMPER) genes in HCC samples

(Supplementary Figure S8B). We identified 222 key genes that

intersected among the DEGs from both groups (Supplementary

Figure S8C, Supplementary Table S6). The GO results

(Supplementary Table S7) revealed that these genes were enriched

in biological processes such as “cytoplasmic translation”

(GO:0002181), “defense response to bacterium” (GO:0042742),

and “activation of immune response” (GO:0002253), and cellular

components such as “cytosolic ribosome” (GO:0022626),

“r ibosomal subuni t” (GO:0044391) , and “r ibosome”

(GO:0005840). Regarding molecular functions, the genes were

enriched for “structural constituent of ribosome” (GO:0003735),

“antigen binding” (GO:0003823), and “rRNA binding”

(GO:0019843) (Supplementary Figure S8D). Kyoto Encyclopedia

of Genes and Genomes analysis (Supplementary Table S8) revealed

significant pathways, including “Ribosome” (hsa03010),

“Coronavirus disease - COVID-19” (hsa05171), and “Salmonella

infection” (hsa05132) (Supplementary Figure S8E).
3.6 Survival analysis and nomogram
construction

Kaplan–Meier survival curves showed that patients with high

CD28+PD1+ Tc-cell levels exhibited notably poorer prognosis than

those with low levels (Figure 3A); the predictive performance of

CD28+PD-1+ T-cell levels was evaluated using receiver operating

characteristic curves (Figure 3B).Cox regression analysis indicated

that the presence of CD28+PD-1+ Tc cells was an independent

prognostic risk factor for patients with HCC (Figures 4A, B). We

used multivariate Cox regression analysis to develop a nomogram,

which demonstrated that risk scores could effectively forecast

clinical outcomes (Figure 4C). Calibration curves showed that the

nomogram was stable and accurate at 1, 3, and 5 years (Figure 4D).
3.7 GSEA and GSVA between high- and
low-enrichment groups

We used the Molecular Signatures Database to identify the most

important pathways according to normalized enrichment scores

(NES) (Supplementary Table S9). The GSEA results showed that

Ribosome (NES = 1.8991, adjusted P = 0.0157, FDR = 0.0085,
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FIGURE 4

Enrichment score of CD28+PD-1+ Tc cells as an independent prognostic factor. (A) Forest plot illustrating the outcomes of univariate Cox regression
analysis on clinical characteristics. (B) Forest plot depicting the results of multivariate Cox regression analysis on clinical characteristics.
(C) Nomogram for predicting 1-, 3-, and 5-year survival rates. (D) Calibration curves for the nomogram at 1, 3, and 5 years.
FIGURE 3

Survival analysis and ROC curve of high and low enrichment groups of CD28+PD-1+ Tc cells in patients with HCC. (A) Survival analysis of high and
low enrichment groups of CD28+PD-1+ Tc cells in patients with HCC. (B) ROC curve validating the CD28+PD-1+ Tc-cell enrichment level. HCC,
hepatocellular carcinoma; ROC, Receiver Operating Characteristic.
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Supplementary Figure S9A), Spliceosome (NES = 1.8342, adjusted P

= 0.0157, FDR = 0.0085, Supplementary Figure S9B), and Cell Cycle

(NES = 1.7758, adjusted P = 0.0157, FDR = 0.0085, Supplementary

Figure S9C) were significantly enriched in the high-enrichment

group. In contrast, Fatty Acid Metabolism (NES = −2.4043, adjusted

P = 0.0297, FDR = 0.0162, Supplementary Figure S9D), Retinol

Metabolism (NES = −2.4089, adjusted P = 0.0297, FDR = 0.0162,

Supplementary Figure S9E), and Complement and Coagulation

Cascades (NES = −2.4189, adjusted P = 0.0297, FDR = 0.0162,

Supplementary Figure S9F) were significantly enriched in the low-

enrichment group. Additionally, we used GSVA to create a heatmap

of pathway activity for the five most significant pathways between

the high and low-enrichment groups (Supplementary Figure S9G;

Table S10).
3.8 Immune infiltration analysis

We used the ssGSEA method to analyze the infiltration levels of

28 immune cell types in high- and low-enrichment groups

(Supplementary Table S11). The relative proportions of the 28

immune cell subpopulations were displayed in a histogram,

revealing individual variability in immune cell ratios in HCC

(Supplementary Figure S10A). Most immune cells were positively

correlated with one another, notably with the enrichment score of

CD28+PD-1+ Tc cells (Supplementary Figure S10B). The

infiltration level of activated B cells was lower in the high-

enrichment group, whereas those of activated CD4 T-cells,

activated dendritic cells, effector memory CD4 T-cells,

eosinophils, macrophages, memory B-cells, natural killer T-cells,

plasmacytoid dendritic cells, T follicular helper cells, Type 17 T-

helper cells, and Type 2 T-helper cells were significantly higher in

the high-enrichment group (P < 0.05, Supplementary Figure S11A).

Furthermore, significant correlations were detected between DEGs

in both groups and their corresponding immune cells (Supplementary

Figures S11B–J). The genesCDK1 (R = 0.733, P < 0.001, Supplementary

Figure S11B), RRM2 (R = 0.7486, P < 0.001, Supplementary Figure

S11C), CDKN3 (R = 0.7313, P < 0.001, Supplementary Figure S11D),

CCNB1 (R = 0.7318, P < 0.001, Supplementary Figure S11E), PTTG1

(R = 0.7479, P <0.001, Supplementary Figure S11F), KIF4A (R =

0.7312, P < 0.001, Supplementary Figure S11G), SPC25 (R = 0.7443, P

< 0.001, Supplementary Figure S11H), NEK2 (R = 0.7425, P < 0.001,

Supplementary Figure S11I), and KIFC1 (R = 0.7326, P < 0.001,

Supplementary Figure S11J) were significantly positively correlated

with activated CD4+ T cells.
3.9 TMB, drug sensitivity analysis, and TIDE

These analyses were performed based on grouping by

CD28+PD-1+ Tc-cell enrichment levels, aiming to reveal their

relationship with the TME, immune evasion, and therapeutic

response. TP53 showed the most frequent mutations in the high-
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and low-enrichment categories, followed by CTNNB1 (Figures 5A,

B). Analysis of somatic mutations related to HCC showed no

significant difference in TMB between the high- and low-

enrichment groups (P > 0.05) (Figure 5C). We examined whether

the enrichment score of CD28+PD-1+ Tc cells could accurately

predict chemotherapy sensitivity in patients with HCC,

investigating the clinical efficacy of vinorelbine (Figure 5D),

staurosporine (Figure 5E), sepantronium bromide (Figure 5F),

docetaxel (Figure 5G), daporinad (Figure 5H), and bortezomib

(Figure 5I) in HCC treatment (Supplementary Table S12).

Individuals with high enrichment showed a heightened sensitivity

to these chemotherapeutic agents, indicating chemotherapy as a

promising treatment option.

Analysis of immune checkpoint expression between the two

groups revealed an upregulation of the genes CD24, CD47, CTLA4,

HAVCR2, and TNFRSF4 in the high-enrichment group (Figure 5J).

We used TIDE to evaluate the potential clinical efficacy of immune

therapy across different enrichment subgroups (Supplementary

Table S13). A higher TIDE score indicates a greater potential for

immune evasion, which may be associated with reduced

responsiveness to immune checkpoint blockade, as predicted by

transcriptomic models. The subgroup with high enrichment had a

higher TIDE score and exhibited significantly less functional

impairment compared to the low-enrichment subgroup

(Figure 5K). We observed a notable variation in immune therapy

responses between the two groups, suggesting that the low-risk

group is more likely to benefit from ICI treatment (Figure 5L).
3.10 Increased infiltration of CD28+PD-1+

Tc cells in HCC tissue

We collected nine paired samples of HCC and normal tissues

for flow cytometric analysis. The results showed that CD28+PD-1+

Tc-cell infiltration was significantly higher in HCC tissues than in

adjacent tissues (Figure 6, P < 0.001), which is consistent with the

bioinformatics analysis, indicating that CD28+PD-1+ Tc cells were

significantly enriched in HCC and may contribute to immune

modulation in the HCC TME.
3.11 Decreased cytotoxic function of
CD28+PD-1+ Tc cells in HCC tissue

We used flow cytometry to classify CD8+ T-cell subsets in HCC

tissue and compared cytotoxic cytokine expression between

CD28+PD-1+ Tc cells and CD28-PD-1+ Tc cells. The results

showed that the expression levels of TNF-a, IFN-g, granzyme B,

and perforin were significantly lower in CD28+PD-1+ Tc cells than

in CD28-PD-1+ Tc cells, which is consistent with the findings from

the ELISA experiment (Supplementary Figure S12A), indicating

impaired cytotoxic function and an exhausted state in CD28+PD-1+

Tc cells (Figure 7).
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3.12 Decreased expression of immune
checkpoints in CD28+PD-1+ Tc cells in
HCC tissue

TIM3 and TIGIT expression levels were significantly lower in

CD28+PD-1+ Tc cells than in CD28-PD-1+ T-cells in HCC tissue,

whereas CTLA4 expression did not significantly change (Figure 8).

This result is consistent with the RT-PCR findings (Supplementary

Figure S12B). These findings indicated that the increased presence

of CD28+PD-1+ Tc cells in HCC tissues may reduce immune
Frontiers in Immunology 10
therapy effectiveness owing to lower immune checkpoint

molecule expression.
4 Discussion

HCC treatment has considerably progressed in recent years

(37–39). However, HCC’s complex TME and high heterogeneity

contribute to considerable variability in treatment responses among

patients receiving the same therapy. Traditional tumor staging
FIGURE 5

Differences in TMB, drug sensitivity, and TIDE between high- and low-enrichment groups. (A, B) The top 20 genes with the highest mutation
frequencies in both groups. (C) Comparison of TMB between two enrichment groups. Differences in drug sensitivity for vinorelbine
(D), staurosporine (E), sepantronium bromide (F), docetaxel (G), daporinad (H), bortezomib (I) between two groups. (J) Boxplot depicting the
expression of immune checkpoints between two groups. (K) Differences in immune therapy responses assessed by the TIDE prediction between two
groups. (L) Sankey diagram evaluating immune therapy responses between high- and low-enrichment groups using the TIDE prediction. TMB, tumor
mutation burden; TIDE, tumor immune dysfunction and exclusion. ns, p ≥ 0.05; *, p < 0.05; **, p < 0.01.
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systems focus on static information, failing to capture dynamic

changes in the TME and immune characteristics, which complicates

accurate predictions of disease progression and treatment efficacy

(40). Therefore, understanding the TME, identifying reliable

biomarkers, and exploring novel therapeutic targets are necessary

for the precise diagnosis and treatment of HCC (41).
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Combining scRNA-seq with RNA-seq data permits a thorough

analysis of the TME and immune response mechanisms, allowing

the identification of particular T-cell subsets and enhancing the

understanding of HCC’s TME (42, 43). Both scRNA-seq and flow

cytometric analysis indicated a significant increase in the

proportion of CD28+PD-1+ Tc cells within the HCC TME.
FIGURE 7

Assessment of the cytotoxic function of CD28+PD-1+ Tc cells in HCC tissues. (A) Representative distribution plot of TNF-a, IFN-g, granzyme B, and
perforin expression in CD28+PD-1+ Tc cells compared with CD28-PD-1+ Tc cells; (B) In HCC tissues, the expression levels of TNF-a (P<0.001), IFN-g
(P<0.05), granzyme B (P<0.05), and perforin (P<0.05) were significantly lower in CD28+PD-1+ Tc cells than in CD28-PD1+ Tc cells. HCC:
hepatocellular carcinoma. *, p < 0.05; ***, p < 0.001.
FIGURE 6

Infiltration of CD28+PD-1+ Tc cells in HCC and adjacent tissues. (A) Representative scatter plot showing the percentage of CD28+PD-1+ Tc cells vs
CD28-PD-1+ Tc cells in adjacent tissues. (B) Representative scatter plot showing the percentage of CD28+PD-1+ Tc cells vs CD28-PD-1+ Tc cells in
HCC tissues. (C) The percentage of CD28+PD-1+ Tc cells in HCC tissues was significantly higher than that in adjacent tissues (p< 0.001). HCC,
hepatocellular carcinoma. ***, p < 0.001.
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Previous studies have demonstrated that although the overall

number of CD8+ T cells is lower in non-small-cell lung cancer,

the proportion of CD28+ PD-1+ Tc cells is notably higher in tumor

tissues compared to peripheral blood and normal tissues, while the

proportion of CD28-PD-1+ Tc cells remains unchanged. These

findings are consistent with the results of the present study (15).

CD28+PD-1+ Tc cells, as a key component in HCC, may play a

crucial role. Further analysis revealed that CD28+PD-1+ Tc cells

exhibit significantly lower expression of cytotoxic factors compared

to CD28-PD-1+ Tc cells, suggesting a functional impairment in this

CD8+ T cell subset. CD28 is an essential co-stimulatory molecule

enhancing T-cell activation. The binding of CD28 to CD80 or CD86

on antigen-presenting cells activates T cells to generate positive

signals (44). PD-1, part of the CD28 co-receptor family, blocks T-

cell proliferation and activation by disrupting the PI3K/Akt

signaling pathways associated with CD28 (45). Consequently,

CD28 is a key target for PD-1 downstream inhibitory signaling,

and T-cell reactivation after PD-1 blockade is critically dependent

on CD28. The distinct expression patterns and interactions between

CD28 and PD-1 are central to regulating T-cell function (46, 47).

CD8+ T cells play a pivotal role in HCC’s TME and can exert strong

immune responses when activated by cytokines or chemokines (48).

However, persistent antigen stimulation resulting from chronic

hepatitis and liver diseases may lead to continuous activation of

CD28 and PD-1 signaling, resulting in an antigen tolerance
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response in HCC (49). This process contributes to CD8+ T-cell

exhaustion in HCC, characterized by diminished proliferation,

decreased cytokine secretion, and weakened cytotoxic activity

(50). Therefore, we hypothesize that CD28+PD-1+ Tc cells in

HCC may belong to an exhausted T-cell subset, significantly

contributing to HCC progression.

Survival analysis revealed that patients with higher proportions of

CD28+PD-1+ Tc cells had significantly shorter overall survival. Cox

regression analysis identified the enrichment level of CD28+PD-1+ Tc

cells as an independent prognostic factor for HCC. Even after

adjusting for the impact of PD-1+ T cells, the independent

prognostic association remained significant. These cells may

exacerbate immune escape and tumor progression owing to their

diminished cytotoxic function and immunosuppressive state,

resulting in poorer patient outcomes. This finding further confirms

the significant prognostic value of CD28+PD-1+ T cells in the

prognosis of patients with HCC, providing new insights for clinical

practice. Interestingly, in the Cox regression analysis, we found that

sex was also an independent prognostic factor, with male patients

showing significantly worse outcomes. This may be attributed to

several factors. Firstly, from an epidemiological perspective, the

incidence of HCC is significantly higher in men than in women,

and this imbalance in sex distribution may further amplify the

predictive role of sex in survival models (51). Secondly, sex

differences play a key role in HCC. Studies have shown that male
FIGURE 8

Detection of immune checkpoint molecule expression in CD28+PD-1+ Tc cells in HCC tissues. (A) Representative samples showing expression levels
of CTLA4, TIGIT, and TIM3 in CD28+PD-1+ Tc cells compared with CD28-PD-1+ Tc cells; (B) In HCC tissues, the expression levels of TIGIT (p < 0.05)
and TIM3 (p < 0.05) in CD28+PD-1+ Tc cells were significantly lower than those in CD28-PD1+ Tc cells, whereas CTLA4 expression did not show
significant changes. HCC, hepatocellular carcinoma. ns, p ≥ 0.05; *, p < 0.05.
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patients typically first present with more advanced tumor stages and

worse prognosis at diagnosis, which may be related to higher hepatic

iron deposition in men. This deposition could promote HCC

progression and tumor resistance (52, 53). Our analysis indicates

that sex as a variable had greater significance in the model than TNM

staging. However, TNM staging is still included as an important

variable, likely because the strong predictive power of CD28+PD-1+

Tc-cell levels may partially diminish the independent prognostic

effects of clinical variables.

Cell-cell communication is significantly higher in tumor tissues

than in normal tissues, which is critical for tumor formation and

therapy resistance (54).HLA-E, a non-classical class I MHCmolecule,

is typically expressed at low levels in most human tissues but shows

significant upregulation in HCC (55). HLA-E regulates natural killer

(NK)-cell and T-cell functions through interactions with the NKG2A

and NKG2C receptors (56, 57). Previous studies have shown that the

CD94/NKG2/HLA-E signaling pathway negatively regulates NK-cell

activity in HCC, which may contribute to tumor immune escape (58).

gd T cells play dual roles in the TME. They can inhibit HCC through

signaling pathways, such as with the activation of NKG2D/DNAM-1,

yet they can also upregulate PD-1 expression to suppress their own

cytotoxic function, thus promoting tumor escape (59, 60). We

observed significant upregulation of HLA-E expression on

CD28+PD-1+ Tc cells in HCC, with enhanced interactions with the

corresponding NKG2C receptors on gd T cells. Although direct

binding evidence is lacking, this finding suggests that CD28+PD-1+

Tc cells may regulate gd T cells, potentially through NKG2C, by

upregulating HLA-E, thereby exerting an immunosuppressive effect.

CLEC2C is an early activation marker for CD4+ T cells that is rapidly

expressed during immune responses. Elevated CLEC2C levels have

been linked to enhanced immune function inHCC and correlate with

improved patient outcomes (61). KLRB1, a marker of activated NK

and T-cell subsets, modulates immune responses and is closely linked

to tumorigenesis (62, 63). High KLRB1 expression in CD8+ T cells is

associated with improved cytotoxicity and more robust proliferation,

enhancing their tumor cell-killing ability (64, 65). In this study, the

expression and interactions of CLEC2C in CD28+PD-1+ Tc cells and

KLRB1 in CD4+ T cells were significantly reduced in HCC, consistent

with previous literature. This underscores the importance of the

CLEC2C signaling pathway in HCC antitumor immunity. This

suggests that CD28+PD-1+ Tc cells may downregulate CLEC2C

expression, thereby impacting KLRB1 expression in CD4+

T cells and contributing to immune dysfunction within the

HCC microenvironment.

Interestingly, enrichment analysis revealed a close association

between CD28+PD-1+ Tc-cell enrichment and ribosomes. These

findings suggested that CD28+PD-1+ Tc-cell function is closely

linked to ribosomes and their protein synthesis processes.

Ribosomes are highly conserved across evolutionary lines.

Moreover, they are widely distributed throughout various tissues

(66). Ribosomal protein expression is notably elevated in HCC (67).

Certain ribosomal proteins, including RPL32 and RPL19, have been

established as early diagnostic biomarkers for HCC and may serve as

prognostic indicators (68). Studies have shown that mitochondrial
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ribosome defects lead to altered glucose metabolism and lactate

accumulation, which exacerbate T-cell exhaustion and tumor

infiltration, thereby accelerating HCC progression (69). Both CD28

and PD-1 modulate T-cell metabolism via the PI3K/Akt/mTOR

signaling pathway, which also directly influences ribosomal

synthesis and function (70). Therefore, CD28+PD-1+ Tc cells may

influence ribosomal protein expression through PI3K/Akt/mTOR

signaling pathway, with abnormal ribosomal protein levels further

impairing cellular metabolism and worsening T-cell exhaustion.

These findings contribute novel insights into the mechanisms

through which CD28+PD-1+ Tc cells mediate immune evasion in

HCC, highlighting the importance of ribosomal proteins in T-

cell dysfunction.

To explore the molecular mechanisms and potential clinical

significance of CD28+PD-1+ Tc cells in HCC, we conducted

multidimensional analyses, including TMB, drug sensitivity

prediction, and TIDE scoring, based on the enrichment level of

CD28+PD-1+ Tc cells. In this study, TP53 and CTNNB1 exhibited

high mutation frequencies in most HCC tissues, in line with earlier

studies (71). CTNNB1 mutant HCCs are typically better differentiated

and have more favorable prognoses, whereas HCCs with TP53

mutations alone and without CTNNB1 mutations tend to be more

invasive (72). The TMB reflects the accumulation of somatic missense

mutations and is often used as an indicator of genomic instability. A

higher TMB can increase the number of neo-antigen sites, potentially

enhancing T-cell recognition and activation and the antitumor immune

response (73). Long-term stimulation by tumor-specific antigens

derived from mutated genes in tumor cells may lead to T-cell

exhaustion. However, our analysis showed no significant differences

in TMB between patients with HCC with high and low CD28+PD-1+

Tc-cell enrichment, suggesting that the immune characteristics of this

subset are driven more by phenotypic changes than by mutated genes.

TIGIT and TIM3 are important immune checkpoint molecules,

and blocking their signaling pathways can effectively restore the

function of T cells and NK cells, enhancing anti-tumor immune

responses, making them potential therapeutic targets for HCC (74,

75). The expression of TIGIT and TIM3 on CD28+PD-1+ Tc cells

significantly decreases, which is consistent with the finding that

patients with high CD28+PD-1+ Tc-cell enrichment had

significantly higher TIDE scores. This suggests that the high

enrichment of CD28+PD-1+ Tc cells is associated with a strong

tendency for immune escape and potentially lower benefits from

immunotherapy. Interestingly, patients with HCC and high

CD28+PD-1+ Tc-cell enrichment demonstrated increased

sensitivity to common chemotherapy agents, such as vinorelbine,

bortezomib, and docetaxel. Specifically, vinorelbine combined with

sorafenib in HCC mouse models significantly inhibited tumor cell

proliferation and angiogenesis, promoted tumor necrosis and

apoptosis, and enhanced radiotherapy effects (76, 77). Bortezomib

effectively inhibits HCC progression in vitro by activating the Hippo

pathway (78). Docetaxel inhibits microtubule polymerization,

preventing cell division, and may suppress tumor growth and

extend survival in patients with HCC through apoptosis

induction and TME modulation (79). This suggests that patients
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with high CD28+PD-1+ Tc-cell enrichment correspond to a TME

with stronger immune suppression but greater sensitivity to

chemotherapy. CD28+PD-1+ Tc-cell enrichment may serve as a

potential marker in HCC, and therapeutic strategies targeting

different levels of CD28+PD-1+ Tc-cell enrichment could offer

new directions for improving HCC treatment outcomes.

To the best of our knowledge, this study is the first to identify

the characteristics of the CD28+PD-1+ Tc-cell subset in HCC. This

subset exhibited significant immune dysfunction, characterized by

reduced cytotoxicity and lower immune checkpoint molecule

expression, indicating CD8+ T-cell exhaustion. This study

provides preliminary insights into the potential mechanisms and

interactions of CD28+PD-1+ Tc cells in HCC, providing a novel

perspective for understanding the TME in HCC and new

approaches for predicting treatment responses and prognosis.

This study had some limitations. First, while we preliminarily

explored the potential role of CD28+PD-1+ Tc cells in HCC, the

molecular mechanisms within the PD-1+ T-cell subsets, as well as

the specific regulatory role of CD28 signaling in T-cell exhaustion,

still require further validation. Second, for the CD28+PD-1+ Tc-cell

subset, we examined the expression levels of common cytokines and

immune checkpoints using a limited sample, without including

analysis of important immune checkpoints such as LAG-3. Future

research will address this gap by expanding the comparison of

immune regulatory molecules to define the specific immunological

mechanisms of this cell subset. Additionally, we plan to increase the

sample size to further strengthen the reliability of the results. Third,

in drug sensitivity analysis, we utilized the Genomics of Drug

Sensitivity in Cancer database; however, common standard

treatments for HCC, such as sorafenib, have not yet been

included, which affects the direct clinical translatability of our

findings. In the future, we plan to integrate real-world clinical

drug usage data or expand to other drug response databases (such as

PRISM, CTRP) to comprehensively assess the response of key drugs

in the context of CD28+PD-1+ Tc-cell enrichment, thus advancing

the development of personalized treatment strategies.
5 Conclusion

Significant enrichment of CD28+PD-1+ Tc cells in HCC and

their reduced immune function indicated cytotoxicity loss and

impaired immune response, suggesting a state of exhaustion.

CD28+PD1+ Tc cell enrichment may aid in stratifying patient

prognosis and serve as a sensitive indicator for predicting

treatment responses. These results offer crucial evidence for

CD28+PD-1+ Tc-cell involvement in the TME, underscoring a

potential treatment target for HCC.
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