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Identifying novel therapeutic targets involved in the multiple mechanisms underlying 
the complex pathophysiology of type 1 diabetes (T1D) could change the natural 
history of this disease. The CXCL8-CXCR1/2 axis is  emerging as a  therapeutic target  
with a crucial, multifaceted role in T1D pathophysiology. CXCL8-dependent 
neutrophil chemotaxis to the pancreas precedes autoimmunity, and CXCR1/2 
blockade mitigates insulitis and T1D development in preclinical models. In parallel, 
CXCL8 can act in a b cell-autonomous manner, and exert non-immune actions on 
adipocytes, hepatocytes, podocytes, and muscle cells that contribute to insulin 
resistance and diabetic complications. In this review, we delineate compelling 
evidence of immune and non-immune actions of the axis in the onset and 
progression of T1D. We show that the CXCL8-CXCR1/2 axis represents a 
promising therapeutic target for the prevention/reversal of T1D, with a meaningful 
potential clinical advantage conveyed by its role in multiple components of the 
pathology and diabetic complications. 
KEYWORDS 

type 1 diabetes, inflammation, chemokines, neutrophils, CXCL8, interleukin-8, 
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1 Introduction 

More than 8 million people globally are diagnosed with type 1 diabetes (T1D), with 
prevalence expected to reach up to 17.4 million cases by 2040 (1). Insulin therapy has been 
revolutionary in managing T1D, but is not a definitive cure and does not address the underlying 
immune-mediated destruction of b cells. The burden of T1D on individuals and healthcare 
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systems worldwide underscores the critical medical need for the 
development of effective treatments to prevent and cure the disease 
and delay or prevent secondary complications. However, its complexity 
and heterogeneity suggest this will require approaches which can target 
multiple mechanisms and underlying endotypes (1, 2). 

The pathogenesis of T1D involves an intricate interplay between 
environmental factors, the genome, pancreatic b cells and the immune 
system (3–5), with insulin resistance and secondary complications 
exacerbating disease progression and patient burden. The CXCL8­
CXCR1/2 axis is central to several aspects of T1D pathogenesis and 
progression and may serve as a common denominator in various 
endotypes and secondary complications. Here, we describe the crucial 
roles of the CXCL8-CXCR1/2 axis in T1D onset and progression, with 
contributions of the axis through immune cells, such as neutrophils 
and T cells, but also through non-immune cells, such as b cells, 
adipocytes and podocytes, highlighting its potential as a wide-
reaching therapeutic target. 
2 The CXCL8-CXCR1/2 axis 

Chemokines constitute a large family of chemotactic cytokines 
that exert their action via seven transmembrane G protein-coupled 
receptors (7TM-GPCRs). The chemokine system is crucial for the 
regulation and the control of basal homeostatic and inflammatory 
leukocyte movement (6). CXCL8 (initially interleukin-8 [IL-8]), a 
member of the CXC chemokine family, is a potent, selective 
neutrophil chemoattractant produced by macrophages, epithelial 
cells, and endothelial cells in response to inflammation and 
infection (6, 7). In addition to cell migration, the CXCL8 axis also 
controls neutrophil activation and NETosis, a preprogrammed cell 
death resulting in the release of Neutrophil Extracellular Traps (NETs) 
which entrap, neutralize, and/or kill pathogenic microorganisms (8– 
11). Its primary receptors, CXCR1 and CXCR2, are expressed on 
various cell types in addition to neutrophils, such as monocytes, 
macrophages, T cells, endothelial cells and certain cancer cells (7). 

Elevated CXCL8 levels have been consistently observed in patients 
with T1D and high CXCL8 levels were shown to correlate with poor 
glycemic control (i.e., poor hemoglobin A1c [HbA1c] levels) (12–17). 
Furthermore, neutrophils, the primary target of the axis, have emerged 
as key players in T1D pathology (3, 18, 19). Below, we delineate 
compelling evidence of pivotal immune and non-immune actions of 
the axis in the onset and progression of T1D from the autoimmune 
trigger through the development of secondary complications. 
 

3 Contributions of the CXCL8­
CXCR1/2 axis to the pathophysiology 
of T1D 

3.1 Susceptibility to T1D via enteroviral 
infection 

Enteroviral infection has been hypothesized to trigger islet 
autoimmunity either via direct damage to b cells or through
Frontiers in Immunology 02 
bystander activation and molecular mimicry (20–24). CXCL8 has 
been identified at both the mRNA and protein level in pancreatic 
islets in response to enteroviral infection, particularly with 
Coxsackie B virus (CVB) 3, CVB4, or CVB5 (22, 25–27). In one 
study, CXCL8 was specifically upregulated in islets exposed to a 
non-lytic CVB strain known to cause persistent infection (VD2921). 
Such non-lytic strains can cause enduring activation of immune-

related genes without any associated cytopathology or cell damage, 
thereby promoting non-specific inflammation (22). Thus, it may be 
that virally-induced CXCL8 could mediate immune activation, 
fueling islet autoimmunity, though its precise role in this context 
remains ill defined (27). 
3.2 Endotypes 

T1D is a heterogeneous condition characterized by distinct 
pathophysiological endotypes (28–30). Initially, hyperimmune 
(young-onset) and pauci-immune (late-onset) endotypes were 
identified, with increasing complexity leading to proposals of 6 
more specific T1D endotypes classified according to factors such as 
age of disease onset, autoantibody pattern, inflammatory signature, 
and genetic factors (31, 32). Broadly speaking, the hyperimmune 
phenotype, more often present in those with disease onset <7 years 
of age is associated with a higher HLA-conferred genetic risk, 
greater numbers of autoantibodies at diagnosis, an enhanced 
interferon- g (IFNg) signature, lower C-peptide levels, aberrant 
proinsulin processing, and higher numbers of pancreatic CD20+ 
B cells and CD8+ T cells (29–31, 33). In contrast, the pauci-immune 
signature, often present in those with disease onset ≥13 years of age, 
is associated with autoantibodies against glutamic acid 
decarboxylase 65 (GAD-65) (GADA), an enhanced IL-10 
signature, more severe metabolic decompensation and associated 
higher risk of diabetic ketoacidosis (DKA), higher C-peptide levels, 
and fewer pancreatic CD20+ B cells and CD8+ T cells. Whether 
neutrophil functions are identified as differentiating features or 
common drivers of pathology in the these endotypes, will be 
important to elucidate. Limited available data on the CXCL8­
CXCR1/2 axis and neutrophils in the context of endotypes are 
available thus far and future research should explore whether 
CXCR1/2 inhibition may be more effective in selected endotypes 
and  at  specific  disease  stages ,  enabl ing  personal ized  
therapeutic approaches. 

Though one study reported that circulating NETosis markers 
are reduced in T1D patients (34), other reports have shown 
associations between neutrophil and primary granule genes as 
well as whole blood neutrophil levels and defining features for 
both the hyperimmune and pauci-immune phenotypes, including 
an enhanced type I and type II IFN-related gene signature 
(hyperimmune) and higher stimulated and fasting C-peptide 
levels (pauci-immune), in both patients at risk for T1D and T1D 
patients across disease stages (35, 36). A hybrid phenotype of 
diabetes, “double diabetes” (DD), has also emerged which is 
characterized by canonical symptoms of both T1D and type 2 
diabetes (T2D), that is, both autoantibody positivity and obesity-
frontiersin.org 
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related insulin resistance (30, 37, 38). Notably, the diversity of 
mechanisms driving T1D progression across different endotypes 
and the resulting inter-subject variability may necessitate the 
development of a panel of disease-modifying therapeutic options 
for patients, within which CXCR1/2-tarteging therapies may be an 
important player (32). The hypothesis that CXCL8 may serve as a 
common denominator across endotypes, including DD, is 
supported by the significant contributions of the CXCL8-CXCR1/ 
2 axis to insulin resistance as outlined below. 
3.3 Immune actions of the CXCL8­
CXCR1/2 axis: neutrophil proinflammatory 
actions 

3.3.1 Autoimmunity 
Though it is well-established that T1D is a T cell-mediated 

disease whereby islet-specific, autoreactive CD4+ and CD8+ effector 
T cells (Teffs) drive b cell destruction (39–41), T cells do not trigger 
Frontiers in Immunology 03 
autoimmunity in isolation (Figure 1). Neutrophil activation and 
migration to the pancreas have been associated with the presence of 
autoantibodies and identified as a critical step in T1D pathogenesis 
(3, 6, 18, 19, 42). In T1D patients, a higher degree of pancreatic 
neutrophil infiltration has been associated with poor b cell function, 
even in presymptomatic individuals before T1D diagnosis (35). 
Preclinical studies have suggested that neutrophil migration in the 
pancreas in the initial stages of islet inflammation is driven by 
macrophage and b cell-derived CXCL8 and CXCL2 (3, 18, 42). In 
vitro, dose-dependent neutrophil chemotaxis was observed in 
response to recombinant CXCL8 in a trans-well migration assay 
(42). Neutrophil chemotaxis in the same assay was also observed in 
response to conditioned medium containing high levels of CXCL8 
produced by stressed EndoCb-H1 cells (a human b cell line) and 
this was prevented by the application of a CXCL8 neutralizing 
antibody (42). In vivo, upregulations in circulating macrophage 
CXCL1 expression, a homologue of CXCL8, were observed in 
spontaneously diabetic biobreeding (BB) rats and in a 
streptozotocin (STZ) -induced diabetes mouse model (3, 43, 44). 
FIGURE 1 

Immune actions of the CXCL8-CXCR1/2 axis in T1D. (a) Macrophage- and b cell-derived CXCL8 induces neutrophil and possibly autoreactive T cell 
chemotaxis to the pancreas. (b) CXCL8 initiates a positive feedback loop, mostly propagated by recruited neutrophils and macrophages, which 
exacerbates and amplifies insulitis with the release of additional proinflammatory mediators. (c) Neutrophil NETosis activates IFNa-producing pDCs. 
Specifically, the release of NET-derived CRAMP complexes with b cell debris and dsDNA (self-DNA) and activates IFNa-producing pDCs which serve 
as antigen-presenting cells. (d) PNAs contribute to a positive feedback loop of platelet – neutrophil activation, which is linked to NETosis and, 
subsequently, promotes autoantibody production via NETosis ultimately leading to T cell activation. 
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Pancreatic neutrophil CXCR2 expression was also upregulated in 
the non-obese diabetic (NOD) mouse model and CXCR2 blockade 
via the CXCR2 antagonist SB225002 prevented both the pancreatic 
neutrophil infiltration normally occurring in NOD mice and the 
rapid influx of neutrophils to the pancreas induced by STZ (18, 45). 
Importantly, CXCR2 blockade at 8 weeks of age in NOD mice was 
sufficient to significantly reduce the presence of islet autoreactive 
CD8+ T cells and led to a reduction in the prevalence of T1D in 
mice up to 40 weeks of age (3). 

The protective effect of CXCR2 blockade on diabetes 
development was replicated with two additional blockers. 
Ladarixin, an allosteric non-competitive CXCR1 and CXCR2 
antagonist, delayed the onset of diabetes and improved glycemic 
control when administered following multiple low-dose STZ 
injections in C57BL/6 mice (45). Similarly, ladarixin treatment in 
12-week old NOD mice delayed and prevented the onset of 
spontaneous diabetes and the severity of insulitis, with only 22% 
of ladarixin-treated mice developing diabetes during follow up 
relative to 78% of vehicle-treated mice. This was accompanied by 
a reduction in numbers of intrapancreatic neutrophils, 
macrophages and lymphoid cells, and a reduction in their 
associated CXCR2 expression. Strikingly, ladarixin treatment in 
NOD mice with recent-onset diabetes induced a rapid reversal of 
diabetes (45), strongly suggesting that the CXCL8-CXCR1/2 axis 
makes important contributions to T1D progression. Reparixin, 
another CXCR1/2 antagonist, was assessed in the context of islet 
transplantation outcomes and also improved islet engraftment in 
C57BL/6 mice (46). 

Compelling evidence for a significant role of the CXCL8­
CXCR1/2 axis in T1D gleaned from in vivo studies of CXCR1/2 
blockade in preclinical models is underscored by further discoveries 
about neutrophil actions in this context. Neutrophil activation 
characteristic of NETosis and inflammation (e.g., neutrophil 
elastase (NE), myeloperoxidase (MPO), proteinase-3 (PR-3), 
protein arginine deiminase 4 (PAD4), LL37 and cell-free DNA­
histone complexes, and IFN-responsive genes) has been observed in 
diabetic mice and recent-onset T1D patients (3, 17, 35, 47, 48), with 
levels of MPO remaining significantly increased relative to healthy 
controls even in long-term T1D patients (47, 49). Platelet-
neutrophil aggregates (PNAs) have also been shown to increase in 
circulation ahead of T1D onset, initiating a positive feedback loop of 
platelet-neutrophil activation which has been linked to 
autoantibody positivity and recent-onset T1D (19). Further, NETs 
have been suggested as a direct source of autoantigen in various 
autoimmune diseases (i.e., anti-citrullinated protein antibodies in 
Rheumatoid arthritis [RA]). It is hypothesized that they may 
contribute to post-translationally modified islet autoantigens in 
T1D (50–54). While therapeutic approaches to inhibit NETosis 
have been considered for SLE, RA, and small-vessel vasculitis, 
NETosis inhibitors are not currently in development for the 
treatment of T1D (55). 

Diana and colleagues reported the presence of NETs and 
associated  release  of  DNA-binding  cathelicidin-related  
antimicrobial peptide (CRAMP) in the pancreatic islets of NOD 
mice at 3 weeks of age (3). Subsequent experiments demonstrated 
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that interactions between NET-derived CRAMP and complexes of 
b cell debris (i.e., self-DNA) and dsDNA-specific immunoglobulin 
G (IgG) secreted by local B1a cells cooperatively activated IFNa­
producing, autoantigen-presenting plasmacytoid dendritic cells 
(pDCs) (3, 56). NETosis was confirmed to be a critical 
component to this pDC activation in that neutrophil depletion 
was sufficient to prevent the induction of IFNa secretion from islet 
pDCs. Both IFNa-secreting pDCs and the diabetogenic T cell 
response in the islets of 8-week old NOD mice were mitigated by 
neutrophil depletion (3). 

Possibly, approaches targeting CXCR1 and CXCR2 do not affect 
solely neutrophils, as both receptors are expressed on terminally 
differentiated Teffs (57–60). Upregulation of CXCR1/2 on islet-
specific T cells may enhance their migration to the pancreas. One 
study showed that approximately 25% of intrahepatic NKT cells 
expressed CXCR2 in C57BL/6 mice (46). Intrahepatic NKT levels 
increased markedly upon islet transplantation, but this was 
mitigated with reparixin treatment (45). Outside the context of 
T1D, CXCR1 expression on T cells has been associated with 
enhanced IFNg expression, enhanced cytotoxicity, pro-apoptotic 
factors and higher levels of death-associated protein kinase 1 
(DAPK1) (58–60). This suggests that higher expression of CXCR1 
on CD8+ T cells may render them prone to enhanced cytotoxicity. 
Lastly, enhanced T cell CXCR1 expression has been reported in 
other autoimmune diseases, for example, on CD3+ T cells in RA 
(61) and inflammatory bowel disease (62) and on Vd2 T cells in 
SLE (63). 

T cells are one of the most common targets of NET contents 
(64). Direct contact with NETs has been shown to prime T cells by 
lowering T cell activation thresholds (65). Furthermore, activated 
neutrophils were shown to induce Th1 or Th17 polarization via 
release of IL-12 or Th17-specific transcription factors (66, 67) or  by  
guiding the cytokine profile or expression of costimulatory 
molecules (e.g., CD80, CD86, or HLA-DR) in DCs (67–69). 
Evidence has also suggested that neutrophils contain reserves of 
costimulatory molecules themselves such that, under conditions of 
inflammation, their expression can be translocated to the surface 
and neutrophils can present antigens to T cells directly (70–72). 

Finally, intricate neutrophil-regulatory T cell (Treg) 
interactions play a key role in islet-specific self-tolerance. Tregs, 
which critically suppress autoreactive Teffs to maintain a balance of 
immune activity under healthy conditions (73, 74), have been 
shown to exhibit considerable impairments in their ability to 
constrain excessive autoimmune actions and maintain self-
tolerance in T1D (75, 76). Specifically, Tregs collected from 
patients with T1D exhibited a weakened ability to limit 
proliferation of autologous Teffs and a shifted profile of cytokine 
secretion favoring more proinflammatory cytokines and fewer anti-
inflammatory cytokines relative to those collected from healthy 
controls (73, 75–78). Interestingly, while Tregs are traditionally 
known for releasing anti-inflammatory signals, i.e., IL-10 and 
transforming growth factor-b (TGF-b), recent discoveries have 
indicated that CD4+ FOXP3+ Tregs can also secrete CXCL8, 
employing CXCL8-driven chemoattraction to recruit neutrophils 
(79). By attracting neutrophils to their vicinity, Tregs could induce 
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the expression of anti-inflammatory markers, including suppressor 
of cytokine signaling 3 (SOCS3), IL-10, and TGF-b, promoting 
neutrophil apoptosis (80–82). This reveals an additional 
mechanism through which Tregs contribute to autoimmunity 
suppression, i.e., by imparting tolerogenic signaling to 
neutrophils. In line with this, defective Treg function and 
concurrent overactivation of neutrophils have been observed in 
autoimmune diseases like SLE, vasculitis, and RA, indicating a 
potential link between Treg dysfunction and neutrophil 
overactivity (53, 82–87).  It  remains unclear  whether this

mechanism is operational in T1D. 

3.3.2 Insulin resistance (immune actions) 
Insulin resistance, the inability of cells to respond effectively to 

insulin, is commonly associated with T2D. However, it also occurs in 
some individuals with T1D, especially in those with obesity and 
during puberty and pregnancy (88–91) and encompasses what is now 
considered the DD endotype (30, 37, 92). Chronic inflammation is a 
known component of insulin resistance in obese and diabetic patients 
(93). In obesity, adipose tissue can release proinflammatory cytokines 
(e.g., TNF, IL-6), CXCL8, and adipokines (e.g., leptin), dysregulating 
leukocyte trafficking (94). Under conditions of hyperglycemia, 
abnormal leukocyte trafficking driven  by inflamed adipocyte 
extracellular vesicles contributes to enhanced leukocyte-endothelial 
cell adhesion, increased production of advanced glycosilation end 
products (AGEs), generation of reactive oxygen species (ROS) and 
increased expression of cell adhesion molecules (CAMs). Talukdar 
and colleagues showed that mice exposed to a high-fat diet (HFD) 
exhibited an increase in adipose tissue neutrophil levels and markers 
of NETosis (i.e., NE) which emerged within 3 days of HFD exposure 
and persisted through 90 days (95). The administration of an NE 
inhibitor, GW311616A, improved glucose tolerance, an indicator of 
insulin resistance, in HFD-fed mice, while application of recombinant 
mouse NE led to a substantial increase in glucose intolerance. 
Deletion of NE in mice also protected against the development of 
insulin resistance, with a 90% reduction in adipose tissue-infiltrating 
neutrophils compared to wild-type mice (95). 

Human and animal studies have shown CXCR1/2 agonists (e.g., 
CXCL8, CXCL5 in T1D patients, CXCL1 in mice) to be correlated 
with obesity (12–16) and insulin resistance (96, 97). Both genetic 
deletion of CXCR2 (96, 97) and CXCR1/2 blockade in HFD-fed mice 
and db/db mice protected against insulin resistance (98, 99). CXCR2 
knockout or CXCR2 blockade led to stronger protective effects than 
did a CXCL5-neutralizing antibody (96), another chemokine which 
binds CXCR2, and additionally influenced macrophage polarization 
(i.e., shifted the balance between proinflammatory M1 and anti-
inflammatory M2 macrophages) in db/db mice (98). 
3.4 Non-immune actions of the CXCL8­
CXCR1/2 axis 

3.4.1 ER stress 
Recent converging evidence supports a direct role of b cells in 

their own demise in that intrinsic b cell impairment or death may 
Frontiers in Immunology 05 
trigger a cascade of events that contribute to autoimmunity in T1D. 
Endoplasmic reticulum (ER) stress can drive b cell dysfunction, 
apoptosis, overexpression of MHC class I/II, and release of 
proinflammatory cytokines and chemokines, while b cell debris 
serve as autoantigens (Figure 2) (3, 42, 100–104). 

b cell ER stress has been shown to engage CXCL8-CXCR1/2 
axis signaling in human b cells in vitro and in muscle insulin-
resistant zebrafish (zMIR) (42, 104, 105). Thapsigargin-induced ER 
stress in EndoCb-H1 cells (a human b cell line) produced a type 1 
IFN response and dsDNA leakage along with a strong induction of 
CXCL8 and CXCL8-dependent neutrophil chemotaxis (42). In 
zMIR, ER stress induced by overnutrition initiated macrophage 
recruitment and TNF release along with subsequent CXCL8 release 
from b cells (104). ER stress-induced b cell loss was associated with 
“hot spots” of neutrophil chemotaxis and genetic deletion of CXCL8 
prevented ER stress-induced b cell death (104). Thus, CXCL8 may 
act in a b cell-autonomous manner, contributing to the 
consequences of ER stress and facilitating ER stress-induced b cell 
death within the islets. 

3.4.2 Insulin resistance (non-immune actions) 
CXCR1/2 signaling makes substantial contributions to insulin 

resistance directly via non-immune cells like adipocytes, muscle 
cells, and b cells (Figure 2) (96, 106, 107). In one study, the 
molecular mechanisms underlying the antidiabetic effect of 
CXCR1/2 blockade were evaluated in differentiated adipocytes 
(106). Hyperglycemic or inflammatory conditions (i.e., CXCL1), 
or the combination of both, upregulated CXCR1/2 expression on 
adipocytes and reduced glucose transport in vitro (106). CXCR1/2 
blockade mitigated CXCR1/2 expression in adipocytes under 
hyperglycemic conditions and restored glucose uptake and 
glucose transporter levels (GLUT4 and GLUT1) to control levels. 
It also reduced lipolysis and cytokine release while enhancing 
adiponectin levels, suggesting metabolic restoration. In human 
adipocytes from an obese patient, blockade of CXCR1/2 reduced 
the size of adipocytes and reduced the release of CXCL8 and other 
inflammatory cytokines and angiogenic factors (106). These data 
are consistent with those from two other studies which 
demonstrated that application of CXCL1 to cultured adipocytes 
enhanced inflammation, inducing release of leptin, monocyte 
chemotactic protein-1 (MCP-1), IL-6, and TNF, as well as 
SOCS3, a factor known to mediate insulin resistance (97, 108). 

Dyer and colleagues reported that female cxcr2 null mice 
displayed a unique adipocyte phenotype, characterized by small 
and fewer adipocytes constituting a thin adipose layer, and a 
reduced expression of adipogenesis-related genes, peroxisome 
proliferator-activated receptor (PPARg) and fatty acid binding 
protein 4 (FABP4), in fat depots (107). Consistent with this, 
adipocytes exhibited reduced differentiation in the presence of a 
CXCR2 inhibitor. These data suggest a direct role for adipocyte­
specific CXCR2 signaling in adipogenesis, which could have 
important implications for insulin resistance (107). 

Studies of obesity-related insulin resistance in preclinical 
models have shown direct effects of the CXCL8-CXCR1/2 axis on 
muscle cells and b cells. In soleus muscle tissue from obese db/db 
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mice, CXCL5 inhibited insulin-stimulated glucose transport by 
inhibiting the phosphorylation of Akt and activation of SOCS2 
via the JAK/STAT pathway (96). This effect was mitigated by 
CXCR2 blockade. With regard to b cells, in vitro application of 
CXCL5 and CXCL1 was shown to influence b cell intracellular 
calcium dynamics, which are indicative of insulin secretion 
capabilities, in pancreatic islets (109, 110). 

Finally, the liver is a key insulin-sensitive organ which 
influences glucose homeostasis (111). Insulin resistance in 
hepatocytes directly contributes to glucose metabolism, 
hyperglycemia and glucose intolerance (112). Previous studies 
have demonstrated that hepatocytes express CXCR1 and CXCR2 
receptors (113, 114) and insulin signaling dynamics in hepatic cells 
were sensitive to TNF both in vitro and in vivo (115, 116). A recent 
study assessed the effects of CXCR1/2 blockade on inflammation-

induced insulin resistance in hepatocytes in vitro (117). TNF-
induced insulin resistance in hepatocytes was mitigated by 
Frontiers in Immunology 06
CXCR1/2 blockade through  the inhibition of intracellular

inflammatory pathways such as JNK and NF-kB and  positive
modulation of the metabolic profile of the cells. Similar to the 
results obtained in adipocytes, CXCR1/2 blockade restored glucose 
uptake and GLUT protein levels and reestablished insulin 
sensitivity in hepatocytes. 
4 Contributions of the CXCL8­
CXCR1/2 axis in T1D-associated 
secondary complications 

Patients with T1D often face various secondary complications 
affecting multiple organ systems. Abnormalities in the CXCL8­
CXCR1/2 axis exist at a multi-organ level and may contribute to the 
pathophysiology of some of these complications. 
FIGURE 2 

Non-immune actions of the CXCL8-CXCR1/2 axis in T1D. (a) Adipocyte CXCR1/2 signaling reduces glucose transport and disrupts metabolism by 
downregulating the surface expression of glucose transporters, GLUT4 and GLUT1. Adipocyte CXCR2 activation can drive adipogenesis, further 
amplifying these effects. (b) Muscle cell CXCR2 receptors influence insulin-stimulated glucose transport, with CXCL5-CXCR2 activation shown to 
reduce glucose transport. (c) Hepatocyte CXCR1/2 activation facilitates inflammation-induced insulin resistance and inflammation-induced 
reductions in GLUT transporters/glucose transport on hepatocytes. (d) b cell ER stress is sufficient to induce b cell dysfunction, apoptosis, 
overexpression of MHCI/II and the release of proinflammatory mediators, including CXCL8, which facilitate further b cell ER stress and promote 
islet-specific autoimmunity. Importantly, b cell debris can serve as autoantigen material. (e) CXCL1- and CXCL5- activation of CXCR2 impairs b cell 
function (e.g., insulin secretion pathways) by affecting intracellular calcium dynamics in pancreatic islets. 
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4.1 Cardiovascular complications 

Not surprisingly, obesity and insulin resistance, which are 
becoming increasingly common components of T1D and DD in 
particular, are strongly linked to cardiovascular disease (118, 119). 
Two recent studies reported enhanced endothelial cell-derived 
CXCL8 in patients with T1D in key cell types involved in 
atherogenesis/atherosclerosis. Li and colleagues showed that 
coronary artery endothelial cells derived from patients with T1D 
secreted elevated levels of CXCL8, despite comparable toll-like 
receptor (TLR) 2 and TLR4 levels; and this effect was not 
reversed by application of exogenous insulin (120). Similarly, 
hyperglycemic conditions were sufficient to induce CXCL8 
secretion in macrovascular aortic endothelial cells in vitro (121). 

Improvements in markers for risk for cardiovascular disease 
(low-density lipoprotein [LDL]- and high-density lipoprotein 
[HDL]- cholesterol levels) in patients with T1D were associated 
with a reduction in LPS-induced secretion of CXCL8 from 
monocytes (122). Consistent with this, LDL from T1D patients 
enhanced CXCL8 and MCP1 expression in endothelial cells in vitro, 
irrespective of glycemic status (123). Of note, markers of NETosis 
have also been reported to promote poor cardiac outcomes in non-
diabetic patients (124, 125). 
4.2 Diabetic ketoacidosis 

DKA was associated with an increase in plasma CXCL1 and 
CXCL8 in pediatric T1D patients (126) and an increase in blood 
CXCL1 in STZ-induced diabetic mice was associated with ketoacidosis 
(127). In vitro, stimulation of microvascular endothelial cells with 
plasma collected from T1D patients with DKA led to enhanced 
neutrophil - endothelial cell adhesion, and this was prevented by the 
application of antibodies against CXCL1/8 or CXCR1/2 blockers. 
Similarly, monocyte and endothelial cell CXCL8 secretion was 
induced in vitro by the application of a hyperketonemic state (128). 
4.3 Nephropathy 

Diabetic nephropathy is the most common cause globally of renal 
failure (129, 130). In both T1D and T2D, urinary CXCL8 has been 
shown to be elevated in patients with diabetic nephropathy (relative 
to diabetic patients without nephropathy) and related to poor renal 
function (i.e., glomerular filtration rate, microalbuminuria, 
progression vs. stability of renal decline, albumin:creatinine ratio, 
clinical outcome) (131–134). Ambinathan and colleagues published a 
thorough description of the relationship between renal function and 
urinary and serum inflammatory markers, including CXCL8, in a 
large cohort of patients with diabetic nephropathy (131). In their 
study, urinary CXCL8 predicted reduced renal efferent arteriolar 
function and was significantly increased in urine following an 
infusion of angiotensin II (131). 

CXCL8 and its receptors have been detected in human and 
murine glomeruli, and in immortalized human podocyte cells (133). 
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In vitro, podocyte CXCL8 release was strongly enhanced during a 
high-glucose challenge, suggesting that hyperglycemia may trigger 
podocyte CXCL8 production in diabetic patients, which could in 
turn activate death signals through an autocrine loop and facilitate 
diabetic nephropathy (133). Similar results were observed in 
experiments investigating glucose-dependent CXCL8 signaling in 
podocytes obtained from differentiation of renal stem cells (RSC) 
cultured as nephrospheres (135, 136). In RSC-differentiated 
podocytes, a high-glucose challenge induced an increase of 
CXCL8 transcript expression and protein secretion and DNA 
damage, and these effects were prevented by CXCR1/2 blockade 
(i.e., application of ladarixin) (136). Moreover, upon incubation on 
healthy leukocytes, supernatant from high-glucose challenged 
podocytes, but not high-glucose challenged epithelial cells, 
nominal ly  enhanced  leukocyte-mediated  secret ion  of  
proinflammatory cytokines, suggesting that crosstalk between 
immune and non-immune cells could contribute to the 
progression of diabetic nephropathy. CXCR1/2 blockade via 
ladarixin mitigated this podocyte-dependent increase in leukocyte 
secretion of proinflammatory cytokines (136). In vivo, CXCR1/2 
blockade reduced albuminuria, mesangial expansion, and podocyte 
apoptosis and DNA damage in db/db mice (133). Thus, though a 
few studies reported no relationship between urine/serum CXCL8 
and renal function in patients with T1D and microalbuminuria 
(137–140), there is substantial evidence warranting further 
exploration of the potential clinical benefit of CXCR1/2 inhibition 
in diabetic nephropathy. 
4.4 Diabetic neuropathy and retinopathy 

While not many studies have explored a potential role for the 
axis in diabetic neuropathy, serum CXCL8 in patients with T1D was 
significantly higher in patients with diabetic neuropathic pain 
relative to diabetic controls (141) and was correlated with cold 
perception threshold in patients with childhood-onset T1D (142). 
Ocular CXCL8 has also been shown to be elevated in patients with 
diabetic retinopathy relative to nondiabetic controls and was related 
to measures of disease severity and disease progression in several 
studies (143–146). A recent experiment evaluating STZ-induced 
signs of diabetic complications in rat employed a unique design 
which separated protective effects of CXCR1/2 blockade potentially 
secondary to its effect on b cell function and glycemic control from 
protective effects of CXCR1/2 blockade due to direct actions on the 
underlying pathophysiology of neuropathy or retinopathy (147). 
Specifically, late repeated ladarixin treatment, i.e., beginning 8 
weeks post-STZ when b cell loss and dysglycemia were resistant 
to treatment, was still sufficient to mitigate STZ-induced signs of 
diabetic peripheral neuropathy (e.g., mechanical allodynia and 
thermal hyperalgesia) and diabetic retinopathy (e.g., vitreous and 
retinal inflammatory [CXCL1, CXCR1/2, myeloperoxidase, 
citrullinated histone H3] and pro-angiogenic (vascular endothelial 
growth factor, CD34) factors. This suggests a direct role of the 
CXCL8-CXCR1/2 axis in diabetic peripheral neuropathy 
and retinopathy. 
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5 CXCR1/2 as a therapeutic target in 
T1D: unanswered questions 

5.1 Current and emerging T1D therapies 

Identifying patients at prodromal stages of T1D offers a crucial 
therapeutic window for preventing disease progression and 
symptom onset (148, 149). Meanwhile, individuals with late-stage 
or long-standing T1D require treatments targeting acute symptoms 
and secondary complications. Current prevention strategies focus 
on preserving b cell mass by intercepting autoimmunity, whereas in 
longstanding disease marked by significant b cell loss, therapeutic 
strategies prioritize restoring b cell function through replacement or 
regeneration while also preventing autoimmunity recurrence. 

While technological advances such as continuous glucose 
monitoring devices and/or insulin pumps have improved quality 
of life for some patients (150, 151), the use of external insulin carries 
a dual burden, being both costly and entailing significant risks due 
to potential complications like severe hypoglycemia or 
hyperglycemia. An artificial pancreas, or closed loop insulin 
system involving continuous glucose monitoring and an 
implanted insulin pump, has been approved for use in T1D (152, 
153), but its use is also limited by its high cost and a lack of 
education around the device. 

Current and emerging disease-modifying therapies that aim to 
preserve or restore b cell function rather than simply mitigate 
symptoms of T1D rely on immune-focused approaches, with 
varying degrees of success. These include cell-based therapies or 
islet transplantation, agents targeting Teffs and B cells, as well as 
nonspecific anti-inflammatory agents against TNF, IL-1b, IL-21 or 
IL-6 (41). For example, rituximab, an anti-CD20 antibody which 
depletes B cells, was associated with significant but only transient 
preservation of b cell function in new-onset T1D patients (154, 
155). Similarly, the role of cytokines such as TNF, IL-1b, or IL-6 in 
innate immunity suggest they could represent targets with key roles 
in triggering autoimmunity. While the TNF-targeting agents 
etanercept and golimumab significantly improved HbA1c levels 
and endogenous insulin in children with new-onset T1D (156) and 
improved C-peptide levels in children and young adults with newly 
diagnosed (overt) stage 3 T1D (157), the IL-1b-targeting agents 
anakinra or canakinumab, and the anti-IL-6 antibody, toclizumab, 
failed to show improvements in recent-onset T1D patients (158, 
159). It is possible that a more wide-reaching anti-inflammatory 
approach, such as the use of JAK inhibitors, would convey 
advantages over these agents. Indeed, baricitinib was shown to 
improve b cell function in a recent pilot trial (160). Notably, 
combination therapies represent an intriguing approach to 
improve outcomes. For example, combination therapy with an 
anti-IL-21 agent to target CD8+ Teff, Th17 and Th cells and the 
glucagon-like peptide-1 receptor agonist (GLP-1RA) liraglutide 
preserved b cell function in recent-onset T1D patients in a Phase 
2 trial with a stronger safety profile than immunosuppressive, 
disease-modifying therapies alone (161). As another example, 
reparixin in combination with islet transplantation has been 
considered (46, 162). 
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Substantial variability in response to candidate T1D therapies in 
clinical trials complicates the clinical landscape for T1D treatment, 
as response to treatment may vary based on stage of disease, disease 
severity or the underlying endotype. For example, T cell- and B cell-
targeting therapies have shown some efficacy in improving 
outcomes specifically for stage 3 (teplizumab, abatacept, 
rituximab) (154, 163–165) and stage 2 (teplizumab) (166) 
diabetes. Among symptomatic patients, disease severity (e.g., 
baseline b cell function) may determine response to some 
treatments. An improvement in C-peptide levels following 
teplizumab treatment has been associated specifically with stage 2 
T1D with low b cell function at baseline and with the specific HLA 
genotypes HLA-DR3- negative or HLA-DR4- positive (166, 167). 
Similarly, patients with the hyperimmune endotype associated with 
stronger B cell and T cell infiltration may be expected to respond 
more favorably to immune-targeting therapies (i.e., rituximab, 
teplizumab), relative to those with the pauci-immune phenotype 
(30, 33, 154). Accordingly, future clinical trials should consider this 
heterogeneity in their designs and plan for population-specific 
analyses/evaluations. 5.2 CXCL8-CXCR1/2 axis-targeting therapies 

Based on this existing clinical landscape, it is clear that there is 
still a substantial unmet need for disease-modifying therapies for T1D 
across disease severity/progression and heterogenous patient 
populations. What emerges from a thorough analysis of the 
literature available on the CXCL8-CXCR1/2 axis in the context of 
T1D is that this signaling pathway is central to a complex interplay 
between immune and non-immune cells contributing to b-cell 
dysfunction and insulin resistance, as well as secondary 
complications, making the axis particularly well positioned to serve 
as a therapeutic target which could convey advantages over other 
agents discussed. Several compounds targeting this axis have been 
studied so far. SB220052, a selective CXCR2 inhibitor, and reparixin 
and ladarixin have shown promise to prevent the development of 
T1D in preclinical studies (18, 45). In patients, a Phase 2 open-label 
pilot study revealed that reparixin treatment improved islet 
transplantation success, as indicated by improved glycemic control, 
decreased insulin requirement, and appearance of detectable levels of 
C-peptide well above 0.3 ng/ml (46), however, this was not replicated 
in a later Phase 3 trial (162). Although a randomized, double-blind, 
placebo-controlled Phase 2 trial (NCT02814838) in recent-onset T1D 
with ladarixin failed to achieve its primary endpoint, improvement in 
C-peptide response to a mixed-meal tolerance test, a significant 
fraction of ladarixin-treated patients in this trial achieved <7% 
HbA1c levels without severe hypoglycemic events (SHE) (168). 
Moreover, improved C-peptide were observed in a subgroup of 
patients with low fasting C-peptide levels at baseline (multiple 
metrics) (168) and  a  predefined subgroup analysis of  the  efficacy of 
ladarixin stratified by baseline daily insulin requirement revealed a 
significant improvement in C-peptide levels in ladarixin-treated 
patients with high daily insulin requirements (169). 

Importantly, CXCR1/2 inhibitors have been well tolerated in 
patients with T1D in studies thus far, with no clinically relevant safety 
observations detected (162, 168). However, the broad expression and 
pleiotropic functions of CXCL8 and its receptors raise concerns about 
potential off-target effects, particularly with chronic use. Safety will 
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also be critical to assess in vulnerable subpopulations such as children 
or individuals with immunocompromising comorbidities or other 
comorbid autoimmune diseases. Long-term safety data from other 
indications should be cautiously extrapolated to T1D, and dedicated 
studies are needed to assess immune competence, metabolic impact, 
and safety profiles across different age groups and disease stages. 

Based on these promising results, further trials of therapies 
targeting this axis are strongly warranted. Currently, two ongoing 
double-blind, placebo-controlled studies are examining the efficacy 
of ladarixin in patients with recent-onset T1D, a Phase 2 study 
(NCT04899271) to evaluate ladarixin in patients with preserved b 
cell function and a Phase 3 study (NCT04628481) to evaluate 
ladarixin in patients with low residual b cell function. In parallel, 
a Phase 2 trial (2020-003296-18) is ongoing to investigate the effect 
of ladarixin on insulin sensitivity in obese prediabetic patients 
eligible to receive bariatric surgery. 
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5.2 Future directions 

Recognizing the three main stages of T1D—presymptomatic b-
cell autoimmunity (stage 1), b-cell autoimmunity with dysglycemia 
(stage 2), and symptomatic disease onset (stage 3)—provides a 
framework for understanding disease progression and tailoring 
treatment strategies accordingly (Figure 3). The pivotal role of the 
axis in T1D pathogenesis suggests that its inhibition could 
complement existing treatment modalities to enhance the efficacy 
of current interventions, optimizing patient care and outcomes. 
Importantly, our understanding of the potential of CXCR1/2­
targeting therapies and the key takeaways of the research 
summarized in this review is limited by the small number of trials 
conducted to date. Though promising, preclinical studies have not 
been able to address questions of efficacy specific to different

endotypes and/or varying disease severity and progression. Most 
FIGURE 3 

Stage-specific combination therapy strategies for T1D. CXCL8-targeting therapies show promise to improve outcomes across the stages of T1D, 
with evidence of CXCL8-CXCR1/2 axis involvement throughout the course of disease progression. In presymptomatic T1D, CXCR1/2 blockade may 
mitigate insulitis and b cell stress which could otherwise initiate autoimmunity. In new-onset T1D, CXCR1/2 blockade may mitigate or slow the 
progression of T cell migration to the pancreas and T cell-mediated autoimmune destruction of b cells. In late T1D, CXCR1/2 blockade may improve 
outcomes related to diabetic complications. When administered in combination with existing therapies developed for various stages of the disease, 
CXCL8-targeting therapies could improve outcomes. Anti-inflammatory agents, such as TNF- or JAK- inhibitors, and antigen-specific therapies (e.g., 
GAD-alum, oral insulin, multiple islet peptides) are developed for early presymptomatic T1D prior to the loss of b cells. Immunomodulating agents 
targeting T cells or B cells (e.g., anti-IL-21, anti-CD3, anti-CD80, anti-CD86, anti-CD20, and antithymocyte globulin [ATG]) and Treg-targeting 
agents (e.g., low-dose IL-2, Treg cell therapy) have shown promise to delay the onset or slow the progression of T1D through the development of 
Stage 3 T1D and are developed for Stage 1 up to Stage 3. Therapeutic strategies aiming to preserve or expand b cell mass/function (e.g., glucagon­
like peptide 1 [GLP1] receptor agonists, calcium channel blockade [verapamil], monoamine oxidase A [MAOA] inhibition [harmine], and bone 
morphogenetic protein-7 [BMP-7]) are developed for Stage 2–3 T1D. For late-stage T1D, b cell replacement strategies and/or sodium-glucose 
transport protein 2 (SGLT2) inhibitors are being tested, with the aim to address pathologies driving severe diabetic complications associated with this 
stage of T1D. 
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preclinical studies also rely on murine models, which lack a direct 
CXCL8 homolog, thereby limiting translational relevance. 
Moreover, the pleiotropic functions of CXCL8 in different tissues 
and cell types—beyond neutrophil chemotaxis—are incompletely 
characterized in the context of human autoimmunity. The temporal 
dynamics of CXCL8 expression in at-risk individuals, its role in 
epitope spreading, and its interaction with other inflammatory 
mediators require further investigation. 

Current clinical trials targeting CXCR1/2 in T1D are limited in 
number and scope, emphasizing the need for additional studies 
assessing both immune outcomes and metabolic endpoints. Future 
research should prioritize the development of human-relevant 
models, biomarker-driven patient stratification, and combination 
therapeutic strategies. Elucidating these aspects will be critical to 
fully harness the therapeutic potential of CXCR1/2 blockade in 
T1D. Clinical trials to evaluate the safety and efficacy of CXCL8­
CXCR1/2 axis inhibition, as a monotherapy or as an adjunctive 
therapy, in specific T1D populations (i.e., by endotype, baseline 
disease severity) represent a critical future research direction. 
Notably, the inclusion of analyses and/or additional trials to 
assess the potential for CXCR1/2-targeting therapies to address 
Frontiers in Immunology 10 
diabetic complications also represents a unique and impactful 
future direction of the field. 
6 Conclusion 

Long-term reliance on insulin is associated with growing safety 
concerns and socioeconomic costs. Disease-modifying therapies 
targeting the autoimmunity underlying T1D may be able to 
dramatically improve outcomes for patients and remain a highly 
sought-after clinical tool (Figure 4). The CXCL8-CXCR1/2 axis 
plays a crucial role in T1D onset and progression, acting through 
immune (e.g., neutrophils) and non-immune (e.g., b cells, 
adipocytes) pathways, such that CXCR1/2-targeting therapies 
represent a multifaceted treatment approach. Moreover, the 
considerable evidence supporting the involvement of the CXCL8­
CXCR1/2 axis in secondary complications allows for speculations 
on direct beneficial effects of therapies targeting the axis also for 
common diabetic complications. 

Importantly, CXCR1/2-targeting therapies show promise to 
capitalize on recent initiatives aiming to increase early screening 
FIGURE 4 

The potential for CXCR1/2-targeting disease-modifying therapies. The CXCL8-CXCR1/2 axis plays a crucial role in T1D onset and progression, acting 
through immune (e.g., neutrophils) and non-immune (e.g., b cells, adipocytes) pathways, such that CXCR1/2-targeting therapies represent a 
multifaceted treatment approach. 
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for autoantibodies to identify patients with a high risk of T1D early 
(170, 171), when therapies can aim to preserve b cell function and 
delay or prevent symptomatic T1D onset and reliance on insulin. 
Strikingly, a recent study used machine learning with single-cell 
transcriptomics on pancreas tissues to detect unique gene signatures 
predictive of progression to T1D and specifically highlighted the 
importance of CXCL8 in this endeavor (170). In this study, across 
training instances, high cellular CXCL8 in the pancreas was 
consistently selected as a predictor of T1D. 

In conclusion, the inhibition of the CXCL8-CXCR1/2 axis 
represents a promising therapeutic approach which, either as 
monotherapy or an adjunctive therapy, may lead to the 
prevention or reversal of T1D, with a meaningful potential 
clinical advantage conveyed by its role in multiple components of 
the disease pathology and its involvement in secondary 
diabetic complications. 
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activated CD4+CD25+ T regulatory cells inhibit neutrophil function and promote their 
apoptosis  and  death.  J  Immunol .  (2006)  177:7155–63.  doi :  10.4049/  
jimmunol.177.10.7155 

82. Okeke EB, Uzonna JE. The pivotal role of regulatory T cells in the regulation of 
innate immune cells. Front Immunol. (2019) 10:680. doi: 10.3389/fimmu.2019.00680 

83. Brooks CJ, King WJ, Radford DJ, Adu D, McGrath M, Savage COS. IL-1b 
production by human polymorphonuclear leucocytes stimulated by anti-neutrophil 
cytoplasmic autoantibodies: relevance to systemic vasculitis. Clin Exp Immunol. (2003) 
106:273–9. doi: 10.1046/j.1365-2249.1996.d01-835.x 

84. Brusko TM, Putnam AL, Bluestone JA. Human regulatory T cells: role in 
autoimmune disease and therapeutic opportunities. Immunol Rev. (2008) 223:371– 
90. doi: 10.1111/j.1600-065X.2008.00637.x 

85. Jorch SK, Kubes P. An emerging role for neutrophil extracellular traps in 
noninfectious disease. Nat Med. (2017) 23:279–87. doi: 10.1038/nm.4294 

86. Kessenbrock K, Krumbholz M, Schönermarck U, Back W, Gross WL, Werb Z, 
et al. Netting neutrophils in autoimmune small-vessel vasculitis. Nat Med. (2009) 
15:623–5. doi: 10.1038/nm.1959 

87. Lande R, Ganguly D, Facchinetti V, Frasca L, Conrad C, Gregorio J, et al. 
Neutrophils activate plasmacytoid dendritic cells by releasing self-DNA–peptide 
complexes in systemic lupus erythematosus. Sci Transl Med. (2011) 3. doi: 10.1126/ 
scitranslmed.3001180 

88. Bermudez V, Salazar J, Martı ́ ́nez MS, Chavez-Castillo M, Olivar LC, Calvo MJ, 
et al. Prevalence and associated factors of insulin resistance in adults from Maracaibo 
City, Venezuela. Adv Prev Med. (2016) 2016:1–13. doi: 10.1155/2016/9405105 

89. Catalano PM, Tyzbir ED, Roman NM, Amini SB, Sims EAH. Longitudinal 
changes in insulin release and insulin resistance in nonobese pregnant women. Am J 
Obstetrics Gynecology. (1991) 165:1667–72. doi: 10.1016/0002-9378(91)90012-G 

90. Kim S-G, Lim H-S, Cheong H-K, Kim C-S, Seo H-J. Incidence and risk factors of 
insulin resistance syndrome in 20–59 year-old korean male workers. J Korean Med Sci. 
(2007) 22:968. doi: 10.3346/jkms.2007.22.6.968 
Frontiers in Immunology 13 
91. Smith CP, Archibald HR, Thomas JM, Tarn AC, Williams AJK, Gale EAM, et al. 
Basal and stimulated insulin levels rise with advancing puberty. Clin Endocrinol. (1988) 
28:7–14. doi: 10.1111/j.1365-2265.1988.tb01196.x 

92. Nokoff NJ, Rewers M, Cree Green M. The interplay of autoimmunity and insulin 
resistance in type 1 diabetes. Discov Med. (2012) 13:115–22. 

93. Olefsky JM, Glass CK. Macrophages, inflammation, and insulin resistance. Annu 
Rev Physiol. (2010) 72:219–46. doi: 10.1146/annurev-physiol-021909-135846 

94. Lisco G, Giagulli VA, De Pergola G, Guastamacchia E, Jirillo E, Triggiani V. 
Hyperglycemia-induced immune system disorders in diabetes mellitusand the concept 
of hyperglycemic memory of innate immune cells: APerspective. EMIDDT. (2022) 
22:367–70. doi: 10.2174/1871530321666210924124336 

95. Talukdar S, Oh DY, Bandyopadhyay G, Li D, Xu J, McNelis J, et al. Neutrophils 
mediate insulin resistance in mice fed a high-fat diet through secreted elastase. Nat 
Med. (2012) 18:1407–12. doi: 10.1038/nm.2885 

96. Chavey C, Lazennec G, Lagarrigue S, Clapé C, Iankova I, Teyssier J, et al. CXC 
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