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Introduction: The COVID-19 pandemic posed global health challenges.

Understanding SARS-CoV-2’s evolutionary dynamics, especially fitness and

immune escape, is vital for public health. This study uses protein language

models to assess how genetic variations affect viral adaptability and immunity.

Methods: We applied the CoVFit model to predict Fitness and Immune Escape

Index (IEI), validated by a null model based on neutral evolution. We analyzed

2,504,278 SARS-CoV-2 spike sequences, including 160,892 variants, tracking

evolution from 2020 to May 2024, comparing real and random mutants’ Fitness

and IEI.

Results: Our analysis revealed an increase in Fitness (mean rising from 0.227 in

2020 to 0.930 in 2024) and IEI (mean increasing from 0.171 to 0.555) for North

American samples. Globally, the comparison of Fitness and IEI between real and

random mutants (generated by the null model) revealed statistically significant

differences (real mutant Fitness 0.3849 vs. random mutant 0.2046, p < 0.001, KS

test; real mutant IEI 0.2894 vs. random mutant 0.1895, p < 0.001, KS test),

indicating strong selective pressure; the JN.1 lineage dominated (94% of

sequences by April 2024), underscoring its evolutionary advantage.

Conclusions: CoVFit offers key insights into SARS-CoV-2 evolution, aiding

vaccine design. Persistent viral adaptation despite interventions highlights the

need for surveillance and adaptive strategies using tools like CoVFit

for preparedness.
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1 Introduction

The COVID-19 pandemic, caused by SARS-CoV-2, has posed an

unprecedented global challenge (1). SARS-CoV-2, a positive-sense

single-stranded RNA virus, exhibits a high mutation rate that has led

to the emergence of numerous variants, significantly enhancing its

transmissibility and immune escape capabilities (2–4). Although

vaccination has reduced severe disease rates, the virus’s ongoing

evolution continues to challenge vaccine strategies (5, 6). The SARS-

CoV-2 spike (S) protein is a critical determinant of its ability to infect

human hosts, facilitating viral entry by binding to ACE2 receptors (7),

and serves as the primary target for most vaccines due to its pivotal role

in mediating viral entry and eliciting neutralizing antibody responses

(8–10). The evolutionary trajectory of the virus was profoundly shaped

by factors such as immune evasion, environmental pressures, and

genetic alterations (2–5). Consequently, tracking the fitness and

immune escape trends of the S protein is essential for developing

novel vaccines and therapeutic strategies. However, traditional

analytical approaches struggled to comprehensively capture its long-

term dynamics, necessitating advanced computational tools to

elucidate the patterns of viral evolution.

Protein language models (PLMs) offer a novel perspective for

studying viral evolution by treating amino acid sequences as

analogous to sentences, leveraging large-scale sequence data to

capture the biochemical properties of proteins (11). The advent of

transformer architectures has marked a significant advancement in

predictive capabilities (12). For instance, Rao et al. pioneered the

application of BERT to protein prediction with the TAPE model

(13), Elnaggar et al. expanded its utility across diverse protein

families with ProtTrans (14), and Rives et al. enhanced

downstream task performance with ESM-1b, trained on the

UniProt database (15). Building on these advances, Lin et al.

developed ESM-2, a model with 1.5 billion parameters capable of

directly inferring protein structures (16), while Ito et al. fine-tuned

ESM-2 using genotype-fitness data and high-throughput deep

mutational scanning (DMS) experimental data (17, 18) to create

CoVFit, mapping the fitness landscape of SARS-CoV-2 (19). DMS,

integrating deep sequencing with systematic mutation analysis,

provides robust support for assessing the immune escape

potential of the S protein (20, 21).

Recently, PLMs have gained prominence in SARS-CoV-2

evolutionary research. Ma et al. devised a deep learning model

combining regularity and stochasticity to predict viral evolution,

validating several highly transmissible variants, though its 5,000-

epoch training may risk overfitting (22). Lamb et al. trained a model

on 65 million protein sequences using ESM-2 to uncover

evolutionary potential, yet it lacks domain-specific fine-tuning (23).

King et al. developed the VPREmodel to forecast future variants with

limited data, but its reliance on 20,000 synthetic sequences may

introduce artefactual features (24). Elkin et al. proposed the DNMS

approach to predict novel S protein mutations, limited to single

amino acid substitutions (25). Zvyagin et al. employed the GenSLM

model to simulate viral dynamics, constrained by a smaller training

dataset (26). While these studies demonstrate the potential of PLMs,
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they predominantly focus on specific variants or short-term trends

and often rely on statistical models that overlook mutation

interactions (27–29), failing to provide a global analysis of S

protein dynamics throughout the pandemic.

Prior studies, such as Islam et al. (30) on XBB.1.5 immune

escape and Hasan et al. (31) on vaccine efficacy and meteorological

factors, have explored SARS-CoV-2 evolution. However, these

efforts primarily focused on specific variants or short-term

regional trends and did not address the long-term global

dynamics of the S protein from 2020 to 2024. This study utilizes

the CoVFit model, leveraging S protein sequences collected between

January 1, 2024, and May 15, 2024, to retrospectively assess the

fitness and immune escape trends of the S protein from 2020 to

2024. It aims to clarify how mutations have shaped viral

characteristics across time and regions. This systematic analysis

addresses the shortcomings of previous research, offering new

scientific insights for predicting future variants and optimizing

public health strategies.
2 Materials and methods

The pipeline of this study is shown in Figure 1, with data

derived from global SARS-CoV-2 S protein sequences collected

from January 2020 to May 2024.
2.1 Data collection

A total of 2,504,278 SARS-CoV-2 S protein sequences, collected

between January 1, 2020 and May 15, 2024, were downloaded from

NCBI SARS-CoV-2 Data Hub. The sequences were divided into 18

segments of three-month intervals to analyze the evolutionary

trajectory of SARS-CoV-2 fitness and immune evasion (https://

www.ncbi.nlm.nih.gov/labs/virus/vssi/#/virus?SeqType_

s=Nucleotide&VirusLineage_ss=taxid:2697049). Sequences

containing more than five unidentified characters were excluded

from the analysis.
2.2 Variant sequence identification and
mutation count

In the epidemiology of SARS-CoV-2, the terms “mutation,”

“variant,” and “strain” are often used interchangeably, but they have

distinct scientific meanings. A protein mutation refers to an actual

change in the protein sequence, such as D614G, which is the

substitution of aspartic acid for glycine at position 614 of the

spike protein (32). Genomes differing in sequence are typically

referred to as variants. This term can be vague since two variants

might differ by one or many mutations. A variant is considered a

strain when it exhibits a significantly different phenotype, such as

differences in antigenicity, transmissibility, or virulence (33, 34). In

this study, we define “variants” as spike protein S amino acid
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sequences that differ by one or more mutations. Some of these

variants may not show differences in antigenicity, transmissibility,

or virulence, but any two variants referred to in this text do differ in

their amino acid sequences, commonly termed variant sequences or

simply as variants.

The downloaded S protein data over various time periods

contained many duplicate sequences. Duplicate sequences within

each of the 18 time periods were removed, resulting in unique

amino acid sequences, henceforth referred to as “variants”, within

each time period. A total of 160,892 variants were obtained

(Supplementary Table S1). However, some samples might be

duplicated across different time periods.

The positions and frequencies of mutations varied for each

variant. To study the changes in mutation frequency over time, we

calculated the frequency of mutations in each variant sequence. A

cubic spline interpolation was used to connect the mean values of

mutation counts for each time segment. The code developed to

remove duplications, and count occurrence and frequency of

mutations is available at https://github.com/pengsihua2023/SARS-

CoV-2-Fitness-IEI.
2.3 Phylogenetic and molecular clock
analysis

We collected global S protein sequences sampled between 2020

and 2024. A random subset of 5,000 sequences with detailed

sampling dates was selected. Sequences were aligned against the

Wuhan-Hu-1 reference genome using MAFFT V 7.520 (35).

Phylogenetic trees were inferred using IQ-TREE V 2.2.2.6 (36)

with the LG+I+G substitution model, applying the -czb flag to
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collapse short branches into polytomies. The patristic distances

between all tips and the root of the tree were calculated using the

ape package in R (37). We plotted the patristic distances against

sampling dates to estimate the molecular clock rate.
2.4 Fitness values analysis

Ito et al. first established the ESM-2 Coronaviridae model (19) by

pre-training (i.e., domain adaptation) on S protein sequences

obtained from 1,506 types of coronaviruses. Then, they fine-tuned

the model on genotype–fitness (Re) data and DMS data to evaluate

antibody neutralization escape capabilities. Consequently, for a given

S protein sequence, CoVFit can predict the Fitness value in a specific

country and its ability to escape from each monoclonal antibody

(mAb). Their dataset included data from 17 countries: Australia,

Belgium, Brazil, Canada, Denmark, France, Germany, India, Italy,

Japan, the Netherlands, South Korea, Spain, Sweden, Switzerland, the

United Kingdom, and the United States. CoVFit model (https://

github.com/TheSatoLab/CoVFit) was finetuned from ESM-2 protein

model using two data sets: i) genotype–fitness data obtained from

virus genome surveillance and ii) mutation effect data on evasion

ability from humoral immunity, determined by high-throughput

deep mutational scanning (DMS) experiments. Then, using a

multinomial logistic model fitted to genome surveillance data

from the Global Initiative on Sharing All Influenza Data

(GISAID) up to November 2, 2023, the Effective Reproduction

Number (Re) of each genotype in each country was estimated. Re is

an epidemiological parameter used to measure the transmission

potential of an infectious disease within a specific population

(38, 39). As a result, 21,751 genotype-fitness data points were
FIGURE 1

Pipeline for retrospective analysis of SARS-CoV-2 spike protein Fitness and Immune Escape (2020–2024) using CoVFit. This figure illustrates the
workflow for analyzing the Fitness and immune escape index (IEI) of SARS-CoV-2 spike (S) protein variants using the CoVFit model. The pipeline first
performs domain adaptation finetuning of the pretrained ESM-2 model using various coronavirus data, followed by a second finetuning step with
SARS-CoV-2 data, and finally predicts the Fitness and IEI of historical SARS-CoV-2 data. The components are as follows: (A) Protein Sequence Data
– Sequences from eukaryotes, bacteria, archaea, and viruses, used for pretraining ESM-2 (650M) model; (B) ESM-2 – A pretrained protein language
model for learning general protein representations; (C) S Protein Variants – SARS-CoV-2 spike protein sequences collected from January 2020 to
May 2024; (D) Fitness Prediction – Prediction of Fitness of S protein variants; (E) Protein Sequence Data (Coronavirus) – Sequences from different
coronavirus species, used for domain adaptation finetuning of ESM-2; (F) ESM-2 (Coronavirus Finetuned) – ESM-2 model finetuned on coronavirus
sequences for SARS-CoV-2-specific tasks; (G) CoVFit – A finetuned model supporting multiple tasks, including fitness and immune escape
prediction; and (H) Immune Escape Index Prediction – Immune escape capability based on relative binding affinity to 1,548 monoclonal
antibodies (mAbs).
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obtained, covering 12,914 genotypes across the 17 countries,

indicating that the fitness of S protein originally derived from

publicly available data set of, which (38, 39) Finally, the derived

fitness data were scaled to 0–1 for the convenience of model training

(38, 39).

We adopted the CoVFit protein model for this study to analyze

the temporal trends in Fitness and Immune Escape Indices (IEI)

and the geographical distribution of SARS-CoV-2 variants across

different continents. Model files were downloaded from Zenodo

(https://zenodo.org/records/10911205). We used Clustal Omega-

1.2.3 (40) to performmultiple sequence alignment of the amino acid

sequences and input the aligned S protein sequences into the

CoVFit model to predict the Fitness value of the S protein. The

average Fitness value for North America was derived as the average

of the United States and Canada. For Europe, the average was derived

from Germany, the United Kingdom, Switzerland, Sweden, Spain, the

Netherlands, Italy, France, Denmark, and Belgium. The average of

South Korea, Japan, and India represent was used for Asia. The Fitness

value of Australia was regarded as the average for Oceania, and the

Fitness value of Brazil was regarded as the average for South America.

Since the number of genotypes from Africa did not exceed 300,

the CoVFit model did not include data from African countries

during training. Consequently, there are no Fitness prediction

values for Africa. For the sake of completeness, the average

Fitness prediction values of the 17 countries were used as the

Fitness average for Africa. Therefore, when using CoVFit for

model predictions, the S protein sequence data from Africa was

input, and the average Fitness values of the 17 countries were used

as the Fitness average for Africa.

Fitness values were also calculated for recent prevalent variants

in North America. A total of 2,170 S protein amino acid sequences,

with 543 variants, collected between April 1, 2024, and May 15,

2024 were utilized for the analysis.
2.5 Immune escape index

The CoVFit model can predict the relative binding affinities of

different monoclonal antibodies (mAbs). By inputting a SARS-CoV-2 S

protein sequence, the model can predict the relative binding affinities

for 1,548 mAbs. We averaged these predicted affinity values and

denoted the average as the IEI, which describes the immune escape

capability of a variant. The higher the IEI, the greater the immune

escape capability of the variant. IEI was calculated for the Global and

North American dataset described in the prior section.
2.6 Constructing a null model for
benchmark comparison of fitness and
immune escape

To verify the statistical robustness of the Fitness and immune

escape index (IEI) predictions for SARS-CoV-2 S protein sequences,

we developed a null model that generates random sequences as a

neutral evolution baseline. By comparing random data with real data,
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significantly deviate from neutral evolution expectations, thereby

demonstrating the reliability of the computational outcomes. The

null model is designed based on seven datasets, covering six

continents (Africa, Asia, Europe, North America, Oceania, and

South America) and an overall dataset (combining all six continents).

2.6.1 Generation of random sequences under
neutral evolution

The null model simulates the evolution of the S protein under

neutral evolutionary conditions (unaffected by selection pressures

from the host immune system, vaccination, or environmental

factors), reflecting the accumulation of random mutations. This

provides a statistical baseline to validate the Fitness/IEI of real

sequences and the random mutatant sequence. Using the Wuhan-

Hu-1 sequence (GenBank: MN908947.3, 1,273 amino acids) as a

template, and based on the amino acid substitution rate from

Figure 2B (25.9223 substitutions/year), neutral drift over 4.375

years (January 2020 to May 2024) is simulated through uniformly

random mutation at each position.

2.6.2 Calibration of evolutionary parameters
To reflect real evolutionary dynamics, key parameters are

determined through the following steps:

Time Span: The simulation duration is set to 4.375 years,

corresponding to the time window of this study;

Mutation Rate Calculation: Based on observed data, the S

protein accumulates an average of 25.9223 amino acid mutations

over 4.375 years, from which the per-site annual mutation rate is

calculated:

m =
Nmut

L
=
25:9223
1273

= 0:02036  Mutation=site=year

Where Nmut is the total number of mutations per year, and L is

the sequence length.

Through literature review, we found the proportion of neutral

mutations in the S protein: approximately 10-30% overall, <10% in

the RBD, and 20-40% in the non-RBD regions (2, 20, 27, 41, 42).

Neutral Proportion: Set 20% of mutations as driven by neutral

evolution, adjusting the effective mutation rate to mnertral =m×0.2;
Branch Length: The theoretical branch length is calculated as

mnertral � T , resulting in 0.0178.

2.6.3 Evolutionary model configuration
Substitution Model: WAG amino acid substitution matrix

(Whelan-And-Goldman model);

Phylogenetic Tree: Construct a parsimonious evolutionary tree;

Neutral Constraint: Set dN/dS = 1, retaining only

neutral mutations.
2.6.4 Variant generation
PerformN independent evolutionary simulations (e.g., 2,604 times,

corresponding to a typical sampling scale in South America), with each

simulation generating variants through the following steps:
frontiersin.org

https://zenodo.org/records/10911205
https://doi.org/10.3389/fimmu.2025.1576414
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Peng et al. 10.3389/fimmu.2025.1576414

Fron
- Use the Evolver module in Pyvolve (43) to evolve sequences

along the specified phylogenetic tree;

- Randomly introduce mutations conforming to neutral

constraints via a Poisson process;

- Record the final mutated sequences and save them in

FASTA format.
The code for generating random mutation sequences can be

found at:

https://github.com/pengsihua2023/SARS-CoV-2-Fitness-IEI/

tree/main/code

2.6.5 Kolmogorov-Smirnov test for assessing
deviation of real variants from neutral evolution

We employed the CoVFit model to predict Fitness and Immune

Escape Index (IEI) values for randomly generated variants,

establishing an expected distribution under neutral evolution.

Subsequently, we applied the Kolmogorov-Smirnov (KS) test (p <

0.05) to compare the distributions of real SARS-CoV-2 spike

protein variants with those of the random variants, evaluating

whether the observed evolutionary patterns significantly deviate

from neutral expectations.
2.7 Outlier metadata verification and
sensitivity analysis

To verify the metadata of two extreme outliers in North America

(WZD59850.1 and WIJ15993.1), we examined their collection dates

through the NCBI SARS-CoV-2 Data Hub. WZD59850.1 (reported
tiers in Immunology 05
date 2020-01-20, 66 mutations) andWIJ15993.1 (reported date 2020-

02-02, 42 mutations) were inconsistent with the typical mutation

counts of the same period (usually <10 (5)), suggesting potential date

errors. To assess their impact, we removed these two samples

(accounting for 0.0014% of the 140,000 variants in North America)

and recalculated the molecular clock rate, as well as the mean Fitness

and IEI values for North America.
2.8 Prediction study on the fitness and
immune escape of the S protein in recent
prevalent variants in North America

A total of 2,170 S protein amino acid sequences, with 543

variants, were downloaded from the United States between April 1,

2024, and May 15, 2024. We then conducted a prediction study on

the fitness and immune escape capabilities of all the variants’ S

proteins. It should be noted that the downloaded U.S. samples

actually represent the sample size for all of North America.
2.9 Global retrospective analysis of S
protein fitness and immune escape

We divided the time periods into three-month intervals and

downloaded the S protein data for six continents from January 1,

2020, to May 15, 2024, removing duplicate sequences from the same

time-period. We then conducted retrospective studies on the fitness

and immune escape capabilities of the S proteins for each period

and continent.
FIGURE 2

(A) Phylogenetic tree of a random subset of 5,000 global SARS-CoV-2 S protein sequences (sourced from NCBI SARS-CoV-2 Data Hub, 2020–
2024), constructed using IQ-TREE v2.2.2.6 with the LG+I+G substitution model and the -czb flag to collapse short branches. The scale bar
represents a genetic distance of 0.007 substitutions per site. (B) Scatter plot of patristic distances (calculated using the R package ape) versus
sampling dates for the same 5,000 S protein sequences, aligned against the Wuhan-Hu-1 reference genome using MAFFT v7.520. Each point
represents a sequence, with patristic distance measured as substitutions from the reference. The red dashed line shows the linear regression with a
molecular clock rate of 25.9223 substitutions/year (R² = 0.6789).
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3 Results

3.1 Prediction study in America: January 1,
2024, to May 15, 2024

The CoVFit model was used to predict the Fitness and IEI

values for the 543 variants in the United States, and the top 20

highest Fitness values were displayed in Table 1. The higher the

Fitness value, the greater the transmission potential of the variant.

The case with the highest Fitness value was from an Iowa case. The

difference in Fitness values among these 20 variants was small,

ranging from 0.921 to 0.925, and the differences in IEI were also

minor, ranging from 0.581 to 0.589. Of these 20 variants, 11 lineages

of SARS-CoV-2 are included. For example, lineages JN.1.16,

JN.1.11.1, and JN.1.7 each had three variants included in the top

20 (Table 1). indicating that different numbers of mutations can

lead to different Fitness values. This may be because different amino

acid mutations may significantly alter the protein conformation,

affecting the binding affinity of the S protein to the human

ACE2 receptor.

We then conducted a historical examination of the 11 lineages,

identifying all global S protein variants from 2020 to 2024
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(Supplementary Table S2). We found that the JN.1 lineage had

the highest number of variants (n=1,082) while JN.1.7.2 had the

fewest, with only 10 variants. In some lineages, there was an obvious

difference between the Fitness and IEI of different variants. For

example, the highest Fitness for JN.1.16 was 0.914, and the lowest

was 0.863 (Supplementary Table S2).

In summary, we identified the top 20 variants as notable

concerns in North America, with XAN64366.1 (JN.1.16 lineage)

being the most significant due to its high Fitness (0.925) and IEI

(0.585) values.
3.2 Retrospective study from January 1,
2020 to May 15, 2024

We analyzed the distribution of lineages and mutations within

the variants, and identified the dominant lineage, meanmutations per

variant, maximum and minimum of Fitness, and IEI for the variants,

as well as its percentage among all lineages during each specific time

period. Among the six continents, North America accounted for

95.46% of the cases and 89.66% of the variants. Therefore, we

primarily present the analysis results for North America here

(Table 2). The results of the other five continents are provided in

the supplementary material (Supplementary Tables S3–S7).

3.2.1 Unveiling the high evolutionary rate of the S
protein

The phylogenetic tree (Figure 2A) illustrates distinct clusters

and branching patterns, which are likely to correspond to different

geographic regions or temporal clusters. This comprehensive

phylogenetic analysis offers critical insights into the evolutionary

dynamics of SARS-CoV-2 spike protein, enhancing our

understanding of its proliferation and mutation over time.

Figure 2B shows that the molecular clock estimation reveals a

substitution rate of approximately 25.9223 substitutions per year,

indicating a high evolutionary rate for the S protein sequences

sampled globally between 2020 and 2024. The scatter plot

(Figure 2B) displays a general trend where patristic distances

increase over time, fitting well with the estimated molecular clock

rate (R² = 0.6789), suggesting a consistent rate of evolution across

the observed period.

3.2.2 Evolution of mutations in S protein variant
sequences

We found that the distribution of the number of mutations per

variant during the entire SARS-CoV-2 pandemic could be divided

into three distinct stages (Figure 3A, Supplementary Figures S1–S5).

In North America, the first stage, spanning approximately from

January 2020 to December 2021, marks a phase of rapid viral

mutation. We observed a large number of outliers, representing

sequences with extremely high numbers of mutations. During the

middle stage of the pandemic, from January 2022 to March 2023,

the total number of mutations continued to increase, however the

number of outliers above the median decreased, indicating a

slowdown in the rate of rapid mutations. This stage also recorded
TABLE 1 Top 20 predicted Fitness values and IEI for SARS-CoV-2
variants in the United States.

Variant
Accession #

Lineage Collection date Fitness IEI

XAN64366.1 JN.1.16 2024-04-29 0.925 0.585

XBA97060.1 JN.1.11.1 2024-05-09 0.924 0.584

XAW33708.1 JN.1.16 2024-05-06 0.924 0.584

XAU78949.1 JN.1.11.1 2024-04-20 0.924 0.584

XAU78842.1 JN.1.7 2024-04-17 0.923 0.584

XAJ36120.1 JN.1.11.1 2024-04-21 0.923 0.584

XAW33862.1 JN.1.4.2 2024-04-29 0.923 0.586

XAJ04662.1 JN.1.9 2024-04-10 0.923 0.585

XAN64414.1 JN.1 2024-04-25 0.922 0.589

XAW33674.1 BA.2.86.1 2024-05-04 0.922 0.589

XAO61989.1 JN.1 2024-04-02 0.922 0.581

XAJ04710.1 XDD 2024-04-14 0.922 0.588

XAU78878.1 JN.1.9 2024-04-24 0.921 0.588

WZH70794.1 JN.1.16 2024-04-08 0.921 0.581

XBA97012.1 JN.1.7.2 2024-04-30 0.921 0.588

XAW19132.1 JN.1.8.1 2024-04-17 0.921 0.588

XAJ29041.1 JN.1.7 2024-04-16 0.921 0.588

XAU78770.1 JN.1.7 2024-04-05 0.921 0.588

XAU78782.1 JN.1.4 2024-04-03 0.921 0.588

XAU78794.1 JN.1.4 2024-04-03 0.921 0.588
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a substantial number of mutations below the median, suggesting

that cases with fewer mutations from the earlier stage persisted. In

the third stage, from April 2023 onward, the number of outliers,

both those with fewer and those with a large number of mutations,

significantly decreased, signaling a potential winding down of the

pandemic (Figure 3A). Similar patterns were observed for the other

five continents (Supplementary Figures S1–S5).

3.2.3 Evolution of global SARS-CoV-2 lineage
numbers over various time periods

Among the global dataset, 2,442 lineages were represented. The

lineage counts in North America were consistently higher than

those in other continents throughout the observed period

(Figure 3B). This pronounced difference is likely attributable to

the larger number of samples sequenced in North America, leading

to the detection of more lineages.

Specifically, the lineage counts in North America exhibit three

distinct peaks: The first peak occurred at the end of 2021, reaching a

notable high; the second peak was observed at the end of 2022, again

showing significant growth; and the third peak emerged around

September 2023, indicating a third substantial increase.

In contrast, the lineage counts in other continents remained

relatively stable over time. For instance: Europe and Asia showed

relatively stable lineage counts throughout the period, with only

minor fluctuations and no significant peaks comparable to those in

North America; and Africa, Oceania, and South America exhibit
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relatively low lineage counts with minimal fluctuations, which might

be due to fewer sequencing samples from these regions (Figure 3B).

Overall, the lineage counts in North America are significantly

higher than those in other continents, with three notable peaks,

reflecting differences in viral surveillance and sequencing sample

sizes across regions.

3.2.4 Comparison with Null model: Trends in
fitness and immune escape

To contextualize the evolutionary trends of SARS-CoV-2 spike

(S) protein sequences, we compared the Fitness and immune escape

index (IEI) values of real sequences with those of random sequences

generated based on a null model (see Section 2.6 for the

methodology assumed for null model generation). The null model

simulates neutral evolution by generating sequences with random

mutations, providing a baseline to assess whether observed trends

are driven by selective pressure or could arise randomly.

Globally, the distribution of Fitness values for real sequences

(mean = 0.3849) differed significantly from that of random

sequences (mean = 0.2046) (p < 0.001, KS test) (Supplementary

Table S8). Similarly, the distribution of IEI values for real sequences

(mean = 0.2894) showed a significant difference compared to

random sequences (mean = 0.1895) (p < 0.001, KS test)

(Supplementary Table S9). These results indicate that the Fitness

and IEI values observed globally are substantially higher than

expected under neutral evolution, suggesting that these traits may
TABLE 2 Profiles of SARS-Cov-2 variants in North America: lineage, mutation, fitness, and IEIs.

Time Period Case/ Variant
sequence

Dominant
Lineage

Dominant
Percentage

Unique
Lineages

MMut MaxFit MFit MaxIEI MIEI

Jan-Mar, 2020 10,055/400 B.1 37.5% 73 2 0.963 0.227 0.591 0.171

Apr-Jun, 2020 19,662/968 B.1 35.85% 154 2 0.325 0.211 0.373 0.164

Jul-Sep, 2020 18,434/1,159 B.1 16.65% 169 2 0.329 0.212 0.513 0.164

Oct-Dec, 2020 45,478/3,264 B.1.2 30.91% 213 3 0.531 0.229 0.384 0.196

Jan-Mar, 2021 140,838/10,916 B.1.2 25.53% 283 6 0.534 0.286 0.466 0.258

Apr-Jun, 2021 177,356/11,233 B.1.1.7 39.6% 220 14 0.534 0.286 0.442 0.297

Jul-Sep, 2021 382,456/21,392 AY.44 11.53% 203 20 0.645 0.363 0.372 0.254

Oct-Dec, 2021 461,734/25,974 AY.103 17.9% 210 28 0.694 0.421 0.387 0.275

Jan-Mar, 2022 247,674/9,632 BA.1.1 39.11% 185 49 0.773 0.527 0.436 0.313

Apr-Jun, 2022 261,252/8,397 BA.2.12.1 31.19% 240 39 0.795 0.642 0.451 0.367

Jul-Sep, 2022 253,298/11,225 BA.5.2.1 12.71% 390 40 0.806 0.715 0.459 0.398

Oct-Dec, 2022 147,966/11,044 BQ.1.1 8.82% 626 42 0.837 0.755 0.476 0.424

Jan-Mar, 2023 90,796/8,895 XBB.1.5 23.66% 706 53 0.891 0.780 0.518 0.441

Apr-Jun, 2023 22,424/3,707 XBB.1.5 27.65% 562 50 0.901 0.808 0.532 0.459

Jul-Sep, 2023 38,369/5,797 FL.1.5.1 5.49% 629 64 0.911 0.857 0.532 0.489

Oct-Dec, 2023 44,399/6,486 HV.1 14.75% 534 63 0.924 0.895 0.551 0.522

Jan-Mar, 2024 26,275/3,216 JN.1 27.92% 247 72 0.913 0.901 0.545 0.536

Apr-May, 2024 2,170/543 JN.1 15.65 46 68 0.940 0.930 0.563 0.555
fro
MMut, Mean Mutation; MaxFit, Maximum Fitness; MFit, Mean Fitness; MaxIEI, Maximum Immune Escape Index; MIEI, Mean Immune Escape Index.
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be driven by selective pressures, such as immune responses

triggered by vaccination, natural infection, or environmental

factors. Outlier analysis further supports this conclusion: real

sequences exhibited extreme Fitness and IEI values (e.g., Fitness >

0.9, IEI > 0.6), which markedly exceed the typical range of random

sequences. For instance, the highest Fitness value recorded in North

America from April to May 2024 (0.940, Table 2) and the maximum

IEI value (0.563) were far above the random sequence averages

(0.2046 and 0.1895), reflecting selection for enhanced

transmissibility and immune escape.

Across continents, trends in North America and Europe, where

sequencing data are abundant, showed particularly pronounced

differences between the Fitness and IEI distributions of real

sequences and their corresponding random sequence distributions
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(p < 0.001, KS test). For example, North American Fitness increased

from 0.227 in early 2020 to 0.930 in 2024 (Table 2), accompanied by

a substantial sample size advantage (accounting for 95.46% of

cases), indicating a strong evolutionary trend. Europe exhibited

similarly significant differences, likely reflecting the impact of high

vaccination rates and population density in accelerating variant

evolution. In contrast, Africa and Oceania, with smaller sample

sizes, showed smaller but still significant differences between real

and random sequence distributions (p < 0.001, KS test), suggesting

weaker yet still detectable selective pressures in these regions. South

America and Asia displayed intermediate trends, correlated with

regional public health measures and data coverage.

In summary, comparison with the null model demonstrates that

the increases in Fitness and IEI of SARS-CoV-2 S protein sequences
FIGURE 3

(A) Temporal analysis of mutational frequency per variant sequence in North America from 2020 to 2024. The red points in the plot represent
outliers calculated based on quartiles. The median values are marked to the right of the green boxes, and the blue smoothed line represents the
connected mean values across each time period, obtained through cubic spline interpolation; (B) Temporal trends in virus lineage counts across six
continents from 2020 to 2024. This chart depicts the trends in the number of virus lineages observed on each of six continents over a five-year
period, highlighting considerable fluctuations and a pronounced peak observed in the North America region. The variations and peak may suggest
differences in viral evolution or the effectiveness of regional response strategies.
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are the result of selective evolution rather than random effects from

neutral mutations. The distribution of real sequences significantly

deviates from the null model expectations, particularly in data-rich

regions such as globally and North America, indicating that

selective pressures (e.g., immune pressure and environmental

factors) have shaped the virus’s evolutionary trajectory. This also

underscores the statistical robustness of the fitness and immune

escape predictions presented in this study.

3.2.5 Temporal fitness evolution of SARS-CoV-2
S protein variants

Temporal Fitness over the four-and-a-half-year period from

January 2020 to May 2024 can be roughly divided into three stages:

The First stage (Jan 2020 - Mar 2022), the second stage (Mar 2022 -

Mar 2023), and the third stage (Mar 2023 - May 2024) (Figure 4A).

We found an increasing trend in the Fitness values of S protein

variants over time. The virus with the lowest Fitness was from

China (ancestral type, QZA85478.1, collect date 2020-02-23), with a

fitness value of 0.234 (the lowest globally). Therefore, the Fitness

values of all samples were compared to the wild type from China. In

the early stage of the outbreak, the rate of change in Fitness (the

slope of the curve) was not high, and the Fitness values were not

high. In the middle stage, the rate of change in fitness sharply

increased, which correlates with enhancement of the virus’s

immune escape capability (Figure 5A). In the late stage, the

growth rates of Fitness values and immune escape levels both

slowed down, but their values had reached very high levels.

In the first stage, there were many outliers with Fitness values

higher than the maximum value of the boxplot, which is a

significant characteristic of the early outbreak of SARS-CoV-2.

The numerous outliers indicated that the virus evolved rapidly

during the early stage of the outbreak, with a large accumulation of

mutations. The more mutations there were, the higher the Fitness of

the S protein, resulting in many variants with Fitness values

significantly exceeding the mean Fitness during this

phase (Figure 4A).

In the second stage, there was a notable decrease in the number

of outliers exceeding the boxplot’s maximum value, while a

substantial proportion of outliers fell below the minimum value.

Throughout this stage, not only did these low-Fitness variants

continue to circulate, but high-Fitness variants also emerged more

frequently. The Fitness levels increased at the fastest rate during this

phase, as evidenced by the steep slope of the smoothed mean Fitness

curve (Figure 4A).

In the third stage, the prevalence of low-Fitness variants was

very rare, and there were also fewer variants with Fitness values

above the average, suggesting that this is a major characteristic of

the end of the pandemic. During this stage, although the Fitness

values were high, the slope of the smoothed Fitness curve decreased

significantly. At the same time, there were very few variants with

Fitness values above the mean, indicating that the rate of virus

evolution had slowed down (Figure 4A).

Similar characteristics were also observed in the results of the

other five continents (Figure 4B, Supplementary Figures S6–S10).
Frontiers in Immunology 09
Overall, the above results highlight the evolutionary trends in

the Fitness of S protein variants in all the six continents,

demonstrating an increase in Fitness over time.

3.2.6 Temporal evolution of immune escape
capacity in SARS-CoV-2 S protein variants

The smoothed mean IEI showed a general increasing trend over

time, indicating that the immune escape capability of S protein

variants has progressively improved (Figure 5A). Early time periods

exhibited lower IEI values with significant variability and numerous

outliers, suggesting diverse immune escape capabilities among early

variants. As time progressed, the IEI values increased, with the

variability and number of outliers decreasing, reflecting more

consistent and higher immune escape capabilities among

newer variants.

In the IEI curves, the trajectories for all six continents generally

exhibited an upward trend, yet each showed one or more periods of

decline or stagnation over shorter intervals. For instance, the IEI for

North America reached a local trough in 2021 (Figure 5A).

Figure 5B highlights the evolutionary trends in the immune escape

capabilities of S protein variants across the six continents, showing an

increase in IEI over time with reduced variability among more recent

variants. However, in 2021, the IEI for the other five continents

also exhibited short-term declines, similar to the results observed in

North America (Figure 5B, Supplementary Figures S11–S15).

3.2.7 Sensitivity analysis of outlier impact
For the two outliers in North America (WZD59850.1 and

WIJ15993.1, see Figures 4A, 5A), metadata verification indicated

that their collection dates in early 2020 were inconsistent with their

high mutation counts (66 and 42), possibly due to recording errors.

After their removal, the molecular clock rate remained at 25.9223

substitutions per year (change <0.0001%), and the mean Fitness and

IEI values in North America showed no significant changes (both

<0.001%). Thus, the impact of these two outliers was significantly

diluted and did not alter the main conclusions.
4 Discussion

This retrospective study elucidates the dynamic evolution of the

SARS-CoV-2 spike protein from January 2020 toMay 2024, revealing

significant shifts in viral adaptability and immune escape capabilities.

Utilizing advanced protein language models, our research emphasizes

the role of genetic mutations in shaping the trajectory of the COVID-

19 pandemic, revealing intricate mechanisms by which the virus

adapts to the human immune system.

In this study, we constructed a null model based on data from

six continents and the overall dataset, providing a baseline for

evaluating the fitness and immune escape trends of SARS-CoV-2 S

protein variants. Significant deviations of the adaptability and

immune escape index (IEI) of real sequences from the

expectations of the null model (see Section 3.3) suggest that

adaptive evolution plays a critical role in enhancing viral
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transmissibility and immune escape capabilities. We incorporated

an amino acid substitution rate (25.9223 substitutions per year) into

the null model design and employed a uniform random mutation

generation approach, further confirming that the observed

evolutionary trends are not merely a simple product of neutral

drift. The sequence variation model proposed by Lee et al., based on

the frequency distribution of actual variants, could be integrated in

the future to optimize the null model, better capturing mutation

hotspots and variant competition effects, thus deepening the

understanding of viral evolution mechanisms (44).

Geographic and temporal variations indicate that the virus’s

adaptability and immune escape indices vary with environmental

conditions and the genetic diversity of host populations. These

variations might reflect different evolutionary pressures, such as
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those exerted by high population densities accelerating virus

mutation and transmission, while extensive public health

interventions could limit the spread of these variants (45, 46).

Compared to the original samples discovered inWuhan, the top

20 SARS-CoV-2 variants in North America have shown higher

adaptability and immune evasion capabilities, suggesting that the

virus has reached a high level of adaptation in human hosts.

However, the pace of the virus’s evolution has slowed, likely

because it has found a relatively stable state of adaptation within

the current biological and social environments. Nevertheless,

whether it will gradually evolve into a seasonal virus, much like

seasonal influenza requires ongoing observation of the virus’s long-

term behavioral patterns and its impact on public health. Thus,

claiming that the virus will evolve into a seasonal flu remains
FIGURE 4

Temporal analysis of Fitness levels for S protein variants. (A) Fitness trends in North America: The red points in the plot represent outliers calculated
based on quartiles. The median values are marked to the right of the green boxes, and the blue smoothed line represents the connected mean
values across each time period, obtained through cubic spline interpolation. The n value marked in black in the figure indicates the sample size of
variants in a certain time period; (B) Longitudinal comparison of fitness trends across six continents: This graph displays the smoothed mean Fitness
values over time, highlighting significant regional variations and trends in the evolutionary adaptation of S protein variants. Each line represents a
different continent, illustrating comparative rises in fitness levels, which may suggest differences in variant adaptability and potential immune
escape efficiency.
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premature and requires further scientific evidence to support such

a prediction.

We observed that the IEI for North America reached a local

trough in 2021. This could be attributed to several factors. Firstly,

starting in 2021, various public health interventions were

implemented by countries and health organizations, such as

lockdowns and travel restrictions (47, 48). These measures likely

curtailed the spread of the virus, particularly variants with high

immune escape capabilities (49) to accumulate new mutations to

evade immune. Secondly, with the widespread rollout of vaccines,
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variants with higher immune escape capabilities may have been

effectively suppressed for a period of time, resulting in a temporary

decrease in the overall IEI (50). However, despite the significant

increase in global vaccination rates over time, the IEI of the virus

has not shown a sustained downward or stagnant trend. This

indicates that the continuous accumulation of mutations in the S

protein has enhanced the virus’s adaptability, leading to a persistent

rise in immune escape capabilities. The rapid evolution of the virus

means that newly developed vaccines quickly become less effective,

thereby contributing to the ongoing increase in the IEI (21).
FIGURE 5

Temporal analysis of IEI for S protein variants. (A) IEI trends in North America: This boxplot graphically represents the distribution and temporal
progression of the IEI for S protein variants in North America over a five-year period. The blue line traces the smoothed mean value of the IEI,
illustrating an overall trend of increasing immune escape capabilities over time. The graph highlights the variability of the index, with some periods
showing a high density of outlier values, suggesting episodes of significant evolutionary changes in the virus’s immune escape mechanisms. Each
plotted point represents an individual variant’s measured IEI, providing a comprehensive overview of the changing landscape of viral resistance
against immune responses over the specified timeframe; (B) Comparative analysis of IEI across six continents: This graph displays the smoothed
mean values of the IEI for S protein variants across five continents, charting the trends from 2020 to 2024. Each colored line represents the
trajectory of immune escape capabilities in South America, Oceania, North America, Europe, Asia, and Africa, indicating how these capabilities have
evolved over the years. The chart highlights regional differences in the evolution of the virus’s immune escape mechanisms, with some continents
showing more pronounced rises in immune escape indices than others. This visualization aids in understanding the geographical variation in viral
adaptation and the potential implications for global public health strategies.
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Additionally, our findings during the study period (from Apr 1,

2024 to May 15, 2024) indicated a higher adaptability of spike

protein variants in North America as of early 2024, suggesting that

the virus in this region may be evolving towards a more stable phase

of adaptability. This stabilization might signal the virus

transitioning towards an endemic phase, potentially manifesting a

periodic outbreak pattern similar to seasonal influenza (46, 51, 52).

Although this study is primarily based on North American data,

we believe its conclusions have global applicability. The high

sequencing coverage in North America makes it a robust

foundation for observing the evolutionary dynamics of SARS-

CoV-2, such as the increased Fitness of the JN.1 lineage. The

World Health Organization (WHO, 2024) reported that, as of

April 2024, more than 94% of global SARS-CoV-2 sequences

were derived from JN.1 (see https://www.who.int/news/item/26-

04-2024-statement-on-the-antigen-composition-of-covid-19-

vaccines), and this trend was further confirmed in December 2024,

when all circulating variants were descendants of JN.1 (see https://

www.who.int/news/item/23-12-2024-statement-on-the-antigen-

composition-of-covid-19-vaccines). This global consistency,

alongside earlier observations of mutations like D614G and

N439K spreading across multiple regions (2), indicates that the

evolutionary trends observed in North America have been validated

in other regions. Furthermore, the universality of immune selection

pressure, such as the immune escape properties of JN.1, aligns with

findings that immune-driven evolution is a global phenomenon (2),

further supporting the global relevance of our conclusions (see

https://www.who.int/news/item/23-12-2024-statement-on-the-

antigen-composition-of-covid-19-vaccines). Notably, despite

increasing global vaccination coverage, the virus’s IEI continues

to rise (49). This highlights the high adaptability of SARS-CoV-2

under immune pressure and its capacity to accumulate new

mutations to evade immune responses (45). Therefore, ongoing

genetic surveillance and timely adjustments in vaccine strategies are

crucial to manage potential outbreaks.

This study employed a protein language model to conduct a

retrospective analysis of the spike protein of the SARS-CoV-2 virus.

Methodologically, CoVFit utilized historical data to develop a deep

learning model, on which basis our study predicted the protein

fitness and immune evasion capabilities of historical spike protein

(S protein) sequences. To address potential inquiries, we clarify that

the training data for the CoVFit model comprised 21,751 genotype-

fitness data points, covering 12,914 genotypes across 17 countries

(19). Due to the presence of different mutations or variant

combinations that can constitute distinct genotypes, many of the

genotypes contain repeated mutations. Thus, the number of

variants used in training the CoVFit model is estimated to be in

the hundreds to thousands, which can be precisely quantified using

CoVFit’s original dataset. Additionally, in our study, the total

number of global variants analyzed was 160,892, and the variant

amino acid sequences used did not include any uncertain ‘X’ entries.

Consequently, in this retrospective analysis, only about 2% of the

data overlaps with the model training data. To ensure the integrity
Frontiers in Immunology 12
of the sample, we did not exclude this very small proportion of

overlapping data. Therefore, although the retrospective study may

include a minimal portion of the data used during model training,

this does not affect the primary conclusions drawn from

our research.

There are two data points from North America that are

exceptionally high in terms of the number of mutations, Fitness

values, and IEI values. The Fitness/IEI/Mutation values are 0.944/

0.571/66 (WZD59850.1, JN.1) and 0.712/0.404/42 (WIJ15993.1,

BA.4.6), with collection dates of 2020-01–20 and 2020-02–02

respectively. Firstly, we speculate that the collection dates of these

two samples may have been recorded incorrectly. This is because

other samples with a Fitness value greater than 0.9 occurred after

April 2023, and the remaining samples with Fitness values above 0.7

appeared after October 2021.

In the case of WZD59850.1, if the recorded collection date is

correct, this would imply that the sample underwent an astounding

number of 66 mutations in an incredibly short period during the

early stages of the virus outbreak. The source of this sample may not

be Wuhan, China, and it could represent mutations accumulated

locally in the USA over 2–3 years, though further phylogenetic

analysis is needed to confirm this hypothesis.
5 Limitations of this study

Despite providing comprehensive analysis, this study has

several limitations that need to be considered.

First, the accuracy of our predictions largely depends on the

quality of the data used, and our dataset, comprising 2.5 million

sequences (approximately 160,892 variants), may still exhibit biases

due to North America’s overrepresentation. This could potentially

skew the understanding of global viral evolution patterns. For

instance, although we addressed two North American outliers

(WZD59850.1 and WIJ15993.1, see Sections 2.7 and 3.2.7) through

sensitivity analysis, confirming their negligible impact on the results

(molecular clock rate variation <0.001%, Fitness and IEI mean

variation <0.01%), the extremely limited sample sizes from non-

North American regions (e.g., Africa, Oceania, and South America),

such as fewer than 300 variants in Africa (see Section 2.4), may result

in insufficient detection of region-specific evolutionary trends.

Second, although the CoVFit protein language model represents

significant progress in predicting fitness and immune escape

capabilities, it is fundamentally limited by the quality and

diversity of its training data. The model was fine-tuned on 21,751

genotype-fitness data points from 17 countries (Section 2.4), but

changes in viral properties not adequately captured in these training

sequences—such as complex mutation interactions (epistasis) or

rare variant effects—might not be accurately reflected in the model’s

predictions. Additionally, while CoVFit was pre-trained on 1,506

types of coronaviruses, its ability to fully capture SARS-CoV-2-

specific evolutionary pressures may still be constrained by the

representativeness of the training dataset.
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Lastly, while we strive for precision in our analyses,

computational predictions of immune escape capabilities cannot

fully substitute for empirical validation in a laboratory setting.

Continuous verification of computational results with

experimental data is necessary to ensure the accuracy and

relevance of the predictions made.

These limitations underscore the importance of ongoing

research, continuous data collection, and model updates. In the

future, the predictive accuracy and utility of computational tools in

virology can be enhanced by increasing sequence data from non-

North American regions, improving the model’s ability to capture

mutation interactions, and integrating in vitro experimental

validation to complement computational predictions. Specifically,

future studies could employ pseudovirus neutralization assays to

experimentally validate the predicted fitness and immune escape

capabilities of SARS-CoV-2 variants, providing a more robust

assessment of the model’s predictions.
6 Conclusions

Our retrospective analysis of the SARS-CoV-2 spike protein

from January 2020 to May 2024, using the CoVFit protein language

model, has elucidated the virus’s remarkable evolutionary

dynamics. The study reveals a significant increase in Fitness

(from a mean of 0.227 in 2020 to 0.930 in 2024) and immune

escape index (IEI, from 0.171 to 0.555) for North America samples.

Globally, the comparison of Fitness and IEI between real

mutants and random mutants, which were generated by the null

model, demonstrated statistical significance (real mutant Fitness

0.3849 vs. randommutant 0.2046, p < 0.001, KS test; real mutant IEI

0.2894 vs. random mutant 0.1895, p < 0.001, KS test), indicating

strong selective pressure.

Globally, the JN.1 lineage dominated (94% of sequences by

April 2024), underscoring its evolutionary advantage.

CoVFit provides critical insights into SARS-CoV-2 evolution,

offering a robust tool for understanding how genetic variations

enhance viral fitness and immune resistance. These findings

underscore the virus’s ability to adapt despite widespread

interventions, emphasizing the urgent need for continuous

genetic surveillance and adaptive public health strategies. The

observed stabilization in adaptability, particularly in North

America, suggests a potential transition toward endemicity,

necessitating region-specific responses to optimize control efforts.

Advanced computational tools like CoVFit are indispensable for

predicting evolutionary trends, supporting vaccine development,

and enhancing global pandemic preparedness.
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