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Introduction: Infectious diseases continue to challenge human health with high

incidence andmortality rates worldwide. Notably, the adaptability of RNA viruses,

highlighted by outbreaks of SARS, MERS, and COVID-19, emphasizes the timely

need for effective therapeutics. Saint Louis encephalitis virus (SLEV) belonging to

the Flaviviridae family is an RNA virus that mostly affects the central nervous

system (CNS) of humans. Although supportive care treatments such as

antiemetics and painkillers are being used against SLEV infection, it still lacks

potential therapeutics for the effective treatment.

Methods: Reverse vaccinology and immunoinformatics approaches help in the

identification of suitable epitopes to design a vaccine construct that will activate

both B- and T-cell-mediated responses. Previous studies used only the envelope

protein E for the vaccine design, but we have used multiple protein targets to

enhance the vaccine efficacy. Thus, in the present study, we have designed a

multi-epitope subunit vaccine that specifically targets the membrane

glycoprotein M, envelope protein E, and anchored capsid protein anchC of SLEV.

Results: Our results indicated that the vaccine construct is structurally stable,

antigenic, non−allergic, non−toxic, and soluble. Additionally, the vaccine

construct was structurally refined and indicated significant binding affinity

toward the Toll-like receptor 4 (TLR-4) supported by molecular docking and

molecular dynamics simulations. Furthermore, it also indicated that it has the

potential to induce an immune response.
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Conclusion: In addition, it has been cloned in the pET-28a (+) vector-6xHis-TEV-

ORF9c expression vector for further experimental validation. We also

recommend to evaluate the designed vaccine’s therapeutic efficacy through in

vitro and in vivo studies in the near future.
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1 Introduction

Infectious diseases caused by pathogenic microorganisms

possess a significant challenge and health burden to humans with

widespread morbidity and mortality worldwide (1–3). A recent

report indicated that the frequency of SLEV varied from 80% of the

cases in patients <20 years of age to 95% in those >60 years of age,

and of the 47 confirmed human cases, 45 patients were hospitalized

and among them 9 died at a younger age (4). Despite the

advancements of several strategies to combat these pathogen-

induced diseases, they adapt to extreme environments and even

result in antimicrobial resistance (AMR) in the case of bacteria and

antigenic shifts and drifts in the case of viruses (5–8). Additionally,

urbanization (notably in low- to middle-income countries),

globalization (rapid dissemination via travel), and sudden climate

changes (high risk for outbreaks) also accelerated the wide spread of

these infectious diseases causing localized outbreaks, widespread

epidemics, and even global pandemics (9, 10). To note, the COVID-

19 pandemic due to the SARS-CoV-2 outbreak resulted in high

mortality and incidence rates and indicated the risk of these

infectious diseases to human health (11–13). Furthermore,

addressing these challenges requires multidisciplinary approaches

such as a one-health approach, public health interventions,

intensive medical research, systemic and bioinformatics

approaches, and global collaborations to mitigate their impact on

human health (14–16).

Saint Louis encephalitis virus (SLEV) belonging to the

Flaviviridae family is a mosquito-borne flavivirus that has a

single-stranded RNA in its genome (17, 18). SLEV is a zoonotic

disease that is mainly transmitted from the bite of infected Culex

mosquitoes, particularly Culex pipiens, Culex quinquefasciatus, and

Culex nigripalpus and its first large endemic outbreak was observed

in 1933 in the United States, and also observed in Central American

and South American regions (18–21). However, Culex mosquitoes

are not only restricted to the Americas; they have a global

distribution and are commonly found in tropical and temperate

regions worldwide, where they serve as vectors for multiple

arboviruses including SLEV (20, 22). Primarily, birds are the

reservoir hosts of SLEV and humans are the incidental and

disease-obtaining hosts (17). SLEV is closely related to other

flavivirus such as Japanese encephalitis (JEV) and West Nile virus

(WNV), which often show asymptomatic conditions characterized
02
by fatigue, headaches, nausea, vomiting, and body aches among the

infected individuals (23–25). The cases of fatality rate for

encephalitis caused by SLEV ranges from 5% to 15%, which

mostly infects adults and could be diagnosed by neutralizing

antibody testing and IgM ELISA kits (26–28). Unfortunately,

there is no specific treatment available for SLEV-infected patients

and potent prophylactic vaccines to combat SLEV infections;

however, supportive care such as antiemetics and painkillers are

being provided (26). Alongside, several therapeutic strategies are

being developed and studied for the better treatment of SLEV in

preclinical and clinical settings. Notably, two previous efforts were

made to produce an SLEV vaccine. Hossain et al. have also

employed the immunoinformatics approach to design a vaccine

against SLEV and showed that it has potential against the envelope

protein E SLEV, and Blaney Jr et al. have developed a live attenuated

virus vaccine by employing SLE/DEN4-436,437 clone 41 and SLE/

DEN4-654,655 clone 46 viruses (29, 30). To note, there is no vaccine

currently available for the effective treatment of SLEV (28).

Reverse vaccinology and immunoinformatics approaches help

in the identification of suitable epitopes to design a vaccine

construct that will activate both B- and T-cell-mediated response

using bioinformatics approaches (31). This approach has been

extended toward the development of vaccines for various

infectious diseases including SARS-CoV-2 and also extended to

the development of cancer vaccines (32). In the present study, we

employed reverse vaccinology and immunoinformatics approaches

to design a multi-epitope subunit vaccine that specifically targets

membrane glycoprotein M, envelope protein E, and anchored

capsid protein anchC of SLEV.
2 Materials and methods

2.1 Data retrieval

Initially, Saint Louis encephalitis virus was provided as the

query, and the FASTA sequences of the proteins, membrane

glycoprotein M (NCBI Reference Sequence: YP_009329948.1),

envelope protein E (NCBI Reference Sequence: YP_009329949.1),

and the anchored capsid protein anchC (NCBI Reference Sequence:

YP_009329944.1) of SLEV were retrieved from the NCBI-Protein

database (https://www.ncbi.nlm.nih.gov/) (32, 33). The three-
frontiersin.org
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dimensional structures of the HLA-A*02:01 (PDB ID: 1DUZ),

HLA-DRB1*01:01 (PDB ID: 1AQD), and Toll-like receptor 4

(TLR4) (PDB ID: 4G8A) were also retrieved from the Protein

Data Bank (34, 35).
2.2 CTL and HTL epitope identification and
selection

Since the cytotoxic T lymphocytes (CTL) (9-mer) and helper T

lymphocytes (HTL) (15-mer) are involved in the induction of

immune response in humans, the CTL and HTL epitopes were

predicted using the NetCTL 1.2 web server (https ://

services.healthtech.dtu.dk/services/NetCTL-1.2/) and NetMHCII

2.3 web server (https://services.healthtech.dtu.dk/services/

NetMHCII-2.3/), respectively (36, 37). For CTL epitopes, they

were identified against the 12 types of MHC-I with 0.75 as the

default threshold, and for the HTL epitopes, they were identified

against all the alleles of HLA-DR, HLA-DQ, and HLA-DP,

respectively. The robustness of the predictions was validated by

ANN 4.0 and MHC Flurry 2.0 for MHC I epitopes and validated by

Combinatorial library & Tepitope for MHC II epitopes in the IEBD

tool, respectively (https://www.iedb.org/) (38). Following this, all

the predicted epitopes were subjected to antigenicity (model set as

tumor), allergenicity, and toxicity (SVM-based method) analysis

using the VaxiJen v2.0 web server (https://www.ddg-pharmfac.net/

vaxijen/VaxiJen/VaxiJen.html) (39), AllerTOP v.2 web server

(https://www.ddg-pharmfac.net/allertop_test/) (40), and

ToxinPred web server (https://webs.iiitd.edu.in/raghava/

toxinpred/index.html) (41), respectively. Furthermore, the IFN-g
induction potential of HTL epitopes was also predicted with a

hybrid approach (motif+SVM model) and the IFN-g vs. non-IFN-g
model was used using the IFNepitope web server (https://

webs.iiitd.edu.in/raghava/ifnepitope/application.php) (42).

Alongside, the sequence conservation analysis of the predicted

epitopes of SLEV was analyzed using protein-BLAST (https://

blast.ncbi.nlm.nih.gov/Blast.cgi), toward Dengue virus 1

(taxid:11053), Zika virus (taxid:64320), Yellow fever virus

(taxid:11089), West Nile virus (taxid:11082), and Japanese

encephalitis virus (taxid:11072), which are closely related to the

Flavivirus family.
2.3 Docking of T-cell epitopes with HLA
alleles

The three-dimensional structures of the selected CTL and

HTL epitopes were modeled using the PEP-FOLD 3.5 web server

(https://bioserv.rpbs.univ-paris-diderot.fr/services/PEP-

FOLD3/) (43). Furthermore, the CTL and HTL epitopes were

docked against the HLA-A*02:01 and HLA-DRB1*01:01 alleles to

evaluate their binding potential and molecular interactions against

these more common alleles in the world population using the

HPEPDOCK 2.0 web server (http://huanglab.phys.hust.edu.cn/

hpepdock/) (44).
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2.4 Vaccine construct design

The selected CTL epitopes, HTL epitopes, linkers, and adjuvant

were used to design the multi-epitope vaccine construct. CTL

epitopes were linked with the AAY linker and HTL epitopes with

the CPGPG linker, whereas the adjuvant was connected with an

EAAAK linker. The TLR4 agonist, 50s ribosomal L7/L12 protein of

Mycobacterium tuberculosis, was used as an adjuvant in the vaccine

construct to elucidate the strong immune response (45, 46).
2.5 Analysis of physicochemical
characteristics, antigenicity, and
allergenicity

The physicochemical properties such as the molecular weight,

theoretical PI, amino acid composition and length, total number of

negatively charged and positively charged residues, instability index,

aliphatic index, and GRAVY of the designed multi-epitope vaccine

were predicted using the Expasy ProtParam web server (https://

web.expasy.org/protparam/) (47). In addition, the antigenicity,

allergenicity, and solubility of the designed multi-epitope vaccine

were predicted using the VaxiJen v2.0 web server (39), AllerTOP v.2

web server (40), and SOLpro web server (48), respectively.

Furthermore, the antigenic nature of the adjuvant was predicted

by evaluating the antigenicity of the designed multi-epitope vaccine

with and without the presence of adjuvant using the ANTIGENpro

web server (https://scratch.proteomics.ics.uci.edu/) (48).
2.6 Structural analysis and molecular
docking of the designed vaccine construct

Initially, the 2D structure of the designed multi-epitope vaccine

construct was predicted using the PDBsum database (http://

www.ebi.ac.uk/thornton-srv/databases/pdbsum/Generate.html)

(49). Then, the 3D structure of the designed multi-epitope vaccine

construct was predicted using the I-TASSER web server (https://

zhanggroup.org/I-TASSER/) (50) and further refined by the

GalaxyRefine web server (https://galaxy.seoklab.org/cgi-bin/

submit.cgi?type=REFINE) (51). In addition, the refined 3D model

of the designed multi-epitope vaccine construct was validated by

Ramachandran plot and Z-score plot by employing the PDBsum

database and ProSA-web web server (https://prosa.services.

came.sbg.ac.at/prosa.php), respectively (52). Then, the perfectly

refined model was docked against the Toll-like receptor-4 (TLR4)

protein using the ClusPro 2.0 web server (https://cluspro.bu.edu/

login.php?redir=/home.php) (53).
2.7 Molecular dynamics simulations

The molecular dynamics simulations of the TLR4–vaccine

complexes were performed using GROMACS 2020, and the

protein topology files were generated using the GROMOS 42a1
frontiersin.org
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force field (54, 55). The systems were solvated in an orthorhombic

box using the simple point charge water model, and the

neutralization was achieved by adding Na+ counter ions. Then,

the energy minimization was carried out by the steepest descent

algorithm with 50,000 steps, and the system was equilibrated under

the NVT ensemble for 500 ps at 300 K, followed by NPT

equilibration for 1,000 ps. Furthermore, the cutoff distance of 1.2

nm was applied for short-range non-bonded interactions, including

Coulombic and van der Waals potentials, and the system was

subjected to a 100-ns molecular dynamics simulation analysis.

Finally, the resulting trajectories were analyzed to assess the root

mean square deviation (RMSD), root mean square fluctuation

(RMSF), radius of gyration (Rg), and solvent-accessible surface

area (SASA) using standard GROMACS tools and visualized using

the ggplot2 package (56, 57).
2.8 Normal mode analysis

The protein deformation analysis of the TLR4-vaccine docked

complex was analyzed using the internal coordinates normal mode

analysis (NMA) by employing the iMODS web server (https://

imods.iqf.csic.es/) (58). The NMA analysis was conducted using the

CA atomic model to evaluate their B-factor/mobility, eigenvalue,

variance, covariance map, and elastic network for the TLR4-vaccine

docked complex (59).
2.9 Immune response simulation

The immune response induction is a crucial factor in

vaccination, and thus the immune response simulation of the

designed multi-epitope vaccine construct was evaluated using the

C-ImmSim web server (https://kraken.iac.rm.cnr.it/C-IMMSIM/

index.php) that employs the position-specific score matrix

(PSSM) and the Celada–Seiden model (60). The simulation

parameters were configured with a random seed of 12,345, a

simulation volume of 10 μL, and 1,095 simulation steps,

representing a time span of 1 year (365 days). The vaccine was

administered in three doses on days 0, 28, and 56, corresponding to

time steps 1, 84, and 168, respectively. Injection modes were

performed without LPS, and all other parameters were set to their

default values.
2.10 Codon optimization and in silico
cloning analysis

The vaccine construct’s protein sequence was reverse-

translated, and its cDNA sequence was optimized for codon usage

by employing the Java Codon Adaptation Tool (JCat) (https://

www.jcat.de/), and the E. coli K12 was employed as the expression

host (61). Then, the optimized sequence was inserted and cloned in

the pET-28a (+) vector-6xHis-TEV-ORF9c (5,554 bp) using the

SnapGene software (https://www.snapgene.com/). The complete
Frontiers in Immunology 04
schematic representation of the workflow of the study is shown

in Figure 1.
3 Results

3.1 Selected T−cell epitopes showed
potential interaction toward HLA alleles

The CTL epitopes (9-mer) and the HTL epitopes (15-mer) were

predicted against the 12 types of MHC-I molecules, and all alleles of

HLA-DR, HLA-DQ, and HLA-DP. The CTL epitopes predicted

against the membrane glycoprotein M, envelope protein E, and

anchored capsid protein anchC of SLEV along with their specific

biding MHC-I allele are provided in Supplementary Tables S1, S2,

and S3, respectively. Similarly, their predicted HTL epitopes of

proteins of SLEV along with their specific biding MHC-II allele are

provided in Supplementary Tables S4, S5, and S6, respectively. The

antigenicity, allergenicity, and toxicity properties of the predicted CTL

and HTL epitopes were evaluated, and IFN-g induction potential was

also predicted for the HTL epitopes (15mer). The epitopes were

screened with these criteria such as antigenic, non-allergen, non-toxic,

and IFN-g induction (only for 15mer), and the shortlisted CTL and

HTL epitopes are provided in Supplementary Tables S7 and S8,

respectively. The final CTL and HTL epitopes selected for the vaccine

construct along with their epitope names are provided in

Supplementary Table S9. Additionally, the sequence conservation

analysis was performed toward Dengue virus 1 (taxid:11053), Zika

virus (taxid:64320), Yellow fever virus (taxid:11089), West Nile virus

(taxid:11082), and Japanese encephalitis virus (taxid:11072), which

are closely related to the Flavivirus family, and the results are provided

as similarity percentage in Supplementary Table S9. Notably, the

West Nile virus and Japanese encephalitis virus shared a similarity

percentage of most predicted epitopes, and Dengue virus 1 and Zika

virus shared a similarity percentage with one CTL and one HTL

epitope, respectively. This similarity-conserved epitopes have the

potential to induce cross-reactive T-cell responses and broaden

protection toward other species such as West Nile virus and

Japanese encephalitis virus, indicating that the developed vaccine

construct was broad-spectrum.

Furthermore, the selected CTL and HTL epitopes were docked

against the HLA-A*02:01 and DRB1*01:01 alleles, which are the

most frequent alleles among the world population, and their

binding energies (kcal/mol) and docked pose are shown in

Table 1, Supplementary Figures S1 and S2. Totally, five CTL

epitopes were docked against HLA-A*02:01 and 17 HTL epitopes

were docked against HLA-DRB1*01:01 molecules. From the

docking analysis , we observed that the CTL epitope

(RVVFVIMLM) and the HTL epitope (TTQINYHWHKEGSSI)

showcased high binding affinities toward their respective allele

with binding energies of −240.708 and −234.422 kcal/mol,

respectively, and the CTL epitope (TISPQAPSF) and HTL epitope

(MKMEATELATVREYC) showcased comparatively less binding

affinities toward their respective allele with binding energies of

−210.309 and −182.066 kcal/mol, respectively. For CTL epitopes,
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the binding affinities range from −210.309 to −240.708 kcal/mol,

and for HTL epitopes, they range from −182.066 to −234.422 kcal/

mol. Moreover, all the CTL and HTL epitopes indicated their

potential binding affinities and thus they were selected in the

construction of a multi-epitope vaccine.
3.2 Designed multi-epitope vaccine
showed desired physiochemical properties

Generally, adjuvants are used in multi-epitope peptide vaccines to

induce strong immune responses when injected into humans. In our

study, we have used the C-terminal region of the large ribosomal

subunit protein bL12 of Mycobacterium tuberculosis as the adjuvant

(MAKLSTDELLDAFKEMTLLELSDFVKKFEETFEVTAAAPVAV

AAAGAAPAGAAVEAAEEQSEFDVILEAAGDKKIGVIKVVR

EIVSGLGLKEAKDLVDGAPKPLLEKVAKEAADEAKAKLE
Frontiers in Immunology 05
AAGATVTVK), which highly prevents the autoimmune reactions.

AAY linkers were used to link the CTL epitopes, GPGPG linkers were

used to link the HTL epitopes, and the EAAAK linker was used to link

the adjuvant in the vaccine construct. The total vaccine construct

contains 532 amino acids, comprising 5 CTL epitopes, 17 HTL

epitopes, 1 adjuvant, 4 CTL linkers, 16 HTL linkers, and 1 adjuvant

linker, as shown in Figure 2. Following this, the physiochemical

properties of the designed multi-epitope vaccine construct were

evaluated and are tabulated in Table 2. We observed that alanine (A)

is more frequent with 11.8% followed by Arg (R) with 2.6%, as shown

in Figure 3. The SOL-pro web server indicated the soluble nature of the

designed multi-epitope vaccine construct with a probability of 0.902,

and the instability index of 23.84 (less than 40) indicates the stability of

the vaccine. The antigenic score of the designed multi-epitope vaccine

construct was observed to be 0.787234 (without adjuvant) and

0.898972 (with adjuvant), indicating the increase in antigenic

response when adjuvant is added to the vaccine construct. The
FIGURE 1

Schematic representation of the workflow of the study.
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Grand Average of Hydropathy (GRAVY) is used to determine the

hydrophobic nature of the protein and is generally calculated by

summing up the hydropathy values of all the amino acids and

dividing it by the total number of amino acids of the protein. The

positive value indicates the hydrophobic nature and the negative value

indicates the hydrophilic nature of the given protein. In our study, the

vaccine construct showed a GRAVY score of −0.040 that indicates its

hydrophilic nature, as shown in in Table 2.
3.3 Structural modeling and refinement of
the multi-epitope vaccine

The 2D structure of the designed multi-epitope vaccine

construct consisting of 532 amino acids was predicted and

observed to have 8 sheets, 5 beta hairpins, 2 beta bulges, 19

strands, 6 helices, 181 beta turns, and 36 gamma turns, as shown

in Figure 4. Then, the 3D structure was modeled by the I-TASSER

web server, which resulted in five best models with C-scores of

−3.15, −3.58, −3.63, −3.79, and −3.68, respectively. Generally, the
TABLE 1 Binding energies of selected CTL and HTL epitopes against HLA molecules.

Epitope type Epitope HLA molecule Binding energy (kcal/mol)

CTL NIKYEVAIF HLA-A*02:01 −225.608

TISPQAPSF HLA-A*02:01 −210.309

RDRSISLTL HLA-A*02:01 −226.722

QRVVFVIML HLA-A*02:01 −213.502

RVVFVIMLM HLA-A*02:01 −240.708

HTL ALAIGWMLGSNNTQR HLA-DRB1*01:01 −216.101

DFGSIGGVFNSIGKA HLA-DRB1*01:01 −205.397

GASGATWIDLVLEGG HLA-DRB1*01:01 −194.994

KMEATELATVREYCY HLA-DRB1*01:01 −215.410

LFGGMSWITQGLLGA HLA-DRB1*01:01 −233.383

LGALLLWMGLQARDR HLA-DRB1*01:01 −227.230

LVTVNPFISTGGANN HLA-DRB1*01:01 −223.634

MKMEATELATVREYC HLA-DRB1*01:01 −182.066

MSWITQGLLGALLLW HLA-DRB1*01:01 −220.584

NLPWTSPATTDWRNR HLA-DRB1*01:01 −232.190

PQAPSFTANMGEYGT HLA-DRB1*01:01 −207.506

PTLDFKVMKMEATEL HLA-DRB1*01:01 −227.681

REYCYEATLDTLSTV HLA-DRB1*01:01 −206.449

SGINTEDYYVFTVKE HLA-DRB1*01:01 −240.228

TKQTVVALGSQEGAL HLA-DRB1*01:01 −201.193

TTQINYHWHKEGSSI HLA-DRB1*01:01 −234.422

TIDCEARSGINTEDY HLA-DRB1*01:01 −188.060
F
rontiers in Immunology
 06
TABLE 2 Physiochemical properties of the designed vaccine construct.

Parameter Value/range

Number of amino acids 532

Molecular formula C2440H3808N636O741S19

Molecular weight 54518.03 Da

Theoretical pI 4.80

Total number of positive charge
residues (Arg + Lys)

55

Total number of negative charge
residues (Asp + Glu)

39

Instability index 23.84

Aliphatic index 78.21

GRAVY −0.040

Estimated half life 30 h (mammalian reticulocytes, in vitro).
>20 h (yeast, in vivo).
>10 h (Escherichia coli, in vivo).
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high C-score represents the high confidence of the predicted model,

and thus model 1 with a c-score of −3.15 was selected for further

refinement acknowledging the crucial role of accurate 3D structural

prediction in understanding the vaccine’s potential efficacy and

stability. Likewise, the GalaxyRefine web server resulted in the best

five refined models, in which model 2 was chosen based on a

comprehensive evaluation of several structural parameters: a high

GDT-HA score of 0.8459, a low RMSD of 0.707, a favorable

MolProbity score of 3.467, a clash score of 78.9, a low percentage

of poor rotamers at 2.1%, and a significant proportion of

Ramachandran favored regions at 67.9% as shown in Figure 5A.
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These metrics collectively suggest a highly refined and accurate

model, crucial for ensuring the vaccine’s effectiveness and structural

refinement. Furthermore, the refined model models were validated

by Ramachandran plot and Z-score analysis. The most favored

regions on a Ramachandran plot are important because they help to

identify the validity of a vaccine construct’s 3D structure and

indicate which Phi/Psi angles are possible for an amino acid; thus,

high % of most favored regions indicates better structural

enhancement whereas the less % shows poor enhancement.

Notably, in our findings, the Ramachandran plot analysis

demonstrated an increase in the most favored regions from 43.2%
FIGURE 2

Pictorial representation of the designed multi-epitope vaccine construct.
FIGURE 3

Amino acid composition and frequency of the designed multi-epitope vaccine construct.
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in the unrefined model to 56.8% in the refined model, indicating

improved structural quality and reduced steric clashes. Also, the G-

factor, measuring the overall structural unusualness, improved

significantly from −2.02 (unrefined) to −1.24 (refined),

highlighting the enhanced accuracy and reliability of the refined

model, as depicted in Figures 5B and C, respectively. In the Z-score

plot, the higher negative value indicates the high confidence of the
Frontiers in Immunology 08
modeled structure of the vaccine construct whereas the lesser

negative value indicates less confidence and the positive value

indicates very poor confidence of the vaccine structure. In our

study, we have observed that the Z-score was improved from −2.36

(unrefined) to −2.42 (refined), further confirming the high

structural refinement and enhanced stability of the vaccine

construct, as shown in Figures 5D and E, respectively.
FIGURE 4

2D structure of the designed multi-epitope vaccine construct.
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3.4 Designed multi-epitope vaccine
showed significant binding affinities toward
TLR4

The binding affinity of the multi-epitope vaccine construct

toward the Toll-like receptor-4 (TLR4) was evaluated using the
Frontiers in Immunology 09
ClusPro 2.0 web server, which generated nearly 29 clusters of

potential docked conformations, and the cluster 17 for its best

conformations of the docked complex. The binding energy of the

multi-epitope vaccine construct and TLR4 docked complex was

observed to be −1,117.5 kcal/mol, indicating the high binding

affinity and favorable interaction between TLR4 and the multi-
FIGURE 5

3D structure-refinement and validation: 3D structure of the designed multi-epitope vaccine construct in which the refined and unrefined models are
shown in green color and cyan color, respectively (A). Ramachandran plots of the unrefined (B) and refined models (C). Z-score of the unrefined (D)
and refined models (E).
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epitope vaccine construct. Upon binding, the vaccine showed a

1,762-Å2 interface area with 28 interacting residues and the TLR4

showed a 1,671-Å2 interface area with 37 interacting residues. Also,

it revealed that it formed 7 salt bridges, 21 H-bonds, and 228 non-

bonded contacts, as shown in Figure 6. Then, the molecular

dynamics simulation trajectories were analyzed to study the

conformational behavior of the TLR, vaccine, and TLR–vaccine
Frontiers in Immunology 10
complex over 100 ns. RMSD values were used to assess the local

flexibility of the proteins, reflecting their atomic mobility. Higher

RMSD values indicate increased mobility, whereas lower values

suggest greater structural stability. During the simulation, the

average RMSD values for the TLR, vaccine, and TLR–vaccine

complex were 0.16, 0.22, and 0.28 nm, respectively. Then, RMSF

plots revealed that TLR4 had fluctuations at the 120–170 AA and
FIGURE 6

Molecular interaction of TLR4 with the designed multi-epitope vaccine construct. The docked complexes are shown in cartoon model (A) and
surface model (B). Also, total numbers of interactions (C) and interacting residues (D) of the TLR-4 vaccine complex are shown.
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310–320 AA regions, vaccine had fluctuations at the 320–325 AA

region, and the TLR4–vaccine docked complexes exhibited the

same fluctuations; however, these regions are denoted as loop

regions. The average Rg values for the TLR, vaccine, and TLR–

vaccine complex were 2.15, 2.16, and 2.18 nm, respectively,

exhibiting the compactness of the structures. The average SASA

values for the TLR, vaccine, and TLR–vaccine complex were 173,

176, and 186 nm², respectively, as shown in Figure 7.
3.5 NMA of the multi-epitope vaccine
construct

The protein deformation analysis of the multi-epitope vaccine

construct and TLR4 docked complex was predicted as normal mode

analysis (NMA). The flexibility and stability of the docked

complexes were evaluated from various plots such as B-factor/

mobility, eigenvalue, variance, and co-variance map of the elastic

network of the TLR4–vaccine complex, as illustrated in Figure 8.

The B-factor/mobility indicates less deformation of the TLR4–

vaccine complex at all amino acid residues and hinges, indicating

that it maintains structural integrity. Notably, a lower eigenvalue of

2.77e−07 indicates less deformability of the docked complex, than

the TLR4 alone, which showed an eigenvalue of 3.31e−05. In

addition, the individual and cumulative variances indicate the
Frontiers in Immunology 11
contribution of each normal mode to the overall motion. The co-

variance map revealed the presence of correlated, uncorrelated, and

anti-correlated residue pairs, providing insights into the cooperative

movements within the complex. Furthermore, flexibility was also

observed from the elastic network.
3.6 Designed multi-epitope vaccine has the
potential to induce immune response

The immune response simulation of the designed multi-epitope

vaccine construct was predicted using the C-ImmSim web server at

three dosage days. The immunological parameters such as the

antibody titers, cytokine production, B-cell populations, B-cell

populations per state, TH-cell populations, and TH-cell

populations per state were predicted as shown in Figure 9. In the

antibody titers plot, we have observed that IgG and IgM are

significantly increased post-vaccine injection, indicating a robust

humoral immune response. Also, the cytokine levels of IFN-g were
elevated notably, which suggested a strong activation of cellular

immunity. Furthermore, the B-cell population (cells/m³) was

elevated, reflecting the activation and proliferation of B cells in

response to the vaccine. The total TH-cell population (cells/m³) also

showed an increase, indicating enhanced helper T-cell responses,

with a significant proportion of TH cells in active states, further
FIGURE 7

Molecular dynamics simulation of TLR4, vaccine, and docked complexes. The RMSD (A), RMSF (B), Rg (C), and SASA (D) plots of TLR4, vaccine, and
docked complexes are shown in red, blue, and green colors, respectively.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1576557
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Ramalingam et al. 10.3389/fimmu.2025.1576557
corroborating the vaccine’s efficacy. Notably, all the predicted

parameters such as the antibody titers (IgG and IgM), cytokine

production (IFN-g, ILs), B-cell populations (Total), B-cell

populations per state (active state), TH-cell populations (Total),

and TH-cell populations per state (active state) showed elevated

peaks at the vaccine dosage days, indicating that the designed
Frontiers in Immunology 12
vaccine construct is highly efficient in inducing the immune

responses in a time-dependent manner. These findings highlight

the potential effectiveness of the multi-epitope vaccine construct in

eliciting a comprehensive immune response, demonstrating its

ability to induce both humoral and cellular immunity, which is

crucial for long-term protection and memory formation.
FIGURE 8

NMA of TLR4 and the designed multi-epitope vaccine construct–TLR4 docked complex. The deformability, B-factor, eigenvalues, variance, co-
variance, and elastic network of the TLR4 (A1-F1) and TLR4–vaccine docked complex (A2-F2) are shown.
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3.7 Codon optimization and insilico cloning
of the multi-epitope vaccine construct

The designed multi-epitope vaccine construct was further

reverse-translated and optimized to be cloned by employing

Escherichia coli K12 as an expression system. Then, the optimized

sequence containing 552 nucleotides was obtained with the CAI-
Frontiers in Immunology 13
value as 1, and GC% as 53.8%. Also, the GC% of E. coli strain K12

was observed as 50.73%. Then, the restriction sites of SalI

(GAGCTC) and EcoRI (GAATTC) were added at the N-terminal

and C-terminal of the optimized DNA sequence. Following this, the

optimized vaccine construct sequence (564 nucleotides) was cloned

into the pET-28a (+) vector-6xHis-TEV-ORF9c (5554 bp) at

restriction sites of SacI (GAGCTC) and EcoRI (GAATTC) using
FIGURE 9

Immune simulation of the multi-epitope vaccine construct. Antibody titer (A), cytokine production (B), B-cell population (C), B-cell population per
state (D), TH-cell population (E), and TH-cell population per state (F) are shown.
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the SnapGene tool, and the final cloned product (5646 bp) is shown

in Figure 10.
4 Discussion

Infectious diseases have posed significant challenges to human

health throughout history, manifesting in acute, chronic, and often

lethal forms caused by various pathogenic microorganisms with

widespread morbidity and mortality worldwide (1, 3). The

emergence of antimicrobial resistance (AMR) and antigenic shifts

and drifts challenge our advances in the medical field (62, 63). The

recurring outbreaks of SARS, MERS, and COVID-19 underscore

the adaptive potential of RNA viruses, which can mutate to exploit

new niches (11, 64). SLEV infection is strongly associated with

potential central nervous system impairment that highly targets

adults and still lacks potential treatment strategies (17). Alongside,
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the peptide vaccines constructed with multiple epitopes have

recently gained attention due to their ability to amplify immune

responses against pathogens (65). Both B cells and T cells can be

used for vaccine development, but mostly T cell-based vaccines are

preferred to some reasons such as high specificity adaptive

immunity. CD8+ T cells uniquely recognize and eliminate

infected cells via MHC, long-term immune memory, and broader

immunological coverage. Notably, for viral infections that have

antigenic variation, the B cell-mediated antibody responds less

effectively (66). Although the traditional vaccines have the

potency to induce strong humoral, cellular responses, and need

fewer boosters than peptide vaccines, they are limited by their

stability, risk of reversion to virulence, allergic reactions, and live-

attenuated rapid mutation rates that lead to low efficacy in immune-

compromised patients (67). On the other hand, the peptide vaccines

are made of epitopes that specifically induce the stimulation of

CTLs, HTLs, or B cells and have minimum off-target effects
FIGURE 10

In silico cloning of the optimized vaccine construct. The codon-optimized multi-epitope vaccine sequence shown in red was cloned in the pET-28a
(+) expression vector (5,554 bp) shown in black between restriction sites SalI and EcoRI, and the final cloned vaccine construct is shown (5,646 bp).
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indicating low adverse reactions. Also, peptide vaccines are easy to

design, produce, and store; cost-effective; and, mostly importantly,

safer for immunocompromised individuals (68, 69). Hossain et al.

have also employed the immunoinformatics approach to design a

vaccine against SLEV and showed that it has potential against

SLEV. However, they have predicted the multi-epitopes only for the

envelope protein E (outer membrane protein) (29). In addition, to

the best of our knowledge, this is the only report we found for

employing reverse vaccinology and immunoinformatics to design

multi-epitope vaccine construct against SLEV. Thus, we have

designed the multi-epitope vaccine construct toward various key

proteins of SLEV such as the membrane glycoprotein M, envelope

protein E, and the anchored capsid protein anchC to increase its

therapeutic potential in SLEV treatment. So, in the present study,

we have designed and developed a multi-epitope vaccine construct

against the SLEV by employing reverse vaccinology and

immunoinformatics approaches.

The cytotoxic T lymphocytes (CTLs) (CD8+ T cell epitopes) are

involved in the recognition, direct killing, and clearance of the

virally infected cells, whereas the helper T lymphocytes (HTLs)

(CD4+ T cell epitopes) are involved in the immune activation,

antibody production, and cytokine secretion respectively, and thus

they play a vital role in the vaccine design (70, 71). Also, to elucidate

a proper immune response, the epitopes should be antigenic, non-

allergenic, and non-toxic and have the potential to induce IFN-g
(HTL epitope) production (72, 73). In our study, we have predicted

the possible CTL and HTL epitopes against the various key proteins

of SLEV such as the membrane glycoprotein M, envelope protein E,

and the anchored capsid protein anchC, and we have selected 5 CTL

epitopes and 17 HTL epitopes based on the abovementioned

criteria, as shown in Supplementary Table S9. Additionally, the

sequence conservation analysis was performed toward Dengue virus

1 (taxid:11053), Zika virus (taxid:64320), Yellow fever virus

(taxid:11089), West Nile virus (taxid:11082), and Japanese

encephalitis virus (taxid:11072), which are closely related to

Flavivirus family. Notably, the West Nile virus and Japanese

encephalitis virus shared similarity percentages of most predicted

epitopes, and Dengue virus 1 and Zika virus shared similarity

percentages with 1 CTL epitope and 1 HTL epitope. This

similarity-conserved epitopes have the potential to induce cross-

reactive T-cell responses and broaden protection toward other

species such as West Nile virus and Japanese encephalitis virus,

indicating that the developed vaccine construct was broad-

spectrum (74). HLA-A*02:01 (MHC-I) and DRB1*01:01 (MHC-

II) are the most frequently expressed alleles that could bind with

CTL and HTL epitopes, respectively (75, 76). For instance, HLA-

A*02:01 belongs to the A2 supertype possesses supertypic

representation, which covers multiple related alleles, expanding

their population coverage, whereas HLA-DRB1*01:01 is

immunodominant, binds a broad spectrum of peptides, and

significantly elicits CD4+ T-cell responses (76, 77). We observed

that the selected CTL and HTL epitopes exhibited significant

binding affinities toward their respective allele and their binding

energy was predicted as shown in Table 1. Unlike the mRNA

vaccines, the peptide vaccines have the advantage of adding
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adjuvants along with the peptides, which could induce more

antigenic-mediated immune responses (78, 79). We have utilized

the C-terminal region of the large ribosomal subunit protein bL12

of Mycobacterium tuberculosis as the adjuvant, which highly

prevents the autoimmune reactions.

The linkers play a vital role in the designing of the vaccine

construct to elucidate proper structural and functional properties.

The EAAAK linker elevates the antigenic nature of the vaccine, the

AAY linker promotes the presentation of antigens, and the GPGPG

linker promotes solubility and movement (78, 80, 81). Likewise, the

adjuvant was connected with EAAAK linkers, CTL epitopes were

connected with AAY linkers, and the HTL epitopes were connected

with GPGPG linkers, and the designed multi-epitope vaccine

construct comprising 532 amino acids has 5 CTL epitopes, 17

HTL epitopes, 1 adjuvant, 4 CTL linkers, 16 HTL linkers, and 1

adjuvant linker, as shown in Figure 2. The designed vaccine should

be stable to have a longer half-life period and immunogenicity

retention and avoid degradation, and should be soluble to have an

enhanced bioavailability nature, to prevent aggregation and for

efficient delivery (82, 83). Based on these criteria, several vaccines

have been designed and developed against various diseases and

infections (31, 84–86). Similarly, we have observed that our

designed multi-epitope vaccine construct was soluble with a

probability of 0.902 and stable with an instability index of 23.84

(less than 40) indicating the stability of the vaccine. Also, we

observed that the addition of adjuvant increased the vaccine’s

antigenic nature from 0.787234 to 0.898972, as shown in in Table 2.

Structural properties of the vaccine alter its functional

properties such as the antigen presentation and stimulation of T

lymphocytes and B lymphocytes (73). We have predicted the 3D

structure of the designed vaccine construct and further refined it.

Furthermore, we validated by the Ramachandran plot that showed

highly favored regions in the refined model, and by the Z-score that

showed high confidence in the refined 3D model. These analyses

underscore the critical improvements in structural prediction and

refinement processes, ensuring the vaccine construct’s robustness

and potential efficacy. The refined model’s superior quality and

stability are indicative of its potential to elicit a strong and effective

immune response, thereby validating its design and functional

applicability (87). Unlike the other Toll-like receptors (TLRs),

Toll-like receptor-4 is observed to be overexpressed and also

involved in various functions such as promoting the production

of pro-inflammatory cytokine and chemokine and regulation of

homeostasis, and thus plays a vital role in various diseases including

SLEV infection (87, 88). Thus, we have docked our vaccine

construct with TLR4, which showed significant binding affinities

with a binding energy of −1,117.5 kcal/mol. The low binding energy

profile suggests that the multi-epitope vaccine construct is likely to

form a stable and effective complex with TLR4, potentially

enhancing its immunogenic efficacy and contributing to a robust

immune response. The molecular dynamics simulation (MDS)

revealed that the TLR4-vaccine docked complex was stable

throughout the simulation period compared with TLR4 and

vaccine alone, indicating the structural compatibility of the

docked complex as shown in Figure 7. Also, it indicated that
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there is no flip on the residues of the TLR4–vaccine complex

confirmed through MDS. Additionally, the TLR4–vaccine docked

complex was also observed to be stable through the protein

deformation analysis evaluated from various plots such as B-

factor/mobility, eigenvalue, variance, and co-variance map of the

elastic network of the TLR4–vaccine complex, as illustrated

in Figure 8.

Generally, the vaccine-induced immune response is crucial, and

multifaceted, encompassing both innate and adaptive immunity (89,

90). From our study, we observed that the designed multi-epitope

vaccine construct elevates the levels of antibody titers, cytokine

production, B-cell populations, B-cell populations per state, TH-cell

populations, and TH-cell populations per state, as shown in Figure 9.

These findings highlight the potential effectiveness of the multi-epitope

vaccine construct in eliciting a comprehensive immune response,

demonstrating its ability to induce both humoral and cellular

immunity, which is crucial for long-term protection and memory

formation. Also, for the experimental validation, the designed vaccine

construct has to be produced in higher quantities, and thus usually it

will be cloned in a suitable vector (91). In our study, the designedmulti-

epitope vaccine construct was reversed translated, codon-optimized,

and cloned in a suitable vector pET-28a (+) vector-6xHis-TEV-ORF9c

(5554 bp) at the restriction sites of SacI (GAGCTC) and EcoRI

(GAATTC), as shown in Figure 10.

On the other hand, this study mostly used bioinformatics tools

and databases for the study, and these computational validations may

be less reliable when compared with the experimental validations (92,

93). For instance, the NetCTL 1.2 and NetMHCII 2.3 web servers

mainly focus on the limited set of common HLA alleles, potentially

overlooking epitopes relevant to underrepresented populations,

whereas the VaxiJen v2.0, AllerTOP v.2, ToxinPred, IFNepitope,

Expasy ProtParam, and ANTIGENpro web server are commonly

used in immunoinformatics and vaccine design approaches; however,

these predictions are based on a broad training dataset and do not

yield high efficacy as the experimental validations (93, 94). Thus, we

strongly recommend to validate the designed vaccine construct in in

vitro and in vivo experimental settings to evaluate their completely

therapeutic potential against SLEV. Overall, by employing reverse

vaccinology and immunoinformatics approaches, we have designed a

multi-epitope cancer vaccine against various key proteins of SLEV

such as the membrane glycoprotein M, envelope protein E, and the

anchored capsid protein anchC, and we further recommend

evaluating its therapeutic potential by in vitro and in vivo studies in

the near future. Furthermore, the deployment of these types of

vaccines in regions where diseases are endemic offers significant

opportunities to enhance public health and mitigate the disease

burden (95). Achieving these outcomes, however, necessitates

addressing complex logistical, sociocultural, and economic

challenges through well-designed strategies and sustained

international cooperation (96). These hurdles could be overcome

by strengthening the infrastructure, community engagement,

financial support, innovative delivery models, policy and

governance, and integrated health programs. Effectively overcoming

these barriers is critical to ensuring equitable vaccine access and

advancing global objectives in health security and disease control.
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SLEV infection poses a significant public health threat,

particularly in regions prone to mosquito-borne diseases. Despite

the availability of supportive treatments, there is a critical need for

effective therapeutics/vaccines to prevent SLEV infections. In our

study, we have designed, constructed, and validated a multi-epitope

vaccine targeting key proteins of SLEV such as the membrane

glycoprotein M, envelope protein E, and the anchored capsid

protein anchC by employing reverse vaccinology and

immunoinformatics approaches. Our results indicated that the

vaccine construct is structurally stable, antigenic, non−allergic, and

non−toxic and has soluble properties. Also, the vaccine exhibited

strong binding affinity and structural compactness with the TLR4

upon binding confirmed by docking and molecular dynamics

simulations respectively. Furthermore, it also indicated that it has

the potential to induce an immune response. Also, it has been cloned

in the pET−28a (+) expression vector for the experimental validation

by in vitro and in vivo studies to evaluate the vaccine’s therapeutic

efficacy in the near future. Further research and experimental studies

are warranted to validate the efficacy, safety, and immunogenicity of

the proposed vaccine construct in preclinical and clinical settings.
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