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Ursolic acid (UA), a prevalent pentacyclic triterpenoid found in numerous fruits

and herbs, has garnered significant attention for its vital role in anti-inflammatory

processes and immune regulation. The study of immune cells has consistently

been a focal point, particularly regarding macrophages, which play crucial roles

in antigen presentation, immunomodulation, the inflammatory response, and

pathogen phagocytosis. This paper reveals the underlying regulatory effects of

UA on the function of macrophages and the specific therapeutic effects of UA on

a variety of diseases. Owing to the superior effect of UA on macrophages,

different types of macrophages in different tissues have been described.

Through the multifaceted regulation of macrophage function, UA may provide

new ideas for the development of novel ant i- inflammatory and

immunomodulatory drugs. However, to facilitate its translation into actual

medical means, the specific mechanism of UA in macrophages and its clinical

application still need to be further studied.
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GRAPHICAL ABSTRACT
1 Introduction

The human immune system is a complicated defense network

designed to protect the body against various pathogens, including

bacteria, fungi, viruses, parasites, and aberrant cells such as cancer

cells (1, 2).

Macrophages, essential cells of the innate immune system, are

present in virtually every tissue throughout the human body (3).

The origin of macrophages is a sophisticated process. During

embryonic development, the first macrophages originate from

mesenchymal progenitor cells within the yolk sac. Erythromyeloid

progenitors (EMPs) subsequently colonize the fetal liver (4). They

eventually differentiate into tissue specific macrophages that

colonize embryonic tissue, and these cells are long-lived and self-
Frontiers in Immunology 02
sustaining. The production of bone marrow-derived monocytes

begins after birth. Bone marrow-derived macrophages typically

have a shorter lifespan and are constantly being replaced,

suggesting that yolk sac derived macrophages are different from

bone marrow-derived macrophages (5–7). Macrophages, which are

called highly heterogeneous cell populations, exhibit different

phenotypes under different stimuli and have high plasticity (8).

Bacterial components such as lipopolysaccharide (LPS) and

interferon-gamma (IFN-g) polarize macrophages toward M1

macrophages, which play critical roles in acute inflammatory

responses through the production of various proinflammatory

cytokines that function in clearing pathogens and causing tissue

damage, resulting in proinflammatory and antitumor properties.

Conversely, IL-4 and IL-13 induce polarization toward M2
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macrophages, which exhibit proinflammatory properties and

enhance immune function (9, 10). Notably, with the advancement

of omics technologies, the classification of macrophages has

extended beyond two categories, revealing a more complex

situation (11).

Ursolic acid (UA), a natural compound, can be extracted from

the stems, peels, and leaves of a variety of fruits and herbs (12)

(Figure 1). With advancements in extraction technology, ultrasonic

(13) and microwave-assisted (14) extraction of UA has gained

widespread application, significantly increasing the extraction

efficiency. In addition to these two techniques, methods such as

accelerated solvent extraction and supercritical fluid extraction are

also employed (15). The effective extraction of UA is advantageous

for investigating its biological activity. UA is widely known as a

pentacyclic triterpenoid compound with antitumor (16), anti-

inflammatory (17), and regulatory effects on metabolic diseases,

as well as cardiovascular diseases (18) but exhibits poor

bioavailability. Despite the robust scientific support for UA’s

pharmacological properties in vitro and in vivo, its clinical

application remains constrained by inherent limitations,

prompting researchers to develop multiple strategies such as solid

lipid microparticles (SLMs), nanostructured lipid carriers (NLCs),

and structural derivatization of UA to enhance its bioavailability. In

the animal model of pulmonary tuberculosis, SLM, as a delivery

carrier of UA, can increase the biological activity of UA and

effectively reduce the load of Mycobacterium tuberculosis burden

(Mtb) in infected alveolar macrophages (19). The water insolubility

of UA limits its transport and delivery in the human body, resulting

in a decreased fraction of UA available for intestinal absorption

(20). The application of NLCs significantly enhances the oral

bioavailability of UA, with experimental studies demonstrating
Frontiers in Immunology 03
that UA-loaded NLCs achieve 98.75% inhibition of parasitic

infections in standardized vivo models (21). Both increased

leishmanicidal activity and reduced inflammatory processes

observed in the spleen and liver of animals treated with UA-

NLCs can be associated with the uptake of nanoparticles by

macrophages (22). Nanostructured lipid carriers loaded with

Ocimum sanctum L. leaf extract (OLE-NLCs) were developed for

improved transdermal delivery of UA for anti-arthritic therapy

(23). Additionally, the anticancer potential of UA-loaded NLCs was

evaluated by assessing their cytotoxic effects against the human

leukemic K562 and melanoma B16 cell lines (24). Recent research

on UA demonstrates that structural derivatization through the

introduction of an indole ring at the C-3 position and an amide

group at the C-17 position, aiming to enhance pharmacological

potential, can significantly suppress LPS-induced pro-inflammatory

cytokines in RAW 264.7 macrophages (25).
2 Effect of UA on inflammation

Macrophages serve as pivotal mediators and coordinators in the

pathogenesis of chronic inflammatory disorders (26). Classically

activated M1 macrophages orchestrate host defense mechanisms

against bacterial, protozoan, and viral pathogens while contributing

to antitumor immunity (27). These macrophages execute critical

functions during acute inflammation through the release of

proinflammatory mediators (28). Under homeostatic conditions,

IL-10 modulates colonic macrophage activity by suppressing

inflammatory responses toward gut microbiota-derived signals.

This establishes IL-10 as a master anti-inflammatory cytokine.

Experimental administration of UA to IL-10-/- murine peritoneal
FIGURE 1

Ursolic acid sources, extraction, and delivery. UA is a pentacyclic triterpenoid compound that is widely distributed in the fruits and roots or leaves of
various plants. At present, the main extraction methods for UA are ultrasonic, microwave, accelerated solvent extraction, and supercritical fluid
extraction. Two common delivery methods for UA are nanostructured lipid carriers (NLCs) and solid lipid microparticles (SLMs).
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macrophages demonstrated significant suppression of proinflammatory

cytokine production (29), suggesting UA mimics IL-10-mediated

immunoregulation. Furthermore, dichloromethane extracts from

Salvia connivens leaves (DESC) exhibit anti-inflammatory

properties through dual mechanisms: enhancing IL-10 biosynthesis

and attenuating LPS-induced macrophage activation, with UA

being identified as a principal bioactive constituent mediating these

effects (30).

The innate immune system was originally considered to exhibit

nonspecific microbial recognition; however, the identification of

Toll-like receptors (TLRs) in the mid-1990s revealed that innate

immunity possesses pathogen-specific recognition capabilities (31).

Dysregulated TLR signaling may drive acute or chronic

inflammatory responses and precipitate systemic autoimmune

disorders (32). Specifically, TLR4 serves as the primary receptor

for bacterial LPS. LPS-TLR4 binding activates the downstream

transcription factor nuclear factor kappa B cells (NF-kB),
subsequently inducing the release of proinflammatory mediators

including TNF-a, IL-1b, IL-6, chemokines, proteolytic enzymes,

and reactive oxygen species (33) (Figure 2). The activation of NF-kB
plays a critical role in the release of inflammatory mediators by

macrophages. Triterpenic acid extract from Eriobotrya japonica

leaves (TAL), with UA as its primary component, alleviated chronic

bronchitis by suppressing the nuclear translocation of the NF-kB
p65 subunit in alveolar macrophages to downregulate the

expression of TNF-a, interleukin-1b (IL-1b), prostaglandin E2

(PGE2), and leukotriene B4 (LTB4) (34). UA can be isolated from

the seeds of Cornus officinalis and inhibits the NF-kB and MAPK

signaling pathways by inhibiting the binding of TLR4 to LPS on

macrophages (35). Mechanistic studies on Sonchus oleraceus

aqueous extract revealed concurrent downregulation of TLR4 and

COX-2 expression in RAW 264.7 macrophages, with UA being

characterized as a principal anti-inflammatory constituent (36). 23-

hydroxy-UA exhibits superior inhibitory potency against

macrophage-derived NO generation, displaying concentration-

dependent suppression of both COX-2 protein abundance and

transcriptional output (37, 38). Psidium guajava-derived UA

further attenuates intracellular ROS accumulation (39). The

inflammatory cascade fundamentally involves immune cell

activation and tissue infiltration, where innate immune effectors

mediate tissue inflammation through phagocytic clearance or

paracrine secretion of bioactive mediators (40). Macrophages

uniquely orchestrate chronic inflammatory processes, particularly

“metainflammation” - a metabolic inflammation continuum (41).

The regulation of inflammation by UA is dynamic, likely mediated

through stimulus-dependent macrophage polarization states.
3 Effect of UA on macrophage
polarization and cytokine release

Notably, studies have demonstrated that UA participates in a

dynamic regulatory process of cytokine release from macrophages,

potentially associated with macrophage polarization (Table 1). The

two primary macrophage subtypes, classically activated M1 and
Frontiers in Immunology 04
alternatively activated M2, represent polarized extremes within a

spectrum of activation states (42). Further in vitro investigations

revealed that M2-type macrophages can differentiate into distinct

subsets: M2a, M2b, M2c, and M2d. M2a macrophages are

commonly referred to as “wound healing” macrophages. M2c

macrophages, along with M2b, are collectively termed “regulatory

macrophages.” In contrast, M2d macrophages exhibit elevated

expression of IL-10 and vascular endothelial growth factor

(VEGF), both of which demonstrate immunosuppressive

properties (43–45). Recent studies have demonstrated that

TRIM29 serves as a critical regulator of macrophage polarization

by modulating type I interferon (IFN) production (46, 47), PERK-

mediated endoplasmic reticulum (ER) stress (48), inflammasome

activation (49), and LPS-induced pro-inflammatory cytokine

release (50). Notably, pathways such as ER stress (51) and

inflammasome activation (52) are closely linked to the anti-

inflammatory and immunomodulatory effects of UA. However,

whether TRIM29 directly participates in UA-mediated regulation

of macrophage polarization remains unclear. Future investigations

should explore the interplay between UA and TRIM29-associated

molecular networks to clarify its mechanistic role.

Unlike the common anti-inflammatory effects of UA,

experimental studies have revealed that UA upregulates the

expression of pro-inflammatory cytokines and enhances M1

macrophage activation. Using RAW 264.7 cells as a model

system, researchers demonstrated that UA enhances TNF-a and

IL-6 mRNA expression in liver macrophages (53). This

phenomenon may be associated with UA-induced upregulation of

CD36 receptor expression on macrophages (54). UA inhibits the

polarization of M2 macrophages via downregulation of the Wnt

pathway, thereby exerting anti-liver cancer effects (55). Moreover,

UA enhances iNOS and TNF-a gene expression through NF-kB-
dependent transcriptional regulation in macrophages (56). IL-1b
exhibits critical involvement in the pathogenesis of inflammatory

conditions. UA activates the Raf-1/MEK/ERK and MKK3/6/p38

MAPK pathways in macrophages, which promotes IL-1b gene

transcription and leads to IL-1b mRNA expression for

intracellular proIL-1b production (57, 58). For colorectal cancer

(CRC), we developed a self-assembled nanomedicine (LNT-UA)

through a simple nanoprecipitation method, consisting of natural

bioactive components UA and lentinan (LNT). LNT-UA treatment

significantly enhanced the secretion of antitumor-related cytokines

IFN-g and TNF-a, while concurrently suppressing the production

of the immunosuppressive cytokine IL-10 (59).

Concomitantly, UA promotes M2 macrophage polarization,

thereby exerting anti-inflammatory effects. A novel dressing

design, designated as CS-PVA-UA, comprises electrospun

nanofibers fabricated from a chitosan (CS) and polyvinyl alcohol

(PVA) blend surface-functionalized with UA for diabetic wound

management. Experimental data demonstrated that CS-PVA-UA

nanofiber dressings significantly inhibit LPS-induced M1

macrophage polarization, effectively restore M2 phenotypic

commitment, and accelerate inflammatory resolution (60).

Microglia, the resident macrophages of the central nervous

system, exhibit bidirectional plasticity between neurotoxic M1
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https://doi.org/10.3389/fimmu.2025.1576771
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Feng et al. 10.3389/fimmu.2025.1576771
and neuroprotective M2 states (61). UA confers neuroprotection

through PPARg-mediated selective polarization of microglia toward

the M2 phenotype, attenuating neuroinflammatory responses (62).

Furthermore, UA manifests dual immunomodulatory activity in

Toxoplasma gondii-infected macrophages by augmenting anti-

inflammatory cytokine secretion while suppressing proinflammatory

mediators (63). Collectively, macrophages orchestrate immune

responses via regulation of cytokine/chemokine networks. These

signaling molecules mediate immune cell recruitment to

inflammatory foci while dynamically modulating the activation

states of macrophages. (Figure 2)
4 Effect of UA on macrophage
autophagy

Autophagy critically regulates macrophage polarization dynamics

(65–69). Tumor-associated macrophages (TAMs), a specialized
Frontiers in Immunology 05
macrophage population recruited to tumor microenvironments,

predominantly exhibit M2-like phenotypes with minor M1

subpopulations, and are mechanistically implicated in facilitating

tumor progression through angiogenesis promotion and metastatic

niche formation (70). Paradoxically, autophagy-mediated ferroptosis

was reported by Dai et al. to drive KRAS oncoprotein internalization

in macrophages, concurrently enhancing M2 polarization and

macrophage cell death, thereby fostering tumor immune evasion

(71). Consequently, pharmacological autophagy inhibition

demonstrates therapeutic potential through dual mechanisms:

suppressing M2-mediated immune escape and enhancing T cell

infiltrate-mediated tumor immunoediting (72). This functional

dichotomy positions autophagy as a therapeutic double-edged

sword (Figure 2). Notably, autophagy suppression may elicit

contradictory effects – inducing pro-inflammatory M1 polarization

while exacerbating inflammation. In inflammatory disease contexts,

UA modulates macrophage plasticity by enhancing autophagic to

attenuate M1 polarization and associated inflammatory cascades.
FIGURE 2

Overall effects of UA on macrophages. UA transforms M1 and M2 macrophages to each other and performs different physiological functions.
Promoting macrophage autophagy is beneficial for inhibiting the pathological progression of atherosclerosis, fatty hepatitis, Mycobacterium
tuberculosis infection, and parasites. The inhibition of autophagy is beneficial for the treatment of osteoporosis. UA exerts anti-inflammatory effects
mainly by inhibiting the binding of LPS to TLR-4, and then inhibiting the conduction of downstream signaling pathways and reducing the release of
inflammatory cytokines. TNF-a, tumor necrosis factor-a; IL-6, interleukin-6; IL-1b, interleukin-1b; IL-12, interleukin-12; IL-10, interleukin-10; LPS,
lipopolysaccharide; IFN-g, interferon-gamma; TGF-b, transforming growth factor-b; TLR4, Toll-like receptor 4; CCL5, C-C chemokine ligand 5; ROS,
reactive oxygen species; COX-2, cyclooxygenase-2.
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Macrophage autophagy has been demonstrated to mitigate

chronic inflammation progression and organ fibrosis through

attenuation of M1 polarization (73). Mechanically, UA enhances

autophagy in macrophages via upregulation of autophagy related

genes Atg5 and Atg16L1, consequently modulating macrophage

functionality and ameliorating murine atherosclerosis (74). Age-

related decline in macrophage autophagic capacity may underlie the

elevated incidence of senile steatohepatitis (75) and metabolic

syndrome (76) in elderly populations, highlighting the therapeutic

potential of autophagy-targeted interventions for obesity-related

hepatic pathologies (77). In the context of Chagas disease, UA was

investigated for its modulatory effects on T. cruzi-infected

macrophages and cardiomyocytes in vitro. During late stage

infection characterized by intracellular parasite nest formation, UA-
Frontiers in Immunology 06
induced autophagy activation in both macrophages and cardiac cells

was shown to mitigate parasitosis-induced tissue damage (68).

Macrophage autophagy has an inhibitory effect on inflammation.

UA primarily mediates its anti-inflammatory activity by suppressing

the TLR4/MyD88 signaling pathway, whereas pharmacological

inhibition of autophagy using 3-methyladenine (3-MA) significantly

abrogates this UA-mediated suppression (78). In Mycobacterium

tuberculosis (Mtb)-induced tuberculosis (TB), UA enhances

autophagy to mitigate macrophage hyperinflammatory responses,

thereby improving clinical outcomes (79). UA demonstrates

bidirectional regulation of macrophage autophagy. While basal

autophagy activates NFATc1 and c-Fos to promote osteoporosis

pathogenesis, UA suppresses c-Fos/NFATc1 induction, inhibits

osteoclastogenesis, and attenuates pathological autophagy (80).
TABLE 1 Effects of different concentrations of UA at different durations on the release of cytokines from macrophages.

Test models
Type

of drugs
Method

of experiment
Dose Duration Major results References

RAW264.7 UA ELISA
1mM
5mM
20mM

12 h TNF-a↑IL-6↑ (53)

RAW264.7 UA RT–PCR
1mM
5mM
10mM

6 h TNF-a↑ (56)

H37RV-J774A.1 UA ELISA
0.625mM
2.5mM

3 h 24 h
48 h 72 h

TNF-a↑TGF-b↓ (54)

Peritoneal macrophages UA ELISA
4mM
20mM

1 h 3 h 6 h
12 h 24 h

IL-6↑IL-1b↑ (57)

Peritoneal macrophages and RAW264.7 UA ELISA
4mM
20mM

12 h IL-1b↑ (58)

The mice CRC model tumor tissue LNT-UA ELISA 5mg/kg
1 d
5 d
9 d

TNF-a↑INF-g↑
IL-10↓

(59)

The mice pulmonary TB model
lung homogenates

UA RT–PCR 3.75mg/kg
30 d
60 d

TNF-a↑INF-g↑ (64)

Alveolar macrophages in a rat model of
chronic bronchitis

Eriobotrya
japonica leaves

(50%UA)
ELISA

50 mg/kg
150 mg/kg
450 mg/kg

14 d IL-1b↓TNF-a↓ (34)

J774A.1
DESC

(47.69%UA)
RT–PCR ELISA 25mM 2 h

TNF-a↓IL-6↓
IL-1b↓IL-10↑

(30)

RAW264.7
S.oleraceus
aqueous

(0.49%UA)
ELISA 31.3mM 24 h

TNF-a↓IL-6↓
IL-1b↓

(36)

Peritoneal
macrophages

UA ELISA
10mM
20mM

20 h
TNF-a↓IL-6↓
IL-1b↓IL-10↑

(35)

IL-10-deficient mice
peritoneal macrophages

UA ELISA
10mM
50mM

24 h
TNF-a↓IL-6↓

IL-12↓
(29)

T.gondii-Infected RAW264.7 UA ELISA
25mg/ml
50mg/ml
100mg/ml

24 h

TNF-a↓TGF-b↓IL-
6↓IL-1b↓

IL-10↑INF-b↑
IL-12↑

(63)
↑: upregulated, ↓: downregulated.
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5 Effect of UA on tissue macrophages

5.1 Skin

Hemostasis, inflammation, proliferation, and remodeling are

four sophisticated and finely orchestrated physiological stages of

wound healing (81). The inflammatory response is thought to

involve wound healing in the first phase (82). Macrophages play

pivotal roles in inflammation and wound healing by releasing

cytokines such as epidermal growth factor and tumor growth

factor-b(TGF-b), stimulating the proliferation of fibroblasts and

keratinocytes (83), and simultaneously, they can suppress the

release of inflammatory cells, facilitate the infiltration of M2

macrophages, and exert an anti-inflammatory effect (Figure 3).

Researchers have used a zebrafish model to xenograft the

human lung epithelial cell line A549 to study the protective effect

of herb-based drug named Coronil against SARS-CoV-2 infection.

One of the active ingredients of Coronil is UA, which can effectively

prevent bleeding in the pelvic, dorsal, and other parts of the fish and

increase the number of neutrophils and macrophages in the swim

bladder to normal levels (84). Castanea mollissima shell (C.

mollissima shell) is a traditional Chinese medicine used for

wound healing and anti-inflammatory purposes. The first

compound of the ethanol extracts of C. mollissima shell was

identified as UA, which can reduce the number of macrophages

induced by LPS, has a basic anti-inflammatory effect, and promotes

wound healing (85). A new type of wound therapy for diabetes,

namely, CS-PVA-UA dressings, has good shape similarity to the

natural extracellular matrix (ECM) of skin collagen fibers. This type

of nanofiber can promote cell adhesion and accelerate wound

healing and skin regeneration in vivo (60). The number of M1

macrophages is greater in diabetic wounds than in normal wounds

(86), instead of M2 phenotypes, which inhibits the inflammation

stage to the proliferation stage and promotes the healing of wounds

(87). In a diabetic wound mouse model, the CS-PVA-UA nanofiber

dressing was used to investigate its impact on skin regeneration, the

results indicated that it effectively promoted revascularization,

reepithelialization, collagen matrix deposition and remodeling, as

well as hair follicle regeneration in diabetic wounds. This approach

facilitates rapid and high quality skin wound healing in diabetic

mice (44). In India, the Shorea robusta plant was found to treat skin

injuries, including wounds and burns, and UA was identified as an

effective compound of Shorea robusta plant with strong anti-

inflammatory activity (88). It has been reported that in

Leishmania, UA components extracted from the leaves of

Baccharis uncinella upregulate Th1 cytokines, such as IL-12, can

induce the differentiation and activation of IFN-g-secreting CD4+T
lymphocyte subpopulations, activate infected macrophages, and

clear intracellular parasites (89–91). Experiments have shown that

UA inhibits the development of skin lesions and reduces skin

parasitics in BALB/c infected mice (92). Although many studies

have demonstrated the effects of UA on wound healing and

inflammation inhibition (Table 2) (Figure 4), some questions still

need answers. Through Ikeda et al.’s finding that UA enhances

iNOS and TNF-a expression in macrophages, UA-induced
Frontiers in Immunology 07
increases in proinflammatory mediator levels play a role in

promoting the development of skin tumor formation in mice (93).
5.2 Liver

Kupffer cells, a type of macrophage located in the hepatic

venous sinuses, exhibit robust phagocytic activity(Figure 4). It has

a strong phagocytic capacity for particulate matter, including

nanoparticles (94, 95). Yuan et al. reported that liver cells are the

predominant cells for the uptake of UA-induced self-assembled

nanovesicles (V-UAs) and can escape the phagocytosis of Kupffer

cells (96). As the early stage of cirrhosis, liver fibrosis is a complex

process of fibrosis and inflammation caused by chronic liver injury

(97). An imbalance between M1 and M2 macrophages has an

important effect on the progression of this disease, while UA also

has therapeutic effects on liver fibrosis (98). Wan et al. reported that

UA alleviated liver fibrosis in mice by inhibiting the NOX2/NLRP3

inflammasome signaling pathway and thereby restraining Kupffer

cell pyroptosis (52)(Figure 3). Another in vitro study demonstrated

that UA can alleviate CCL4-induced liver fibrosis, meanwhile, the

phagocytosis of Kupffer cells is not affected (99). Furthermore, UA

has been reported to induce liver metallothionein (MT) activity

(100). The underlying mechanism may be that UA acts indirectly

on the liver through mediators released by Kupffer cells or the UA

stimulates immune-active cells, leading to the upregulation of MT

(53). Current research suggests that the mechanisms underlying the

influence of UA on Kupffer cells warrant further investigation.
5.3 Bone

Osteoclasts and osteoblasts are important components of bone

remodeling, and osteoclasts are multinucleated cells (101–103). In

addition, osteoclasts are the only bone-absorbing cells in the body

and play a pivotal role in the remodeling of the skeletal system (104).

UA is the main active ingredient in Fructus Ligustri Lucidi

(FLL), an effective and well-known Chinese medicine used to treat

osteoporosis. FLL ethanol extract suppresses RANKL-induced

osteoclast differentiation in RAW264.7 macrophage-derived

osteoclast precursors by inhibiting NF-kB signaling (105). UA

mitigates LPS-induced inflammatory bone loss in mice by

inhibiting RANKL-induced activation of key osteoclastogenic

transcription factors, including c-Fos and NFATc1 (106). This

may be one of the mechanisms by which UA inhibits osteoclast

formation. And UA inhibited Ti particles induced inflammation

and osteoclastogenesis by inhibiting IKKbcys-179 (107). UA was

obtained via bioactivity guided fractionation of loquat leaves and

was found to inhibit osteoclast differentiation at concentrations of 4

and 10 mg/mL (108). By inhibiting the NF-kB and JNK signaling

pathways, UA decreases the number of tartrate-resistant acid

phosphatase (TRAP)-positive osteoclasts (109). Through network

pharmacological analysis, UA was shown to target osteoclasts

mainly via a variety of signaling pathways, namely, the MAPK

and tumor necrosis factor a (TNF-a) signaling pathways (110).
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Osteoclasts are important targets for osteoporosis (111), and

osteoclast differentiation plays a key role in osteoporosis

(Figure 3). UA may improve osteoporosis by inhibiting

autophagy-mediated osteoclast differentiation (80). Additionally,

UA can suppress the activity of osteoclasts while enhancing the
Frontiers in Immunology 08
activity of osteoblasts to facilitate bone formation, which constitutes

another merit in the treatment of osteoporosis (112) (Figure 4).

Researchers Tan et al. investigated why UA inhibits osteoclast

differentiation at the molecular structure level and reported that it

is likely related to C-29 and C-30 methyl groups (113).
FIGURE 3

Mechanisms of the effects of UA on macrophages in various tissue diseases. UA affects macrophages, Kupffer cells, osteoclasts, and microglia to
treat diabetes, parasitic infection, viral infection, liver fibrosis, atherosclerosis, osteoporosis, Alzheimer’s disease, depression, and neuritis through a
variety of signaling pathways and targets. NO, nitric oxide; ROS, reactive oxygen species; COX-2, cyclooxygenase-2; TNF-a, tumor necrosis factor-
a; IL-6, interleukin-6; IL-1b, interleukin-1b; NOX2, oxidase 2; NOX4, oxidase 4; NLRP3, receptors containing pyrin domain 3; GSDMD, gasdermin D;
TLR4, Toll-like receptor 4; LPS, lipopolysaccharide; MPK-1, MAPK phosphatases-1; MCP-1, monocyte chemoattractant protein-1; ACAT, Acyl-
coenzyme A: cholesterol acyltransferase; LOX-1, lectin-like oxidized LDL receptor-1; MPO, myeloperoxidase; Iba1, ionized calcium binding adapter
molecule 1; MMP9, matrix metalloproteinases 9; PPARg, peroxisome proliferator-activated receptor gamma; TIMP1, tissue inhibitor matrix
metalloproteinase 1; MMP2, matrix metalloproteinases 2.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1576771
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Feng et al. 10.3389/fimmu.2025.1576771
TABLE 2 Research on UA in macrophages in different tissues and diseases.

Tissues
Research
objects

Type of
drugs

Type of
experiments

Function References

Skin

Viral infection Coronil In vivo
Reestablished the macrophage population in the

swim bladder.
(84)

Wound
Castanea

mollissima shell
In vitro
In vivo

Reduced the production of TNF-a, IL-6 and NO in LPS-
induced macrophages.

(85)

Shorea robusta
young leaves

In vitro
In vivo

Promoted the aggregation of M2- macrophages. (88)

Diabetes CS-PVA-UA
In vitro
In vivo

Inhibited M1 macrophage polarization. (60)

Liver

Liver fibrosis UA In vivo
Reduced the expression of NOXs/ROS in KCs, and

improved phagocytosis of KCs.
(99)

UA
In vitro
In vivo

Inhibited KCs pyroptosis and treated liver fibrosis. (52)

Holestatic hepatitis;
Acute hepatitis;
Orthotopic
liver cancer

UA-induced self-
assembled
nanovesicles

In vivo
Reduced the KCs’ phagocytosis ability toward

nanomedical drugs, enhanced drug bioavailability.
(96)

Hepatic
metallothionein

UA In vitro
Stimulated RAW cells to release TNF-a and IL-6, and MT

expression was upregulated.
(53)

Bone

Osteoporosis
Fructus

ligustri Lucidi
In vitro

Inhibited osteoclastogenesis in RAW264.7 cells via
RANKL signaling pathways.

(105)

UA
In vitro
In vivo

Against osteoporosis by inhibiting osteoclast
differentiation mediated by autophagy.

(80)

UA In vitro
Inhibited osteoclast differentiation through

targeting XPO5.
(91)

Retinoic acid-
induced osteoporosis

UA In vivo
Increased osteoblastic activity and reduced

osteoclastic activity.
(112)

Osteolysis UA
In vitro
In vivo

Protected against wear particle-induced osteolysis by
suppressing osteoclast formation and function via NF-kB-

and JNK-related signaling pathways.
(109)

Aseptic loosening of
the artificial joint

UA In vitro
Inhibited the Ti wear particle-induced inflammation,
osteoclastogenesis, and hydroxylapatite resorption by

modifying cysteine 179 of IKKb.
(107)

Blood vessels

Atherosclerosis Ilex kudingcha
In vitro
In vivo

Inhibited acetylated LDL induced CE accumulation (foam
cell formation) in macrophages.

(120)

UA In vitro
Protected THP-1 monocytes against dysfunction by

suppressing metabolic stress-induced Nox4 expression.
(115)

UA
In vitro
In vivo

Inhibited LOX-1 expressed on macrophages mediated by
ROS/NF-kB signaling pathways.

(122)

Ocimum
tenuiflorum

In vitro Inhibited MPO enzyme activity. (123)

UA
In vitro
In vivo

Prevented both monocytosis induced by diabetic
conditions and the phenotypical shift of blood monocytes

toward a pro-inflammatory subset in diabetic mice.
(117)

23-hydroxy
ursolic acid

In vitro
In vivo

Protected monocytes against metabolic stress-induced
priming and dysfunction.

(114)

Zizyphi Semen In vitro Inhibited the foaming of human macrophages. (119)

(Continued)
F
rontiers in Immuno
logy
 09
 frontiersin.org

https://doi.org/10.3389/fimmu.2025.1576771
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Feng et al. 10.3389/fimmu.2025.1576771
TABLE 2 Continued

Tissues
Research
objects

Type of
drugs

Type of
experiments

Function References

Brain

Neuroinflammation UA
In vitro
In vivo

Inhibited microglial pyroptosis via the NF-kB/NLRP3/
GSDMD pathway to alleviate neuroinflammatory.

(133)

UA In vitro
Activated PPARg and selectively modulates microglial

polarization and suppresses MMP2 formation.
(62)

Depression
Cynomorium

songaricum Rupr
In vivo

Inhibited M1 microglial cell polarization, and alleviated
depression through the regulation of the NF-kB-NLRP3

inflammation pathway.
(129)

Alzheimer disease UA In vitro
Blocked binding of Ab to microglia and subsequent

ROS production.
(128)

Pyrola incarnata In vivo
Improved spatial memory performance and ameliorated
Ab25–35 accumulation by activating microglia cells and

upregulating Iba1 level in the hippocampus.
(130)

Cerebral
ischemia reperfusion

UA In vivo
Inhibited microglia-induced neuronal cell death in an

OGDR model of ischemic reperfusion injury by stabilizing
the MMP9/TIMP1 imbalance.

(131)

D-Galactose-Induced
Inflammatory

Response in Mouse
Prefrontal Cortex

UA In vivo

Reduced the number of activated microglia cells and
astrocytes, decreased the expression of CD11b and glial
fibrillary acidic protein, downregulated the expression of
iNOS and COX-2, and decreased interleukin (IL)-1b, IL-6,

and tumor necrosis factor-a levels.

(132)
F
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FIGURE 4

The role of tissue macrophages in disease under the influence of UA. This schematic illustrates the pleiotropic effects of UA on macrophage
subtypes across diverse tissues (skin, bone, liver, brain, and blood vessels).
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5.4 Blood vessels

Macrophage autophagy exerts a protective role against early

stage atherosclerosis, whereas its functional impairment in

advanced disease phases exacerbates vascular inflammation,

oxidative stress, and plaque necrosis, thereby accelerating disease

progression (66). In the early stages of atherosclerosis, cholesterol

crystals can promote the polarization of M1 macrophages and

produce inflammatory responses (43).

23-Hydroxyursolic acid (23-OHUA) was identified as a

potential phytochemical for the prevention and treatment of

atherosclerosis. MKP-1 is a key anti-regulatory factor controlling

monocyte adhesion and chemotaxis. 23-OHUA enhances MKP-1

activity in blood monocytes to a certain extent, suggesting that UA

protects monocytes from metabolic priming and their

transformation into a hyperchemotactic pro-atherosclerotic

phenotype (114). UA exerts its anti-atherosclerotic effects by

protecting blood monocytes from the effects and reprogramming

induced by metabolic stress instead of lowering glucose and lipids

(Figure 3). This situation was also mentioned in another study. UA

preserves THP-1 monocyte functionality under metabolic stress

through suppression of Nox4-mediated oxidative pathways (115).

During lesion development, macrophages maintain a chronic

inflammatory state (116). In animal experiments, UA may

safeguard against the progression of atherosclerotic lesions in

diabetic mice by restricting macrophage migratory capacity, and

the reactivity of oxidative stress THP-1 monocytes to

chemoattractant protein-1 (MCP-1) was increased; however, the

surface expression of the MCP-1 receptor (CCR2) was not changed.

UA can inhibit the chemotactic effect of oxidative stress on MCP-1

in a dose-dependent manner (117). The formation of macrophage-

derived foam cells in atherosclerotic lesions is due to the transfer of

free cholesterol to cholesterol esters (118). UA has been shown to

inhibit the foam cell formation (119). Therefore, UA extracted from

Ilex kudingcha significantly improved hyperlipidemia and

atherosclerosis in APOE-deficient mice (120). LOX-1, a highly

expressed transmembrane protein, is present in macrophages and

is essential for the pathogenesis of atherosclerosis (121). UA

decreases the mRNA and protein expression of LOX-1 (122). UA

has been identified as an important component of basil.

Myeloperoxidase (MPO) is an oxidase that is related to the

pathogenesis of atherosclerosis. Basil extract can be used as an

MPO inhibitor and as a nondrug treatment for atherosclerosis (123)

(Table 2). Considering the pivotal role of macrophages in

atherosclerotic diseases (Figure 4), UA has been a popular

research topic, and UA has been shown to significantly reverse

the abnormal activation of macrophages in atherosclerosis and to

play a role in protecting blood vessels.
5.5 Brain

A series of neurological disorders are linked to oxidative

damage and excessive inflammation, which are prevalent

mechanisms by which UA affects these brain diseases (124)
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(Figure 4). UA has shown strong therapeutic potential in a variety

of neurological diseases (125) and has a strong effect on microglial

polarization, and the release of cytokines and inflammatory

mediators (Table 2). The accumulation of amyloid beta (Ab) in

the brain represents a hallmark pathological characteristic of

Alzheimer’s disease (AD). Ab binds to receptor complexes (such

as CD36) via microglia, triggering the release of proinflammatory

cytokines and the production of neurotoxic reactive oxygen species,

which in turn leads to neuronal degeneration (126). Microglia are

closely related to the deposition site of Ab in the brain, which

activates microglia and produces a range of neurotoxins (127). UA

reduces the ability of microglia to bind Ab; however, it has no effect
on the uptake capacity of microglia (128). Toll-like receptor 4

(TLR4) is expressed on the surface of microglia and mainly

mediates the activation and inflammation of microglia induced by

binding with lipopolysaccharide (LPS) (32). UA can inhibit LPS,

and the combination of TLR4 with immune cells such as

macrophages has been confirmed (35, 78). Perhaps through this

route, effects on microglial function occur, and experiments are

needed to confirm this hypothesis. Zhang et al. reported that UA,

which has significant antidepressant activity, was one of the extracts

of Cynomorium songaricum Rupr via LC-MS/MS analysis (129).

Moreover, Li et al. reported that UA, a bioactive phytochemical of

wintergreen, improves spatial memory performance by activating

microglia and increasing Iba1 levels in the hippocampus. These

findings suggest that UA improves cognitive performance in mice

and holds promise as a natural treatment for neurodegenerative

diseases (130). Furthermore, UA inhibits neuronal death in oxygen

and glucose deprivation–reoxygenation (OGDR) models of

microglia-induced ischemia–reperfusion injury (131). In the

inflammatory response of brain tissue, UA can significantly

reduce the number of activated microglia and reduce the level of

inflammatory factors in the prefrontal cortex of D-galactose (D-

gal)-treated mice, which can alleviate the brain inflammatory

response (132). Both in vivo and in vitro studies have shown that

UA can inhibit microglial polarization from the M2 phenotype to

the M1 phenotype, significantly inhibit related pathways, reduce

cytokine levels, and thus reduce the neuroinflammatory response

induced by intracerebral hemorrhage (133). In LPS/IFN-g activated
microglia, UA modulates M1/M2 polarization through the PPARg/
MMP2 pathway, suggesting a potential mechanism underlying its

neuroinflammatory regulatory effects (62)(Figure 3).
6 Discussion and prospects

This review details the effects of UA on the functions of

macrophages, including polarization, cytokine release, and

autophagy, as well as the role of ursolic acid-mediated

macrophages in various diseases. UA is a potential drug in

inflammatory diseases, and its internal mechanism has always been

one of the research hotspots. Macrophages are an emerging target in

immunotherapy. The combination of UA and macrophages is closely

related to the immune escape of various inflammation-mediated

diseases and tumors, which is worthy of further study.
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In summary, UA strongly affects macrophages, but many

questions need to be answered. Accurately controlling the

regulatory effects of UA on cytokine release from macrophages

for clinical treatment is one of the most important issues. Numerous

studies on UA help develop immune cell medications that are more

effective and less harmful, as well as new targets and avenues for

expanding immunotherapy applications.
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