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Introduction: Prostate cancer (PCa) remains the fifth leading cause of male

cancer mortality, necessitating novel biomarkers and therapeutic targets.

Methods: Through BG4 ChIP-seq profiling in PCa cells, we identified promoter

G-quadruplex (G4) structures in prognosis-associated genes, with GPR137C

exhibiting a functional G4 in its promoter.

Results: This G4 structure facilitates promoter hypomethylation to activate

GPR137C transcription. Moreover, GPR137C promotes tumor microenvironment

remodeling by enhancing immune cell infi ltration, thereby driving

PCa progression.

Disscussion: This study establishes promoter G4s as epigenetic regulators in PCa

while proposing GPR137C as both a prognostic biomarker and a therapeutic

nexus for GPCR-targeted drug development.
KEYWORDS

G-quadruplex, prostate cancer, GPR137C, GPCRs de-orphanization, drugs
Introduction

Prostate cancer is a complex disease that affects millions of men globally,

predominantly in high human development index regions (1, 2). However, while some

types of prostate cancer grow slowly and may need minimal or even no treatment, other

types are aggressive and can spread quickly (3, 4). Tumors that have metastasized to distant

body sites are most dangerous, with 5-year survival rates of 30%–40% (5, 6). However, no
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drug or vaccine is approved by regulatory agencies for the

prevention of prostate cancer (7, 8). Each available treatment

options for Prostate adenocarcinoma (PRAD) patients were

closely associated with severe side effects, i.e., toxicity and reduced

white and red blood cell counts, hair loss, fatigue, erectile

incontinence, and so on (1, 9). Therefore, the discovery of novel

drug targets to effectively resist prostate cancer is urgently needed.

G-protein coupled receptors (GPCRs) are the largest and most

versatile cell surface receptor family with a broad repertoire of

ligands and functions (10, 11). They are the largest targets in

approved drugs (12). However, currently established GPCR drug

targets are widely utilized by distinct approved agents (13, 14). A

very few GPCR-related drugs have been effectively exploited in

pursuit of anti-cancer therapies (15). Hence, orphan GPCR

(oGPCR), which endogenous ligands have not yet been identified,

is a good option for candidate indictors/drugs in detection/therapy

for PRAD patients (16).

The utilization of oGPCRs in drugs is limited due to their

unknown mechanism of activation or de-orphanization (15, 17–

19). However, four-stranded DNA G-quadruplex (G4) structures

are important features of transcriptional regulation that coordinate

recruitment of key chromatin proteins and the transcriptional

machinery through interactions with DNA secondary structure,

rather than primary sequence (20, 21). Previous studies indicated

that interactions exist between transcription factors and G4

structures at gene promoters, especially oncogene such as MYC

and SP1 (22, 23). These results suggested that G4 structures, which

are implicated in transcriptional regulation of oncogene in many

cancers, could act as a promising target for cancer therapy (21).

Hence, G4 and GPCRs could be combined to be utilized in therapy

of cancer patients. However, the relationship between G4 and

prognosis-related oGPCRs in PRAD are unknown. Therefore, G4

structures were screened in PRAD prognosis-related oGPCRs in

this study.

Here, G4 structures in prostate cancer cells (C4-2) were

systemically annotated, and the prognostic values of their related

genes in patients were analyzed. Then, GPR137C was found not

only to be a prognosis-related oGPCR gene in prostate cancer but

also has a G4 structure in its promoter. While preliminary

investigations into GPR137C ’s oncological roles have

concentrated on small-cell lung cancer, initial observations

indicate that its expression dynamics could serve as a potential

prognostic biomarker in this malignancy (24). Meanwhile,

GPR137C functions and the cause of expression change in PRAD

are unknown. In this study, G4 structure probably resulted in the

hypomethylation of the promoter and then led to transcriptional

activation of GPR137C. Moreover, GPR137C was highly expressed

in patients, and greater expression was linked to worse prognosis.

G4 drives oncogenic GPR137C to promote infiltration levels in

cancer-related cells and then to contribute to the malignant

progression of prostate cancer. Furthermore, acetaminophen,

valproic acid, and MPIX-(PEG) 2-G (PNA)-d-Lys-d-Lys (mPG)

probably could be utilized to target GPR137C to inhibit the

development of PRAD in patients. Hence, GPR137C probably is a

good druggable receptor and biomarker for prostate cancer. Our
Frontiers in Immunology 02
results may provide new insight into the druggable receptor

identification and oGPCRs de-orphanization, and G4 in the

promoter may benefit prostate cancer patients as a novel early

genetic indicator.
Materials and methods

Cell lines and culture

Human prostate cancer cell line (C4-2) was cultured in RPMI

1640 medium (Gibco Thermo Fisher Scientific, USA), containing

10% fetal bovine serum (LONSERA, Uruguay) and 1% penicillin–

streptomycin solution (Keygen, China). All cell lines were

purchased from the American Type Culture Collection (ATCC,

USA) and incubated in 95% humidified air at 37°C and 5% CO2.
BG4 ChIP-seq

BG4 ChIP experiment was preformed based on a published

protocol with minor adaptations (25). C4–2 cells were crosslinked

with 1% formaldehyde for 10 min at RT and stopped by adding

125 mM glycine for 10 min. After washing twice with ice-cold

PBS, the cells were pellet down at 300 g for 5 min at 4°C. The cell

pellets were resuspended in 1 ml of ice-cold cyto-lysis buffer and

incubated on ice for 10 min with occasional inversion every 2 min.

The cells were pellet down at 2,300 g for 5 min at 4°C. The nuclear

lysate was then sonicated seven times. The soluble chromatin was

collected by centrifugation at 14,000 rpm for 10 min. One µg of

BG4 antibody was added to the mixture and incubated by rotation

at 1,400 rpm in a thermomixer at 16°C for 1 h. To pull down BG4-

bound chromatin fragments, 10 ml of pre-blocked anti-FLAG M2

magnetic beads was applied to the tube and incubated at 16°C for

1 h. The beads were washed three times and then washed with the

wash buffer for additional three times at 1,400 rpm for 10 min at

37°C. G4 DNA were eluted from the beads by adding 100 ml of TE
buffer and 2 ml of proteinase K to the tube and incubated at 37°C

for 2 h at 1,400 rpm, followed by de-crosslinking overnight at 65°

C. To minimize potential PCR bias during library preparation, we

employed 10 ng of input DNA for tagmentation reactions

followed by standard Nextera barcoding and amplification with

Q5 high-fidelity DNA polymerase (NEB) for both ChIP and input

libraries. All libraries were sequenced to achieve >0.7× sequence

coverage of the human genome per replicate, with four biological

replicates of BG4 ChIP-seq performed in C4–2 cells to ensure

experimental reproducibility.
Sequencing alignment and processing

Human genome sequence build 38 (hg38) downloaded from the

UCSC genome browser was used as the reference for mapping. All

qualified sequencing reads were mapped to hg38 using BWA-MEM

(version 0.7.12-r1039) in paired-end mode. The resulting SAM files
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were converted into BAM format, sorted based on genome position,

and indexed using SAMtools (version 1.8).
Transwell assay

In Transwell assay, cells were inoculated into a 24-well

Transwell cell apical chamber containing matrix gel (BD, USA) to

evaluate migration. The bottom and upper chambers contained the

RPMI medium and serum-free medium, respectively. Cells that

invaded the bot tom chamber s were fixed wi th 4%

polyformaldehyde, stained with 0.1% crystal violet solution, and

then photographed under a microscope.
Small interfering RNA

The small interfering RNAs (siRNAs) of GPR137C was

designed and synthesized by GenePharma Co. (China). The

sequences of siRNA were set as follows: GGCGGAGG

UUAUAUGUAAATT, GGCUCAUGUAGAAGACAUATT

(siRNA for GPR137C sense), UUUACAUAUAACCUCCGCCTT,

UAUGUCUUCUACAUG AGCCTT (siRNA for GPR137C anti-

sense), UUCUCCGAACGUGUCACGUTT (ncRNA for GRDPH

sense), and ACGUGACACGUUCGGAGAATT (ncRNA for

GRDPH anti-sense).
Dual-Luciferase Reporter Assay

The construction of referent and variant reporter plasmids was

based on the pGL3-promoter vector. A 435-bp promoter fragment

containing predictive G4-forming sequences was amplified from

C4–2 cell genomic DNA by polymerase chain reaction (PCR). The

variant reporter plasmid was created by overlap PCR. All the

constructed plasmids were validated by sequencing. C4–2 cells

were harvested at 48 h after transfection and investigated for

luciferase activity using the Dual-Luciferase Reporter Assay

System (Promega, Fitchburg, MA). Luciferase activity was

normalized by phRL-TK luciferase signals.
TCGA data download, process, and analysis

The mRNA expression data and clinical data of prostate cancer

patients were downloaded from TCGA database (https://genome-

cancer.ucsc.edu/). These expression data were first normalized, and

differential expression analysis was then performed for SEMA3F by

R package limma (26). The p-value <0.05 was considered as

statistically significant. According to clinical data, we estimated

cumulative survival curves and overall survival rates using

KaplanߛMeier curves. Then, hazard ratio (HR) and corresponding

95% CIs were estimated based on Cox proportional hazard models.

Indeed, higher HR values (HR > 1.0) indicate bad prognosis, while

lower HR values (HR < 1.0) indicate good prognosis. The p-value was
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calculated by log-rank test. The expression associations between the

genes of our interest were performed by Spearman’s correlation

analysis. p < 0.05 represents statistical significance.

The mutation and copy number variations of TCGA-PRAD

were compiled by using cBioPortal (27). Transcript expression of

GPR137C in prostate and corresponding cancers were explored

based on data of GTEx and TCGA database. The GPR137C protein

level and tissue staining were explored based on Human Protein

Atlas (HPA) database. Furthermore, mRNA alternative splicing

situation for GPR137C was explored based on TCGA splicing

variants database (TSVdb).

Furthermore, we downloaded a standardized pan-cancer

dataset from the UCSC (https://xenabrowser.net/) database. Then,

tumor mutational burden (TMB) was calculated by TMB function

in R package mafTools for pan-cancer. Combined with expression

of GPR137C in each cancer, the person correlation coefficient

between GPR137C expression [log2(x+0.001) transformation] and

neoantigen (NEO)/loss of heterozygosity (LOH)/homologous

recombination deficiency (HRD)/ploidy/differentially methylated

probes-based (DMPss), DNA methylation-based (DNAss)/

enhancer elements/DNA methylation-based (ENHss) were

computed, respectively.
DNA methylation analysis

TCGA DNA methylation data files for GPR137C in prostate

cancer and matched normal tissues were collected from Genomic

Data Commons. We utilized the Illumina Human Methylation

450k R annotation data package to map the Illumina methylation

array probes to individual genes. We then retained those probed

mapped to the corresponding promoter region. Median beta values

were utilized when genes had multiple probes. We then calculated

median beta value for GPR137C in each sample to calculate the

overall methylation level in the promoter region. To examine the

regulation of GPR137C expression by DNA methylation, we

estimated the Spearman correlation between DNA methylation

beta values with mRNA expression for GPR137C.
Functional enrichment analysis

The expression of related genes for GPR137C was calculated

based on expression and Pearson’s correlation coefficient. The

expression was downloaded from TCGA-PRAD and GTEx-

prostate tissues. The GO and KEGG analyses for related genes

were performed based on KOBAS (28).
Immune infiltrate analysis

Infiltration levels for distinct immune cells in PRAD were

quantified by using CIBERSORT and TIMER (29–31).

CIBERSORT is an analytical tool, which was developed to

provide an estimation of the abundances of member cell types in
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a mixed cell population based on gene expression data. Meanwhile,

the TIMER is another tool for comprehensive analysis of tumor-

infiltrating immune cells. Here, they were combined to analyze the

correlation of GPR137C expression level with immune cell

infiltration level in PRAD. p-value <0.05 was considered as

statistically significant.
Analysis of scRNA-seq data

The single-cell RNA sequencing data were downloaded from

NCBI GEO database (GSE137829, GSE141445, GSE172301, and

GSE176031) (32–35). The scRNA-seq data analysis was consistent

with a previous study. The Seurat function “FindVariableFeatures”

was first utilized to identify the highly variable genes (HVGs). Then,

the top 2000 HVGs were applied for data integration. The data were

scaled using “ScaleData,” and the first 40 principle components

were chosen for auto-clustering analyses using “FindNeighbors”

and “FindClusters” functions. For all cells, we identified clusters

setting the resolution as 1.5. The clustering results were then

visualized with the UMAP scatter plot. The marker genes of

macrophage were downloaded from CellMark database (36).
Structural pharmacological analysis

GPR137C 3D structure was predicted by AlphaFold3 (37). The

ligand binding pockets of GPR137C were obtained by POCASA

software (38). The interacting chemicals for GPCRs were calculated

based on comparative toxicogenomics database (39). The complex

of GPCRs and molecules were predicted by SwissDock software

(40). The interactions between protein and molecule were identified

based on the distance between two atoms.
Statistical analysis

Data were analyzed using GraphPad Prism 8. Statistical

significance (p < 0.05) between the means of two groups was

determined using the Dunnett’s t-test. The difference in survival

between two groups were calculated using the log-rank test. p < 0.05

was considered statistically significant.
Results

Screen the G4 profile of promoters in
PRAD prognosis-associated GPCRs

G4 formation can affect gene regulation and has been associated

with cancer progression. Then, G4 structures in prostate cancer cells

(C4-2) were sequenced (Figure 1A). We found∼10,000 G4 structures
in chromatin, predominantly in the promoters and 5' UTRs of highly

transcribed genes (Figure 1B). Meanwhile, GPCRs control many

aspects of cancer progression including tumor growth, invasion,
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migration, survival, and metastasis. Furthermore, GPCRs activity

can be altered in cancer through aberrant overexpression, especially

orphan GPCRs (oGPCRs). Here, G4 formation in promoter could be

utilized to explain aberrant overexpression of oGPCRs in PRAD cells

(Figures 1C, D). By utilizing G4 and prognosis screen, we obtained an

oGPCR, i.e., GPR137C (Figure 1E). A G4 ChIP-seq peak was

presented in the promoter of GPR137C (Figure 1E). In addition,

the construction of referent and variant reporter plasmids was based

on the pGL3-promoter vector. A 435-bp promoter fragment

containing G4-forming sequences (mutant and wide type) was

amplified from C4–2 cell genomic DNA by polymerase chain

reaction. Then, the luciferase results indicated that G4 in promoter

enhances the expression level of GPR137C (Supplementary

Figure S1). These results suggested that G4 in promoter probably

act as a novel activating pathway for oGPCRs.

GPR137C was identified, as it not only is prognosis-related

oGPCR in PCa, but it also has a G4 ChIP-seq peak in the

promoter. According to TCGA database, GPR137C was a

significance difference oGPCRs in PRAD and corresponding normal

tissues (Figure 1F). Based on the clinical information for the TCGA-

PRAD cohort, GPR137C expression level was then found to be

positively correlated with pathological stage (T stage) and nodal

metastasis status of PCa patients, respectively (Figures 1G, H).

Meanwhile, low GPR137C expression was significantly correlated

with better disease-free survival in PCa patients when compared to

high expression group (p = 9.80E−05) (Figure 1I). Furthermore,

GPR137C had the highest HR value in PCa patients when it was

compared to pan-cancer based on forest plot (HR = 1.64, p = 3.9E−03)

(Figure 1J). In addition, it was found that GPR137C could promote

migration of prostate cancer cells (C4–2 and PC3) better when

compared to the Transwell assays results for si-GPR137C and wild

type (Supplementary Figure S2). These results indicated that

GPR137C could probably act as novel biomarker for PRAD.
G4 negatively correlated with methylation
levels in promoter region of GPR137C in
PRAD

According to HPA and GETX database, the average RNA

expression for GPR137C in prostate was 0.5 and 0.6 nTPM,

respectively (Figure 2A). However, the expression in prostate

cancer cell (PC-3) for GPR137C was 4.4 nTPM, which was far

high than that in normal prostate (Figure 2B; Supplementary

Figure S3). Meanwhile, GPR137C protein was identified in 100%

prostate cancer tissues (antibody, HP1030763) (Figure 2C).

Moderate to strong cytoplasmic positivity for GPR137C was

observed in prostate cancer (high, 58.33%; medium, 41.67%).

There was no weak or negative stain for GPR137C in prostate

cancer. Moreover, strong cytoplasmic positivity for GPR137C was

both identified in low and high grade for PRAD patients, but most

of it was distributed in high grade (Figure 2D; Supplementary

Figure S4). These results indicated that protein expression for

GPR137C was a potential biomarker and progress-related oGPCR

for prostate cancer.
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Single-cell sequencing data set GSE141445 was further utilized

to compare GPR137C expression level in PRAD and corresponding

normal tissues. Then, it was found that GPR137C was not only

highly expressed in tumor samples but also has high percent

expression when it was compared to normal samples (Figure 2E).

Then, point mutations and methylation level for GPR137C were

utilized to explain aberrant overexpression of GPR137C in PRAD

tissues. It was found that point mutations in GPR137C could not

affect the expression and methylation level of GPR137C in PRAD

tissues (Figures 2F, G). However, methylation level in the promoter

could affect the expression of GPR137C in PRAD patients. Low

methylation level in the promoter was significantly correlated to

high GPR137C expression in PRAD patients (p = 3.40E−04)

(Figure 2H). Hence, G4 has a negative relationship with
Frontiers in Immunology 05
methylation level in the promoter for GPR137C. In details, based

on a previous study (41), the G4 structure probably isolate the DNA

methyltransferase Dnmt3a catalytic domain (DNMT3A-CD) and

prevents its proper binding to DNA, resulting in hypomethylation,

which leads to transcriptional activation of GPR137C.
ENST00000321662.10 is a main cancer-
progressed isoform for GPR137C in PRAD

Isoforms are often tissue-specific and may alter the function,

cellular localization, and stability of the corresponding RNA or

protein. Meanwhile, alternative usage of transcript isoforms from the

same gene has been hypothesized as an important feature in prostate
FIGURE 1

G4 activation PRAD prognosis-related gene GPR137C. (A) G4 screening process for oGPCRs in PRAD. (B) Gene association regions for G4 structures. (C)
Low/high expression level in PRAD. (D) BG4 ChIP-seq signals around GPCRs in the two expression groups. (E) G4 structure in GPR137C promoter. (F)
Transcript levels of GPR137C in normal and PRAD tissues. GPR137C expression level in different T stages (G) and nodal metastasis statuses (H). (I)
Disease-free survival plot for GPR137C in PRAD. (J) HR values of GPR137C for pan-cancer ** and **** represent p <0.05 and p< 0.0001.
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cancer. Then, isoforms for GPR137C in normal and PRAD were

explored. Based on the landscape of exon expression for GPR137C in

GTEx database, it was found that GPR137C was enriched in the brain
Frontiers in Immunology 06
and testis but not in the prostate (Figure 3A). The main transcripts for

GPR137C in prostate was ENST00000542169.6, ENST00000555622.1,

and ENST00000321662.10 (Figure 3B). However, it was highly
FIGURE 2

The G4 drives promoter hypomethylation in GPR137C. (A) GPR137C expression in normal prostate tissues. (B) GPR137C expression level in common
cell lines. (C) The percent of moderate to strong cytoplasmic GPR137C positivity in stained cancer tissues. (D) The GPR137C expression level in
different grades of PRAD tissues. (E) GPR137C expression level in normal and PRAD based on single-cell sequencing data. (F) GPR137C expression
level in wild type and mutated group. (G) The methylation level in wild type and mutated group for GPR137C. (H) The methylation level in the
promoter of GPR137C. ** represents p < 0.05.
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expressed in prostate cancer tissues. The main transcripts for

GPR137C in TCGA-PRAD were ENST00000542169.6 and

ENST00000321662.10 (Figures 3C, D).

From the landscape of transcript expression in prostate cancer

and corresponding adjacent normal tissues, ENST00000321662.10

expression far exceeds other isoforms (Figures 3B, D). Meanwhile,

the isoform ENST00000542169.6 was not only with a low

expression in PCa tissues but also the expression presents no

difference among normal, primary tumor, and metastatic cancer

tissues. However, the isoform ENST00000321662.10 was not only

with a high expression in PCa tissues but also the expression

presents a significant difference among normal, primary tumor,

and metastatic cancer tissues. The expression of the isoform
Frontiers in Immunology 07
ENST00000321662.10 gradually increases as the cancer progresses

(Figures 3D, E). These results indicated that ENST00000321662.10

was a main cancer-progress-related isoform for GPR137C in PRAD.
Functional roles of GPR137C in prostate
cancer progress

To explore GPR137C functional roles in prostate cancer, the top

100 expression-related genes in TCGA-PRAD and GTEx-prostate

tissues were identified. Then, we found that the Pearson’s

correlation coefficient (PCC) between GPR137C and genes in

both PRAD and prostate was approximately 0.5 (Figure 4A).
FIGURE 3

ENST00000321662.10 is a cancer-progress-related isoform for GPR137C in PRAD. (A) Exon expression for GPR137C in normal tissues. Transcript
expression in prostate (B) and PRAD tissues (C). (D) GPR137C-related isoform expression in primary tumor, metastatic, and corresponding normal
tissues. (E) The RNA-Seq by expectation maximization (RSEM) value for two main isoforms of GPR137C in different tissues for TCGA-PRAD.
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However, the top 100 expression-related genes for GPR137C in

PRAD and prostate had no identical name (Figure 4A).

Furthermore, the GPR137C high expression group had more

TP53, OTOF, FAM214A, ROBO2, SACS, CSMD3, and KMT2C

mutations when compared with the GPR137C low expression

group in PRAD (Figure 4B). These GPR137C related genes in

PRAD were utilized to perform enriched functional analysis. Then,

we found that GPR137C has main functions on cell cycle processes,

energy metabolism, and location in lysosome membrane

(Figure 4C). Meanwhile, GPR137C was probably related to

prostate cancer progress by some famous pathways, i.e., p53,

FoxO, and TGF-beta signaling pathways (Figure 4D).

GPR137C was associated with pathways for tumor genomic

heterogeneity and cell stem, such as p53 and TGF-beta signaling

pathways. Then, the relationship between the expression of GPR137C

and PRAD genomic heterogeneity was explored based on four items,

i.e., neoantigen (NEO), loss of heterozygosity (LOH), homologous

recombination deficiency (HRD), and ploidy. Meanwhile, the
Frontiers in Immunology 08
relationship between the expression of GPR137C and PRAD tumor

cell stem was explored based on three items, i.e., differentially

methylated probes-based (DMPss), DNA methylation-based

(DNAss), and enhancer elements/DNA methylation-based

(ENHss). Then, we found that the GPR137C expression level was

positively linked to NEO, LOH, HRD, ploidy, DMPss, DNAss, and

ENHss in PRAD (Figures 4E, F; Supplementary Figure S5). These

results suggested that the expression of GPR137C was positively

correlated with tumor genomic heterogeneity and stemness of PRAD.

Genomic heterogeneity provides the foundation for cancer stem

cells (CSCs) and adaptive subclones. CSCs gain survival advantages

by remodeling the microenvironment, while selective pressures

from the microenvironment, in turn, drive the evolution of

heterogeneity and stemness (42). This complex network not only

poses a major challenge in cancer therapy but also offers direction

for developing multi-target combination therapies. Additionally,

neoantigen load was also associated with higher content of CD8 T

cells, macrophages, and CD4 memory T cells in multiple tumor
FIGURE 4

GPR137C function roles in PRAD. (A) GPR137C-related genes in prostate and TCGA-PRAD. No intersection sets between two top 100 related gene
lists. (B) Top 15 GPR137C expression-related mutation genes in TCGA-PRAD. The enriched Gene Ontology (GO) items (C) and KEGG pathways
(D) for top 100 GPR137C-related genes in TCGA-PRAD. The relationship between GPR137C expression and NEO (neoantigen) (E)/differentially
methylated probes-based (DMPss) (F). Both correlation coefficient values were more that 0.1 with a corresponding p-value < 0.05.
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types. Therefore, combined immunotherapy and targeting

GPR137C in the treatment of PRAD may be more helpful

for patients.
GPR137C functional roles in prostate
cancer tumor microenvironment

GPR137C was found to be highly expressed in prostatic

glandular cells and fibroblasts in prostate normal tissues based on
Frontiers in Immunology 09
data in Human Protein Atlas (HPA) database (Figures 5A, B). Then,

according to the Gene Expression Omnibus (GEO) database, four

prostate cancer signal cell sequencing datasets were downloaded,

i.e., GSE137829, GSE141445, GSE172301, and GSE176031. In

PRAD tissues, GPR137C was found to be not only highly

expressed in malignant cells and fibroblasts but also highly

expressed in macrophage, monocytes, epithelial cells, and

endothelial cells (Figure 5C). These results suggested that

GPR137C was highly expressed in various cell types in cancer

tissues when it was compared with normal tissues.
FIGURE 5

GPR137C affects tumor microenvironment of prostate cancer. (A) In prostate tissues, GPR137C expression level in different cell types. (B) The
GPR137C and marker genes of individual cell-type expression in prostate. (C) In prostate cancer tissues, GPR137C expression level in different cell
types. The correlation coefficient between GPR137C expression level and infiltration level of cancer-associated fibroblasts (D) /endothelial cells
(E) /epithelial cells (F) /monocytes (G) /macrophage (H). Macrophages are divided into three parts, i.e., macrophage, M1 macrophage, and M2
macrophage, to calculate correlation coefficients.
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According to TCGA-PRAD data, it was found that GPR137C

promotes infiltration levels of cancer-associated fibroblast (R = 0.36,

p = 4.06E−14) and endothelial cells (R = 0.21, p = 2.40E−06)

(Figures 5D, E). For epithelial cells, although GPR137C was highly

expressed, it did not enhance their infiltration level (Figure 5F).

However, GPR137C expression level was positively linked to the

expression for marker genes of epithelial mesenchymal

transformation (EMT) (CDH1, CDH12, VIM, SNAI1, ZEB1, and

ZEB2) in PRAD (R = 0.17, p = 4.80E−04) (Supplementary Figure

S6). This result suggested that the high expression of GPR137C in

the epithelial cell probably activated EMT, promoting cancer

development. For monocytes and macrophage cells, the GPR137C

expression was only positively relative to infiltration levels of

macrophages (Figures 5G, H). Furthermore, GPR137C only

facilitated the M2 macrophage infiltration level and not M1

macrophage in PRAD tissues (Figure 5H). These results suggested

tha t h igh GPR137C expre s s ion cou ld a ff e c t tumor

microenvironment, influencing the progress of prostate cancer.
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GPR137C relation drugs prepared for PRAD
patients

To explore potential drugs for PRAD, three-dimensional

structure and potential pockets of GPR137C were predicted by

Alpha Fold and POCASA software (37, 38). The five pockets of

GPR137C were identified based on three-dimensional structure

(Figures 6A, B). The best one (pocket A) in five pockets was

distributed in the N-terminal of GPR137C based on volume

depth (VD) values (Figure 6B). Meanwhile, potential chemicals

for GPR137C were explored by comparative toxicogenomics

database. The top 10 interacting chemicals are shown in

Figure 6C. The top 2 interacting chemical for GPR137C were

acetaminophen and valproic acid (Figure 6C).

The molecule acetaminophen was then docked with GPR137C

by SwissDock software. The complex structure for acetaminophen

and GPR137C with a low attracting cavities (AC) score is shown in

Figure 6D. There were many interactions between acetaminophen
FIGURE 6

Potential anti-tumor drugs based on GPR137C structure. (A) GPR137C structure predicted by AlphaFold3. (B) Potential binding pockets of ligands for
GPR137C. (C) Top 10 interacting chemicals for GPR137C. (D) The complex structures for GPR137C and potential drug acetaminophen. (E) The
schematic drawing complex of MPIX-(PEG) 2-G (PNA)-d-Lys-d-Lys (mPG) and G4 in GPR137C promoter.
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and GPR137C. These results indicated that acetaminophen

probably acts as a ligand for GPR137C. Furthermore, MPIX-

(PEG) 2-G (PNA)-d-Lys-d-Lys (mPG) was a known G4 inhibitor

(21). The mPG could be utilized to inhibit G4 formation in the

promoter of GPR137C, which induced inhibition GPR137C

expression in PRAD tissues (Figure 6E). These results suggested

that acetaminophen and mPG could be act as potential drugs for

PRAD patients.
Discussion

Since there is a rapid increase in prevalence and mortality for

PRAD, it remains one of the leading cancers in the world and an

important global healthcare problem for humans (6). PRAD

terminal patients are largely threatened with unfavorable clinical

prognosis owing to metastasis, drug resistance, and side effects (5).

Meanwhile, oGPCRs were known to act as potential biomarkers or

pharmacological targets for many cancers (16, 43). In this study, an

orphan GPCR, GPR137C, was found closely affiliated to PRAD

occurrence, development, and prognosis. Furthermore, G4 plays an

important role in gene regulation and is associated with cancer

progression (44). The presence of G4 structure is tightly associated

with CGI hypomethylation in the human genome, and G4 structure

probab ly s eques t e r s the DNMT3A-CD resu l t ing in

hypomethylation and activation of oncogene transcription (41).

Then, we identified G4 structures in the promoter of GPR137C, and

it has a negative relationship with methylation level in the promoter

for GPR137C. Therefore, the G4 structure probably prevents

DNMT3A-CD proper b inding to DNA, resu l t ing in

hypomethylation, which leads to transcriptional activation of

GPR137C. In this study, GPR137C could be activated in the

PRAD tumors by G4 formation in the promoter, which probably

is a novel de-orphanization/activation method.

GPR137C, a lysosome-localized G-protein-coupled receptor-

like protein with unknown function, may regulate MTORC1

complex translocation to lysosomes (45). Here, we found that a

higher expression of GPR137C (cancer-progress related isoform:

ENST00000321662.10) in tumors means a poorer prognosis of

prostate cancer. In the enriched analysis of GPR137C-related

genes in PRAD, its functions were found to be probably related

to cell cycle and energy metabolism. Meanwhile, its expression was

positively correlated with tumor heterogeneity and stemness in

PRAD tissues. It promotes prostate cancer progress probably by

cancer-related pathways, i.e., p53, FoxO, and TGF-beta signaling

pathways. Furthermore, GPR137C was found to promote

infiltration levels of cancer-associated fibroblast, endothelial cells,

and M2 macrophages. For epithelial cells, it probably activated

epithelial mesenchymal transformation in PRAD tissues. These

resu l t s sugges ted that GPR137C could affec t tumor

microenvironment and influencing the progress of prostate

cancer by p53 and TGF-beta-related pathways. Hence, GPR137C

could act as a potential biomarker for PRAD patients.
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By computer virtual filtering based on three-dimensional

structure, acetaminophen, valproic acid, and MPIX-(PEG) 2-G

(PNA)-d-Lys-d-Lys (mPG) probably could be utilized to inhibit

the development of PRAD patients. Previous studies had been

indicated that acetaminophen use has been associated with

blunted vaccine immune responses (46). It could act as a

potential suppressor of antitumor immunity (46). These results

were consistent with our findings of GPR137C. Acetaminophen acts

on antitumor immunity probably based on its target GPR137C

functions. Integrated analysis of tumor genomic heterogeneity,

stemness, and the immune microenvironment revealed that

combined targeted therapy against GPR137C and immunotherapy

may offer greater clinical benefits for PRAD patients.

In summary, our findings suggest that GPR137C plays a critical

role in immune infiltration and may serve as a potential diagnostic

and prognostic molecular marker for PRAD. Additionally,

GPR137C likely regulates several key pathways involved in energy

metabolism, cell cycle, tumor heterogeneity, and stemness in

PRAD. Moreover, G4 in promoter probably is a novel de-

orphanization/activation method for oGPCRs. Furthermore,

acetaminophen, valproic acid, and mPG probably could be

utilized to inhibit GPR137C. However, the regulatory

mechanisms of GPR137C in the gastric cancer tumor immune

microenvironment and the targeting specificity and clinical efficacy

of the potential drugs require further investigation and discovery

through our future research efforts. Therefore, we hope that our

results will provide novel insights into the activation of oGPCRs and

the development of immunotherapeutic drugs, aid clinicians in

selecting appropriate treatments for PRAD patients, and contribute

to the identification of biomarkers that can predict the survival of

PRAD patients more accurately.

Conclusion

In this study, we investigated the relationship between

GPR137C expression and G4 structure, immune infiltration,

tumor genetic heterogeneity, tumor stemness, protein

interactions, and genomic alterations and analyzed GPR137C

DNA methylation and small molecule drugs in PRAD. Our

findings suggest that GPR137C is a promising independent

prognostic factor and is closely associated with immune

infiltration level and cancer progression in PRAD. G4 in the

promoter could act as one of de-orphanization/activation

methods for oGPCRs. This study comprehensively reveals the

role of GPR137C in PRAD and its potential as a promising

novel marker.
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