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Background: C–X–C motif chemokine ligand 9 (CXCL9) is induced by the

interferon-g response, and its receptor, C–X–C motif chemokine receptor 3, is

a well-established marker of T-helper 1 (Th1) cells, which play an essential role in

type 1 immune responses. CXCL9 expression is upregulated in patients with

interstitial lung disease (ILD), COVID-19, and asthma. Although type 1

inflammation and CD8+ T cell activation are considered central to the

inflammatory pathophysiology of chronic obstructive pulmonary disease

(COPD), the relationship between blood levels of Th1 chemokines and this

pathophysiology remains unclear. This study aimed to investigate the

relationship between CXCL9 and chronic respiratory diseases.

Methods: We conducted a retrospective cohort study. The serum levels of

CXCL9, surfactant protein A (SP-A), Krebs von den Lungen-6 (KL-6), and C-

reactive protein (CRP) were analyzed in 165 patients with ILD and COPD. COPD

was diagnosed using pulmonary function tests according to the Global Initiative

for Chronic Obstructive Lung Disease criteria. Statistical analyses included

Fisher’s exact test, Steel–Dwass test, Mann–Whitney U, and Wilcoxon test. An

unsupervised hierarchical cluster analysis using complete linkage and Euclidean

distance was performed for data clustering.

Results: CXCL9 levels were significantly higher in patients with COPD and

interstitial ILD than in healthy smokers and non-smokers. The median serum

CXCL9 levels in patients with ILD, COPD, healthy smokers, and healthy

nonsmokers were 61.6, 69.3, 37.0, and 32.5pg/mL, respectively. CXCL9 levels

in patients with COPD significantly correlated with KL-6, SP-A, blood eosinophil

ratio, lactate dehydrogenase (LDH), and CRP levels, with correlation coefficients

of 0.243, 0.381, 0.225, 0.369, and 0.293, respectively. Additionally, CXCL9 levels

were negatively correlated with FEV1%. Levels of LDH and KL-6 and the

neutrophil ratio were significantly elevated in non-eosinophilic COPD patients

with high CXCL9 levels.
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Conclusions: Our results highlight the potential role of CXCL9 in the

inflammatory pathophysiology of COPD.
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Introduction

The Cmotif chemokine ligand 9 (CXCL9) is a 12 kDa chemokine

composed of 103 amino acids. It is expressed in macrophages,

astrocytes, endothelial cells, and epithelial cells, with its expression

regulated by the interferon (IFN)-g response. The receptor for

CXCL9, C motif chemokine receptor 3 (CXCR3), is found on T

cell subsets, natural killer cells, innate lymphoid cells, macrophages,

and B cells. CXCR3 is a well-known marker of T-helper 1 (Th1) cells,

which play key roles in type 1 (T1) immune responses. Additionally,

IFNs can induce the expression of CXCL10 and CXCL11, which

share the same receptor and act similarly to CXCL9 (1).

In a model of cigarette smoke-induced lung inflammation,

CXCR3 knockout (KO) mice displayed reduced lung inflammation,

characterized by a lower number of CD8+ T cells (2) and decreased

levels of IFN-g and CXCR3 ligands, including CXCL9 (3). Elevated

serum CXCL9 levels have been reported in patients with asthma,

interstitial lung disease (ILD), and COVID-19 infection. In COVID-

19 patients, high serum CXCL9 levels are associated with severe

conditions such as acute respiratory distress syndrome (ARDS) (4, 5).

Furthermore, serum CXCL9 levels are elevated in patients with

Stevens–Johnson syndrome and toxic epidermal necrolysis,

condition linked to CD8+ T cells that produce type 1 pro-

inflammatory cytokines (6). Severe COVID-19 symptoms, such as

ARDS or kidney failure, are also correlated with elevated CXCL9

levels. Therefore, serum CXCL9 levels are indicative of T1

inflammatory pathophysiology in both in vitro and in vivo settings.

Chronic obstructive pulmonary disease (COPD) is marked by

inflammation in the airways and lung parenchyma. While multiple

inflammatory cells contribute to COPD, type 1 inflammation and

CD8+ T-cell activation are central to its pathogenesis (7). Studies

have shown an increased presence of CD8+ T cells in the lungs of

COPD patients, which correlates with airflow limitation (8, 9).

Additionally, elevated levels of Th1-attracting chemokines such as

CXCL9, CXCL10, and CXCL11, and their receptor, CXCR3, have

been observed in the airways and lung tissue of COPD patients (8).

These findings suggest that type 1 inflammatory biomarkers could

be valuable for managing COPD. However, recent studies indicate

that, similar to asthma, COPD consists of multiple inflammatory
isease; CRP, C-reactive

Healthy controls; ILD,

is; KL-6, Krebs von den

protein A.
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subtypes (10). For example, COPD with a type 2 inflammatory

phenotype shows a better response to anti-IL-4R inhibitors and

inhaled corticosteroids (ICS) (10, 11). In addition to type 1 (T1) and

type 2 (T2) inflammation, Th17-type inflammation has also been

implicated in COPD, particularly in the induction of autoimmune

responses (12). In this study, we investigate the pathology of COPD

related to T1 inflammation and examine differences in the type 2

inflammatory phenotype, defined by peripheral blood

eosinophil counts.
Methods

Patient selection

Patients with preserved specimens and comparable pulmonary

function data were recruited from Shanghai Pulmonary Hospital

between 2018 and 2021. All samples were collected during a

stable period.

A total of 100 patients with COPD were enrolled in this study.

Of these, 17 were excluded for the following reasons: incomplete

records (n = 2), a time difference > two months between sample

collection and the respiratory function test (n = 12), and comorbid

infections or inflammatory diseases (n = 3). Ultimately, 83 patients

with COPD were included. No patients with asthma-COPD

overlap, which may exhibit distinct inflammatory profiles, were

included in this study.

In total, 206 patients with ILD were enrolled. Of these, 37 were

excluded for the following reasons: incomplete records (n = 17), a

time difference > two months between sample collection and the

respiratory function test (n = 12), and inflammatory diseases other

than autoimmune diseases (n = 8). Finally, 169 patients with ILD

were included.

To assess the effect of smoking on neutrophilic airway

inflammation, we included 50 healthy smokers (current smokers)

and 50 healthy non-smokers (individuals with no history of

smoking). No abnormalities were found in chest radiographs of

the healthy individuals.

Participants were classified as current smokers (≥10 pack-

years), former smokers (quit ≥1 year), or never smokers (<100

lifetime cigarettes).

This study adhered to the principles of the Declaration of Helsinki

and was approved by the Medical Research Ethics Committee of

Shanghai Pulmonary Hospital (approval number: K17-016). Informed
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consent was obtained from all patients. Following the Ethical

Guidelines for Medical and Health Research Involving Human

Subjects, study information was published on the official website,

allowing patients to withdraw their consent at any time.
Study design

In this cross-sectional study, we retrospectively collected

samples and clinical data. All serum samples were obtained after

patient admission to the hospital. Clinical data were extracted from

medical records.
Data collection

Serum levels of CXCL9, surfactant protein A (SP-A), and Krebs

von den Lungen-6 (KL-6) were measured using a fully automatic

immunoanalyzer (HISCL™-5000; Sysmex Corp., Hyogo, Japan). C-

reactive protein (CRP) levels, hematological results, and biochemical

test results were also obtained from the medical records.
Diagnostic definitions

COPD was diagnosed according to the Global Initiative for

Chronic Obstructive Lung Disease (GOLD) guidelines (13).

Pulmonary function tests revealed obstructive ventilatory

dysfunction, characterized by a post-bronchodilator forced expiratory

volume in 1 s to forced vital capacity ratio (FEV1/FVC) of <0.7.
Frontiers in Immunology 03
The diagnosis of ILD primarily relies on radiological findings,

rather than pulmonary function tests. None of the patients enrolled

had an FEV1/FVC ratio < 0.7. ILD types included idiopathic

pulmonary fibrosis (IPF), idiopathic nonspecific interstitial

pneumonia, connective tissue disease-associated interstitial lung

disease (CTD-ILD), chronic hypersensitivity pneumonitis

(according to the 2022 guidelines), and unclassifiable ILD.

Unclassifiable ILD refers to cases that lack a specific diagnosis

following a multidisciplinary review of clinical, radiological, and

pathological data (14).
Statistical analysis

Since the data were not normally distributed, descriptive

statistics were used and presented as medians with interquartile

ranges. Statistical significance was set at p <0.05. Strong, moderate,

and weak correlation coefficients were defined as 0.7 ≤ r < 1, 0.3 ≤ r

< 0.7, and r < 0.3, respectively. A complete case analysis was

performed to address missing data. Fisher’s exact test, Steel–

Dwass test, Wilcoxon signed-rank sum test, and Mann–Whitney

U test were applied using R version 4.4.2 (R project) (15).

Results

Demographics and biomarker levels

Table 1 presents the demographic characteristics of the

participants. The study cohort was predominantly male, with 88%

of patients having COPD and all healthy smokers being male.
TABLE 1 Demographic and clinical characteristics.

ILD COPD HC smoker HC nonsmoker P-value

Age (Year) 62.0 ( 56.0 - 68.0 ) ( 169 ) 67.0 ( 62.0 - 74.0 ) ( 83 ) 42.5 ( 38.0 - 47.8 ) ( 50 ) 36.0 ( 29.3 - 44.8 ) ( 50 ) <0.0001

Sex, Male (%) 111 (65.3) 73 (88.0) 50 (100) 30 (60) 0.0005

FVC% pred 67,4 ( 55.7 - 80.6 ) ( 169 ) 70.5 ( 57.4 - 83.5 ) ( 83 ) 0.2224

FEV1%pred 70.9 ( 60.2 - 84.0 ) ( 169 ) 53.9 ( 37.1 - 67.0 ) ( 83 ) <0.0001

Neutrophil 103 cell/mL 4.3 ( 3.2 - 6.4 ) ( 162 ) 4.0 ( 3.2 - 5.1 ) ( 83 ) 0.0786

Eosinophil 103 cell/mL 0.1 ( 0.1 - 0.3 ) ( 162 ) 0.1 ( 0.1 - 0.3 ) ( 83 ) 0.4760

LDH U/L 214.5 ( 175.0 - 270.3 ) ( 162 ) 171.0 ( 144.5 - 184.5 ) ( 75 ) <0.0001

CRP mg/dL 4.6 ( 2.3 - 10.8 ) ( 169 ) 4.4 ( 3.1 - 7.0 ) ( 78 ) 0.8010

IPF, CPFE, CTD-ILD, PAP,
other ILD

56,1,29,12,71
(33,1,0.6,17.2,7.1,42.5)

GOLD1,2,3,4 n (%) 12,34,19,18
(14.5,44.0,22.9,21.7)

Smoker, n (%) 40 (23.7) 46 (62.2) 50 (100) (0) 0.0005

ICS, n (%) 31 (41.9)

OCS, n (%) 71 (42) 0 (0.0)
fro
Data are presented as median (interquartile range [IQR]) (n) or n/N (%), where N is the total number of patients with available data. Statistical signific ance between clusters was assessed using
the Mann–Whitney U test, Kruskal–Wallis test, or Fisher’s exact test, as appropriate. FVC, forced vital capacity; FEV₁, forced expiratory volume in 1 second; LDH, lactate dehydrogenase; CRP, C-
reactive protein; IPF, idiopathic pulmonary fibrosis; CPFE, combined pulmonary fibrosis and emphysema; CTD-ILD, connective tissue disease–associated interstitial lung disease; PAP, pulmo
nary alveolar proteinosis; ILD, interstitial lung disease; COPD, chronic obstructive pulmonary disease; ICS, inhaled corticosteroids; OCS, oral cort icosteroids; HC, healthy controls.
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The median percentage predicted FVC (%FVC) was 67.4% in

patients with ILD and 70.5% in those with COPD. The median

predicted forced expiratory volume in 1 s (%FEV1) was 70.9% in

patients with ILD and 53.9% in those with COPD. According to the

GOLD criteria, patients with COPD were classified as follows: 14.5%

GOLD I, 44.0% GOLD II, 22.9% GOLD III, and 21.7% GOLD IV.

Among the 169 patients with ILD, 56 (33.0%) had IPF, one (0.6%)

had CPFE, 29 (17.2%) had CTD-ILD, 12 (7.1%) had pulmonary alveolar

proteinosis, and 71 (42.5%) had unclassified ILD. Additionally, 71

patients (42.0%) had received steroids prior to the first sample

collection. Among the patients with COPD, 31 (41.9%) had received ICS.

The median serum CXCL9 levels in patients with ILD, those with

COPD, healthy smokers, and healthy non-smokers, median serum

CXCL9 levels were 61.6, 69.3, 37.0, and 32.5 pg/mL, respectively.

Median serum SP-A levels were 60.2, 35.3, 21.7, and 25.4 ng/mL,

respectively, and median KL-6 levels were 994.0, 223.0, 162.0, and

151.5 U/mL, respectively (Table 1, Figure 1). Both ILD and COPD

patients had significantly higher serum CXCL9 levels compared to

healthy smokers and non-smokers. However, this significance was

reduced after adjusting for age differences in the multivariate analysis

(Supplementary Table S1). Serum levels of these markers were

generally lower in ex-smokers with COPD, even though their

FEV1/FVC ratios were similar (Supplementary Figure S1).

In contrast, no significant differences in serum CXCL9 levels

were observed between patients with ILD and those with COPD,

nor between healthy smokers and non-smokers.
Frontiers in Immunology 04
Relationship between serum CXCL9 levels
and pathophysiology of respiratory
diseases

We investigated the correlation between CXCL9 levels and various

pathophysiological parameters to better understand its relationship

with COPD pathophysiology (Table 2; Figure 2). In COPD patients,

CXCL9 levels were significantly correlated with KL-6 and SP-A levels.

The correlation coefficients for SP-A, KL-6, lactate dehydrogenase

(LDH), and CRP levels were 0.381, 0.243, 0.369, and 0.293,

respectively. CXCL9 levels also showed a negative correlation with

FEV1% and the ratios of lymphocyte. Multiple regression analyses

confirmed significant correlations between CXCL9 levels and SP-A,

KL-6, and LDH levels, the ratios of lymphocytes and the ratios of

eosinophils (Supplementary Table S2).
COPD and inflammatory marker levels

A subtype of COPD characterized by blood eosinophil counts

exceeding 300 cells/mL has been suggested, with evidence indicating

a better response to T2 anti-inflammatory treatments such as ICS or

dupilumab. Since CXCL9 levels were significantly correlated with

the eosinophi l rat io , we analyzed the differences in

pathophysiological representation between CXCL9 and

eosinophils (Figure 3, Supplementary Table S3).
FIGURE 1

Distribution of CXCL9, KL-6, and SP-A levels ILD patients, COPD patients. (A) Distribution of CXCL9, (B) KL-6, and (C) SP-A levels in patients with
interstitial lung disease (ILD), those with chronic obstructive pulmonary disease (COPD), healthy smokers (HS), and healthy non-smokers (HN). The
result of the Kruskal-Wallis test is shown in the figure. The post-hoc power for CXCL9, KL-6, and SP-A was 0.99, 1.00, and 1.00, respectively. Results
are shown as individual data points (circles) with medians (bars) and interquartile ranges (boxes). Outlying values, defined as those more than 1.5 box
lengths from the upper or lower edges, are represented as dots outside the whiskers enclosed in circles. The statistical significance between the
clusters was calculated using the Steel–Dwass test. ***p < 0.001.
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Patients were classified into four subtypes based on their

CXCL9 levels and eosinophil counts. The cutoff value for CXCL9

was set at 61.15 pg/mL, corresponding to the 90th percentile value

in healthy individuals (smokers and non-smokers), and the cutoff

for eosinophil count was 300 cells/mL. Among these patients, 31

were negative for both CXCL9 and eosinophils (LL), four were

positive only for eosinophils (Eo), 32 were positive only for CXCL9

(MIG), and 11 were positive for both CXCL9 and eosinophils (HH).

KL-6 and LDH levels were significantly higher in the MIG group

compared to the LL group, and the neutrophil ratio was significantly

higher in the MIG group than in the Eo group. Although the median

FEV1% was lower in the MIG and HH groups, the difference was not

statistically significant. In multiple logistic regression analysis, CXCL9

levels were significantly associated with KL-6 and LDH levels, after
Frontiers in Immunology 05
adjusting for age, sex, eosinophil count, smoking status, and ICS

treatment (Supplementary Table S4).
Discussion

This study examined the role of CXCL9 in COPD

pathophysiology by measuring its serum levels and evaluating its

potential as a specific marker of T1-driven inflammation.

A large-scale study on COPD severity distribution reported that the

proportions of patients with GOLD stages I–IV were 10.1%, 41.7%,

34.5%, and 13.6%, respectively (16). In contrast, our study found that

22.9% of patients were in GOLD III and 21.7% in GOLD IV, indicating

a slight skew toward more severe cases. Additionally, we observed
FIGURE 2

Correlations between pathophysiological parameters and CXCL9 levels in COPD. The correlation coefficients were calculated using Spearman’s
correlation analysis. p < 0.05 was considered statistically significant. (A) SP-A, (B) KL-6, (C) Lymphocyte %, (D) LDH, (E) CRP, (F) Age and (G) FEV1%
showed a significant correlation with CXCL9 levels.
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elevated KL-6 and SP-A levels in COPD patients compared to healthy

controls (HC), though these levels remained below the established

cutoffs levels for ILD (17, 18).

CXCL9 levels were compared among patients with ILD or COPD,

healthy smokers, and healthy non-smokers (Figure 1). At the 90th

percentile, CXCL9 levels in healthy smokers and non-smokers were 59.0

pg/mL and 62.4 pg/mL, respectively. These levels were slightly higher

than those reported in previous Japanese studies using the same reagent

with HISCL™, where the 95th percentile was 39.0 pg/mL (1).

Significant age differences were noted between the HC and patient

groups. While our previous research indicated that CXCL9 levels in

healthy individuals increased slightly with age, the differences were

minimal compared to those observed in disease conditions. Among HC

over 60 years, CXCL9 levels reached 20.5 pg/mL (interquartile range

18.0–22.3 pg/mL), remaining below the 95th percentile and significantly

lower than those seen in ILD or COPD patients (1). Although a

substantial age difference masked the variation in CXCL9 levels

during multivariate analysis (Supplementary Table 1), age was not a

predominant factor compared to CXCL9 levels in pathophysiological

analysis (Supplementary Tables 2 and 3). Therefore, age distribution

differences between patients and HC are unlikely to affect the clinical

significance of CXCL9 levels.

COPD is characterized by chronic inflammation of the airways and

lung parenchyma, leading to progressive airflow limitation. Various

inflammatory cells, such as eosinophils, neutrophils, CD8+ T-cells, Th1

cells, and alveolar macrophages, interact to create distinct

inflammatory profiles in individual patients (2, 8, 9). In addition to

T1 inflammation, pro-inflammatory cytokines such as TNF-a, IL-6,
Frontiers in Immunology 06
and IL-17 play crucial roles in COPD pathogenesis. TNF-a promotes

neutrophilic inflammation and alveolar destruction, IL-6 contributes to

systemic inflammation and COPD-associated comorbidities, and IL-17

drives neutrophilic recruitment and airway remodeling, contributing to

chronic inflammation and steroid resistance (12, 19). Although

cigarette smoking is the primary risk factor for COPD, chronic

exposure to biomass-burning smoke also independently induces

distinct systemic inflammation characterized by elevated cytokines

such as IL-6, IL-8, and IP-10 (20). Additionally, genetic susceptibility

(e.g., PiS variant) may further enhance COPD risk among non-

smoking populations exposed to biomass smoke may further

enhance COPD risk among non-smoking populations exposed to

biomass smoke (21). Patient classification based on specific

inflammatory pathophysiology is essential for precision medicine in

COPD. Recently, a subtype called eosinophilic COPD was identified

based on blood eosinophil counts. Studies suggest that these patients

respond well to ICS and dupilumab, a specific inhibitor of IL-4Ra (10,

11). However, biomarkers for other inflammatory COPD subtypes

remain poorly understood (10).

In COPD patients, monocytes exhibit enhanced chemotactic

responses, attracting Tc1 and Th1 cells via the CXCR3 receptor (22).

Increased infiltration of CXCR3-expressing and CD8+ T cells has been

observed in COPD lung tissue (19). Furthermore, CD4+ Th1, Th17,

and CD8+ T cells are elevated in COPD lungs and strongly correlate

with disease severity (12). CD8+ T cells in COPD also demonstrate

higher perforin and toll-like receptor expression, with an increased

capacity to induce IFN-g and TNF-a, both of which act as CXCL9

inducers (23).
TABLE 2 Correlations between pathophysiological parameters and CXCL9 levels.

rs P-value Adjusted p-value Post-hoc Power

SP-A 0.381 0.000 0.007 0.950

KL-6 0.243 0.027 0.066 0.606

Neutrophil % 0.183 0.098 0.166 0.384

Lymphocyte % -0.332 0.002 0.012 0.873

Monocyte % 0.190 0.087 0.164 0.409

Eosinophil % 0.225 0.041 0.086 0.540

Basophil % 0.033 0.769 0.872 0.060

LDH 0.369 0.001 0.010 0.936

CRP 0.293 0.009 0.039 0.774

Age 0.270 0.014 0.039 0.701

FVC% Pred. -0.025 0.824 0.876 0.056

FEV1. %Pred -0.110 0.322 0.421 0.168

FEV1/FVC -0.280 0.010 0.035 0.735

DLco -0.187 0.146 0.226 0.230

SpO2 -0.123 0.271 0.383 0.199

PaO2 -0.079 0.483 0.586 0.109

PaCO2 0.020 0.856 0.856 0.054
Correlation coefficients were calculated using Spearman’s correlation analysis, and the p-values were adjusted using the Benjamini-Hochberg method.
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CXCL9, a chemokine induced by IFN-g, has been shown to

correlate significantly between serum and bronchoalveolar lavage

fluid in patients with chronic hypersensitivity pneumonitis and

autoimmune disease-related ILD (24, 25). These findings suggest

that serum CXCL9 levels reflect Th1/Tc1-driven inflammation and

its role in disease progression.

In this study, serum CXCL9 levels were significantly elevated in

COPD and ILD and correlated with KL-6, SP-A, CRP, LDH, the

blood eosinophil ratio, and FEV1% (Figure 2). However, the

correlations between CXCL9 and KL-6, SP-A, and LDH levels were

weak, preventing the establishment of a direct causal relationship.
Frontiers in Immunology 07
KL-6, a marker of alveolar epithelial cell injury, is elevated in ILD

and acute lung injury. It has also been detected at higher levels in COPD

patients, correlating with disease severity and poor prognosis (26, 27).

Similarly, SP-A is increased in COPD serum, correlating with reduced

lung function and increased inflammation, making it a potential

biomarker for disease severity (28, 29). LDH, a cytoplasmic enzyme

released into the bloodstream due to cell membrane disruption, is

commonly used as a marker of cell injury and death (30). Its activity is

elevated in asthma, chronic cough, and COPD (26, 31, 32).
FIGURE 3

Comparison of patient characteristics in the four identified class based on serum CXCL9 and eosinophil count levels in patients with COPD. LL,
CXCL9 low and eosinophil count low; Eo, only eosinophil high; MIG, CXCL9 high; HH, CXCL9 and eosinophil count high. (A) Serum CXCL9 levels,
(B) blood eosinophil counts, (C) serum KL-6 levels, (D) blood neutrophil ratios, and (E) serum LDH levels are presented as individual data points
(circles) with medians (horizontal bars) and interquartile ranges (boxes). Outlying values, defined as those more than 1.5 box lengths from the upper
or lower edges, are represented as dots outside the whiskers enclosed in circles. The statistical significance between the classes were calculated
using the Steel–Dwass test. *p < 0.05, **p < 0.01, and ***p < 0.001.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1576849
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Chengsheng et al. 10.3389/fimmu.2025.1576849
These findings suggest that elevated serum KL-6 and LDH levels

may indicate severe tissue damage in COPD, whereas CXCL9 levels

may reflect the underlying inflammatory processes driving this damage.

Further analysis classified COPD patients into four groups based

on blood eosinophil ratios and CXCL9 levels. KL-6 and LDH levels

were elevated in both the MIG andH/H groups, indicating significant

respiratory damage. In the MIG group, neutrophil ratios were

significantly higher, suggesting that neutrophilic inflammation,

distinct from eosinophilic COPD, was the primary contributor to

respiratory damage. Additionally, recent research has linked COPD-

associated autoimmune responses primarily to type 1 inflammation.

This suggests that MIG-type patients may have an increased risk of

developing autoimmune diseases (12).

This retrospective study has several limitations. First, it

included a relatively small observational cohort, with a limited

number of patients with eosinophilic COPD. Additionally, COPD

disease activity scores, such as the Modified Medical Research

Council Dyspnea Scale or COPD Assessment Test, were not

collected. Given its cross-sectional nature, this study also could

not infer causality. Furthermore, detailed exposure data to

environmental pollutants other than smoking, such as biomass-

burning smoke or ambient air pollution, were not systematically

collected, which might constitute a potential confounder

influencing the inflammatory profiles observed. Long-term,

longitudinal studies are needed to clarify the relationship between

CXCL9 levels and disease progression. While our findings provide

substantial evidence regarding the role of T1 inflammation in

COPD, further research is required to explore this aspect in

greater depth and validate our results in broader contexts.

In conclusion, this study demonstrated that serum CXCL9 level

serves as a distinct T1 inflammatory marker of COPD, independent

of T2 inflammation, which is defined by eosinophilic inflammation.

These findings suggest that the incorporation of CXCL9 into clinical

assessments could improve COPD phenotyping and open new

avenues for targeted anti-inflammatory therapies.
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