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Background: Influenza viruses with pandemic potential and possible burden of 
post-viral sequelae are a global concern. To prepare for future pandemics and 
the development of improved vaccines, it is vital to identify the immunological 
changes underlying influenza disease severity. 

Methods: We combined unsupervised high-dimensional single-cell mass 
cytometry with gene expression analyses, plasma CXCL13 measurements, and 
antigen-specific immune cell assays to characterize the immune profiles of 
hospitalized patients with severe and moderate seasonal influenza disease 
during active infection and at 6-month follow-up. We used age-matched 
healthy donors as controls. 

Results: Severe disease was associated with a distinct immune profile, including 
lower frequencies of ICOS+ mucosal-associated invariant T (MAIT) cells, and 
CXCR5+ memory B and CD4+CXCR5+CD95+ICOS+ and CD8+CXCR3+CD95+ 

PD-1+TIGIT+ memory T cells, as well as lower CD4 gene expression. Higher 
frequencies of CD16+CD161+ NK cells, CD169+ monocytes, CD123+/− dendritic 
cells, and CD38high plasma cells and high CXCL13 plasma levels were also 
associated with severe disease. Alterations in immune cell subpopulations 
persisted at convalescence for the severely ill patients only. 

Conclusions: Our results indicated a reduction in regulatory MAIT cells and 
memory T and B cells and an increase in the inhibitory subpopulations of 
monocytes and NK cells in severe influenza that persisted at convalescence. 
These immune cell alterations were associated with higher age and the presence 
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of several underlying conditions that may contribute to frailty. This study 
illustrates the power and sensitivity of high-dimensional single-cell analyses in 
identifying  potential  cellular  biomarkers  for  disease  severity  after  
influenza infection. 
KEYWORDS 

influenza, hospitalization, disease severity, mass cytometry, immune profiling, biomarkers 
Introduction 

Influenza is ranked among the greatest global health threats in 
the 21st century (1). This is particularly relevant in light of the 
current outbreak of H5N1 in poultry and dairy cows, which is a 
major concern due to its pandemic potential. The estimated overall 
influenza-related excess mortality in Norway prior to the COVID­
19 pandemic reached 910 deaths per season, accounting for 2.08% 
of all deaths, and worldwide, the number of deaths exceeded 
600,000 (2, 3). The average annual hospitalization rate due to 
influenza in Norway between 2008 and 2017, overlapping the 
period when the sampling was performed (2014–2017), was 48 
per 100,000 (including the 2009–2010 pandemic outbreak) (4). Risk 
factors associated with severe outcomes include age over 65 years 
and underlying risk factors such as immunodeficiency, obesity, 
cardiovascular diseases, neuromuscular diseases, diabetes, and 
pregnancy (5, 6). Long-term effects after influenza infection are 
similar to those after COVID-19 conditions, but less severe, except 
for pulmonary-related outcomes like cough and shortness of breath 
(7). Understanding immunological alterations in patients with 
severe influenza is crucial in preparing for future pandemics, 
preventing post-viral sequelae, and developing better vaccines. 

The progression and outcome of influenza infection are 
determined by a complex interplay between innate and adaptive 
immune responses. Protection against influenza infection has been 
associated with various factors, including the presence of influenza-
specific serum antibodies, polyfunctional B and T cells, particularly 
IFNg-producing CD4+ T cells, memory CD8+ T cells, and CD38+ 

plasmacytoid dendritic cells (pDCs) (8–15). Additionally, innate 
immune cells such as NK cells, monocytes, and dendritic cells 
(DCs) contribute to viral containment and immune cell recruitment 
through the secretion of cytokines, interferons, and chemokines 
(11–13). Genes related to antimicrobial responses and neutrophil 
activity are also reported to be upregulated in whole blood in 
response to influenza infection (16–18). 

Severe influenza disease is associated with impaired control of 
viral replication, defective interferon responses, or deficiencies in cell-
mediated immunity (9, 19, 20). Severe and life-threatening influenza is 
characterized by lymphopenia, with a decrease in circulating CD4+ 

and CD8+ T cells, gd T cells, and mucosal-associated invariant T 
(MAIT) cells, along with an excessive release of proinflammatory 
cytokines and chemokines (cytokine storm) (19–22). Prolonged 
02 
inflammation with increased monocyte numbers and elevated 
cytokine levels is also observed during severe influenza disease 
(23–25). While there is more limited information on NK cell 
frequencies and function in severe influenza, both increased 
activation and decreased frequencies of specific subpopulations have 
been reported (12, 13),  making  the role of NK cells  in  disease outcome  
still a subject of debate. 

In this study, we aimed to identify an immune cell profile associated 
with severe influenza disease using high-dimensional single-cell 
immune profiling. Such profiling, linked to clinical outcome, could 
reveal biomarkers to guide improved treatment and vaccine 
development targeting beneficial immune responses. By applying 
mass cytometry (CyTOF) and data-driven analyses, we characterized 
and compared a variety  of immune  cell  subpopulations in severely and 
moderately ill influenza patients with polymerase chain reaction (PCR)­
confirmed seasonal influenza during both the acute and convalescent 
phases (26). We included healthy individuals as controls. To support 
this exploratory approach, we conducted differential gene expression 
analysis, measured plasma chemokine CXCL13 levels [as a measure of T 
follicular helper (Tfh) and B-cell activity prior to antibody induction 
(27)], and assessed influenza-specific antibody and T-cell responses. 
Methods 

Study population and sample collection 

Patients aged ≥18 years admitted to Oslo University Hospital 
during the four consecutive influenza seasons between 2014/2015 
and 2017/2018 were included. Influenza was confirmed by an in-
house influenza virus A/B RNA real-time PCR, and Ct values were 
used as a proxy for viral load to categorize the samples as high or 
moderate levels of influenza virus (Ct < 28 and Ct = 28.1– 
33, respectively). 

Blood samples were collected at the time of hospitalization [i.e., 
in the acute phase (T1), 0–3 days after admission] and/or in the 
convalescent phase [5–11 months later (T2)]. Samples from 27 
patients with influenza A/H3N2 at acute infection (seasons 1–4) 
and 16 paired samples at convalescence (seasons 1, 3, and 4, 5–7 
months after infection) were analyzed by CyTOF (Figure 1). In the 
other immune analyses, 91 patients at T1 and 60 patients during 
convalescence (57 paired samples) admitted during the last three 
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seasons were included since RNA was only collected in these 
seasons (Figure 1). 

Healthy controls (N = 79), i.e., volunteer donors with no clinical 
signs of infection at the time of sampling, gave blood samples in the 
early autumn of 2016 (prior to the start of the influenza season). All 
controls were included in the immunological and gene expression 
analyses, and 15 individuals were included in the CyTOF analysis. 

Written informed consent was obtained from all participants 
before inclusion, and the study was approved by the Regional 
Committee for Medical and Health Research Ethics in South-
Eastern Norway (REK number 2013/2033). 
Disease severity definition 

Severe disease was retrospectively defined as having at least two 
of the following criteria: receiving oxygen supplementation, 
pneumonia at admission, or staying 5 days or longer in hospital. 
Patients having zero or one criterion were defined as moderately ill. 
For the CyTOF analysis, all of the severely ill patients were selected 
on the requirement of oxygen supplementation, together with either 
pneumonia or staying 5 days or longer at the hospital, whereas none 
of the moderately ill patients selected in this analysis required 
oxygen, which improved the clinical separation of the two groups. 
Blood samples 

Blood samples for the isolation of Peripheral Blood Mononuclear 
Cell (PBMCs) and plasma were collected using CPT sodium citrate 
tubes (BD Vacutainer® CPT™ , 362782, Becton, Dickinson and 
Company, Franklin Lakes, New Jersey, USA). Whole blood was 
collected using PAXgene Blood RNA tubes (, #762165, PreAnalytiX 
GmbH, Hombrechtikon, Switzerland). PAXgene samples were 
collected during seasons 2–4. For the controls, blood samples were 
collected in Acid citric dextrose (ACD) BD Vacutainer tubes (#364606, 
Becton, Dickinson and Company, Franklin Lakes, New Jersey, USA), 
and PBMCs were isolated in SepMate tubes with a dilution of the blood 
1:1 in 0.9% NaCl before overlaying the Lymphoprep solution. Plasma 
was removed from the supernatant after centrifugation. The dilution 
factor for plasma after PBMC isolation in SepMate tubes was calculated 
to be 3.53 by comparing levels of vitamins in plasma obtained from 
healthy blood donors using SepMate and ACD tubes (28). 
Frontiers in Immunology 03 
CMV ELISA 

Cytomegalovirus (CMV) ELISA was performed using CMV-

IgG ELISA (EI 2570–9601 G) from Euroimmun (Lübeck, Germany) 
according to the manufacturer’s instructions. Ten microliters of 
plasma was used in the analysis, and the plate was read using a 
Biotek EL808 plate reader at 450/630 nm with the Gen5 software 
(Thermo Fisher Scientific, Waltham, MA, USA). Anti-CMV IgG ≥ 
22 RU/mL was considered positive. 
Mass cytometry antibody staining and 
acquisition 

CyTOF analysis was performed on PBMCs from a subgroup of 
patients with influenza A/H3N2 infection (12 severely and 15 
moderately ill), with follow-up samples at convalescence (five 
from the severe and 11 from the moderately ill group) and 15 
healthy controls. PBMCs were thawed, counted, and split into two 
tubes of 2 and 3 million live cells before resting overnight at 37°C 
with 5% CO2. Unspecific staining was blocked with Human 
TruStain Fc (cat 422302, BioLegend, San Diego, CA, USA). The 
tube of 2 million cells was stained for phenotypic characterization 
with antibodies against surface markers (Supplementary Table 2 
and annotation of subpopulations according to Supplementary 
Table 3). The cells were stained with surface markers using 
different staining conditions with washes between the staining 
steps (Supplementary Table 6) and  cisplatin (ID™ Cisplatin­
194Pt, Fluidigm, San Francisco, CA, USA) for live cell 
identification, followed by fixation and staining with intercalator 
Cell-ID Intercalator-Ir (201192B, Fluidigm, San Francisco, CA, 
USA) for DNA detection. The tube of 3 million cells was 
stimulated for 4 hours with 1X eBioscience™ Cell Stimulation 
Cocktail [phorbol 12-myristate 13-acetate (PMA), ionomycin, 
brefeldin A, and monensin (00-4975-93, eBioscience/Thermo 
Fisher Scientific, Waltham, MA, USA)]; for characterization of 
functional cell populations (to investigate how the severity of 
influenza disease affects the overall immune cell distribution), the 
PBMCs were stimulated with PMA+ionomycin for maximal 
activation to identify functional alterations in the overall immune 
cell population associated with severe influenza infection. The 
stimulated cells were fixed and permeabilized after surface 
staining and kept in methanol at −80°C until intracellular 
FIGURE 1 

Flowchart of all study participants and analyses conducted. T1, at infection; T2, at convalescence. 
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staining on the same day as acquisition (staining groups and 
conditions in Supplementary Tables 5 and 6). After two washes 
and resuspension in water, all samples were analyzed using a Helios 
CyTOF mass cytometer (Fluidigm, San Francisco, CA, USA). All 
centrifugation steps were performed at 300 × g before fixation and 
800 × g after fixation and permeabilization. 
 

 

CyTOF data analysis 

The data files were normalized using EQ Four Element Calibration 
Beads (#201078, Fluidigm, San Francisco, CA, USA) and spiked into all 
samples at a 1:10 ratio, followed by algorithmic processing, and then 
data files were exported for clean-up and analysis in R (version 4.2.2). 
All codes can be found on GitHub (https://github.com/ 
folkehelseinstituttet/immunological_profiling_severe_influenza). 

Clean-up gating was conducted semi-automatically with an in-
house routine based on Gaussian parameters following the 
approach described in Fluidigm Technical note PN 400248 B1. 
All gates were manually checked and adjusted if needed. Supervised 
analysis was conducted by gating all cells into positive or negative 
for marker expression. For some markers, cells were additionally 
gated as having dim/low or bright/high expression. The gating was 
conducted semi-automatically using density plots and manually 
checked and adjusted if needed. Based on this categorization of the 
expression of each marker, the major cell types (annotated 
according to Supplementary Table 3) were found  as  a
combination of marker expression according to Supplementary 
Table 4, and the cell count of each cell type in each sample was 
obtained. Negative binomial regression was used to analyze the 
association between the count of each cell type and the covariates: 
disease status–timepoint [ST1, severe influenza (S) at active 
infection (T1); ST2, severe influenza at convalescence (T2); MT1, 
moderate (M) influenza at infection; MT2, moderate influenza at 
convalescence; Ctrl, healthy influenza PCR-negative age-matched 
controls sampled outside the flu season], age, and sex, with ST1 as 
baseline. To allow the model to represent frequencies rather than 
counts, the logarithm of the total number of cells per sample was 
used as an offset. For each cell type, all additive models involving a 
combination of disease status–timepoint, age, and sex were run in 
addition to a model with no covariates. Models with additive 
covariates were used to assume that age and sex impact the cell 
population size similarly, independent of disease status–timepoint. 
The best model was found as the simplest model with an Akaike 
information criterion (AIC) value less than the minimum AIC value 
+ 2. The p-value describing the difference between ST1 and MT1 for 
each cluster was collected. If a model without disease status– 
timepoint was found to have the lowest AIC value for a cluster, 
the p-value from the full model including status–timepoint, age, and 
sex was collected. Based on all collected p-values, an adjusted p-
value was found by false discovery rate (FDR) using the Benjamini– 
Hochberg method, and cell types and cell populations with adjusted 
p-value less than 0.05 were reported. 
Frontiers in Immunology 04
CyTOF clustering and identification of cells 

Unsupervised analyses were conducted by clustering using flow self-
organizing map (FlowSOM) with 25,000 cells randomly chosen from 
each sample. A total of 196 nodes with a predefined number of 
granularities—10, 20, 30, 40, 50, and 60 clusters—were evaluated, and 
clusters where the frequency per sample was less than 99% correlated 
from the different meta-clusters were kept for further evaluation. 
Clusters where the frequency per sample was correlated between 99% 
and 99.999% were also kept if the size of the new cluster was <95% of the 
correlated cluster. Negative binomial regression analysis was performed 
on the obtained clusters in the same way as for the supervised analysis. 
The FlowSOM analysis was repeated four times, and the results were 
compared. Only clusters found in at least two runs were reported as 
significant. Clusters from different runs that were more than 95% 
correlated with another cluster were considered similar. Marker 
expression for the different clusters were visualized using marker plots, 
where the signal of each marker was plotted as lines with vertical bars 
representing 5, 10, 25, 75, 90, and 95 quantiles; circles representing 
median signal; and vertical dotted lines indicating negative/positive 
signal and for some markers also low/high signals based on manual 
gating. The marker plots were used to identify the tentative cell type and 
characteristics of each cluster. To create two-dimensional 
representations of the dataset, each sample was randomly down-
sampled to retain 3,000 cells to form a dataset for the t-SNE 
algorithm, creating a t-distributed stochastic neighbor embedding (t-
SNE) map. The cell populations and the significant clusters were colored 
in the t-SNE plot based on the results from the supervised gating and 
significant clusters from unsupervised clustering, respectively. 

To verify the findings from the unsupervised clustering, the 
markers most clearly defining a significant cluster were identified 
and used for semi-automatic gating of all collected cells per sample 
(no down-sampling). The number of cells per participant in these 
gated populations was obtained and analyzed with negative 
binomial regression to see if they were significantly different 
between ST1 and MT1. Further, a set of two markers per 
population was applied to identify cell populations that differed in 
severity after manual gating. An additional statistical analysis was 
conducted with ST1, MT1, ST2, and MT2 as reference in the 
negative binomial regression to identify clusters that were 
significantly different between any of the study groups at T1 or 
T2, i.e., ST1–MT1, ST1–Ctrl, MT1–Ctrl, ST2–MT2, ST2–Ctrl, and 
MT2–Ctrl. The  incidence rate ratios (IRRs) calculated in  the
negative binomial regression were obtained for all the significant 
clusters for each set of comparisons. All significant clusters were 
characterized based on marker expression using the marker plots. 
dcRT-MLPA transcription and differential 
gene expression analysis 

A dual-color Reverse Transcriptase Multiplex Ligation-
dependent Probe Amplification (dcRT-MLPA) was performed on 
 frontiersin.or
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isolated RNA (using Qiagen RNA isolation kit according to the 
manufacturer’s instructions, Benelux, Netherlands) from whole 
blood to profile mRNA expression of 144 genes relevant for 
immune responses to respiratory tract infections. The genes were 
normalized to the housekeeping gene GAPDH, and samples with a 
signal below the detection level of the assay (log2-transformed peak 
area 7.64) were assigned to the threshold value. Genes with 
expression levels above the threshold in only two or fewer 
participants were not used for analysis. To detect differences 
between the patient groups, a scaled principal component analysis 
(PCA) plot was performed. Figures of fold change with adjusted p-
value from the Wilcoxon test indicated with stars for genes with adj 
p-value < 0.05 and fold change >1.5 times are seen as upregulated 
(red) and <0.65 (1/1.5) as downregulated (blue). Comparison 
between severe and moderate at timepoint 1 was also analyzed 
with linear regression, with each gene as the response variable in the 
same way as CyTOF data and with covariates, age, sex, and status– 
timepoint. AIC was used to compare the different covariate 
combinations to find the best model, and the corresponding p-
value from each analysis was collected and corrected with FDR. 
Only adjusted p-values less than 0.05 were reported. 
CXCL13 ELISA 

CXCL13 levels were measured in plasma from 151 patient 
samples [severe T1 (n = 41), moderate T1 (n = 50), severe T2 (n 
= 23), moderate T2 (n = 37), and 79 healthy controls by ELISA 
(Human CXCL13/BLC/BCA-1 Quantikine ELISA Kit, R&D 
Systems Inc., Minneapolis, MN, USA)], according to the 
manufacturer’s instructions. The kit had a limit of detection of 
3.97 pg/mL (range 7–500 pg/mL). The ELISA plates were analyzed 
on a Biotek EL808 plate reader at 450/562 nm using the Gen5 
software. The Wilcoxon test was used to analyze the data. 
Hemagglutination inhibition 

Hemagglutination inhibition (HAI) titers were measured as 
previously described 74. For season 1 samples, HAI titers against 
influenza A(H3N2) Switzerland, influenza A(H1N1) Cal/07/09, and 
influenza B Massachusetts were measured. For season 2, the same 
influenza A viruses were used, in addition to influenza B/Brisbane and 
influenza B/Phuket. For season 3, influenza A(H1N1) Michigan was 
added, and A(H3N2) Hong Kong replaced the Switzerland-type, while 
the B viruses stayed the same. For season 4, the viruses used were the 
same as for season 3, except for the exclusion of influenza A(H1N1) 
Cal/07/09. The Wilcoxon test was used to analyze the data. 
ELISPOT 

Dual IFNg/IL-2 EliSpot (CTL ImmunoSpot, Cleveland, OH, USA) 
was used for the detection of IFNg- and IL-2-secreting cells as 
previously described (29). Frozen PBMCs were thawed, washed, and 
rested in tubes for 4 hours at 37°C with 5% CO2. A total of 200,000 cells 
Frontiers in Immunology 05 
per well were seeded and stimulated with inactivated virus A/H1N1/ 
Cal09, A/H3N2/Shanghai, or B/Yamagata (100 HAU/mL) for 18 hours 
at 37°C with 5% CO2. A total of 400,000 cells per well were plated for 
peptide stimulation with CD4+ and CD8+ internal and external 
influenza A T-cell peptides (all 2 mg/mL). Anti-CD28 antibody was 
used as co-stimulation (0.1 mg/mL), and anti-CD3 antibody (0.1 mg/ 
mL) was added as a positive control. Cytokine-positive cells were 
detected according to standard procedures from the manufacturer by 
anti-IFNg-biotin/streptavidin and anti-IL-2-BAM/PEG [poly(ethylene 
glycol)-lipid biocompatible anchor for the membrane] binding and 
read  on  a CTL  S6  Ultra V ImmunoSpot analyzer (ImmunoSpot, 
Shaker Heights, Cleveland, OH, USA). The background from 
unstimulated cells was subtracted for the determination of the 
cytokine-positive cells after stimulation. The detection limit was 0.5 
units per well after background subtraction. Wilcoxon tests were 
performed to compare differences between the patient groups and 
between patients and healthy controls. 
Patient severity immune profile 

An immune profile of severe disease was constructed from all 
outcomes significantly different between the severely and 
moderately ill patients at T1. To minimize the influence of 
outliers, the outcomes were log-transformed. All outcomes were 
scaled by subtracting the mean and dividing by the standard 
deviation. Then, a median for each participant group for all 
outcomes was calculated and presented in a heatmap. In addition, 
the scaled outcomes were correlated using Pearson’s correlation. 
Statistics 

Data were analyzed using R (version 4.2.2). Comparisons between 
severe and moderate groups at timepoint 1 were analyzed with linear 
regression with gene expression as the response variable and the 
negative binomial regression of the number of cells in clusters from 
the CyTOF  data  with  covariates, age, sex, and  status–timepoint. AIC 
was used to compare the different covariate combinations to find the 
best model, and the corresponding p-value for severity differences from 
each analysis was collected and corrected for FDR using the 
Benjamini–Hochberg method. Linear regression analysis for the 
difference in gene expression between severe and moderate groups at 
timepoint 1, with the covariates age and sex, was also applied. 
Wilcoxon tests were performed for gene expression fold-change 
analysis and all other immunological analyses. For correlation 
analyses, Pearson’s correlation was applied. All statistical analyses 
reported in the text and figures are adjusted p-values, p < 0.05. 
Results 

Study participants 

Ninety-one adults hospitalized due to influenza were included: 
41 had severe disease and 50 had moderate disease. Seventy-nine 
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healthy controls were included in the early autumn of 2016, prior to 
the influenza season. Various immunological analyses were 
performed using blood samples from acute infection and 
approximately 6 months later (at convalescence) and from 
healthy controls (Figure 1; Table 1). Overall, the severely ill 
patients were significantly older (p = 0.015) and more likely to 
have any underlying health conditions, such as cardiovascular, lung, 
kidney, liver, or neurological diseases, than the moderately ill 
patients (p = 0.009). Generally, there were fewer participants at 
follow-up from the severely ill group compared to the moderately ill 
group, at 56% and 74%, respectively. Only a small number of 
patients (n = 6) received treatment in the intensive care unit (ICU); 
all were part of the severely ill group. Previous CMV infection was 
reported to impact immune responses against influenza (30), and 
therefore, the incidence of prior CMV infection was analyzed, 
finding comparable levels between the two patient groups. 
Influenza type was confirmed by PCR, with A/H3N2 infection in 
49 (54%) of the patients (25 severely ill and 24 moderately ill). 
Influenza viral load, defined as high or moderate levels, was not 
found to be different between the patient groups (only assessed in 
the CyTOF group). 
Immune cell profiling of unstimulated cells 
by unsupervised analyses 

The characteristics of the CyTOF subgroups are presented in 
Table 1, and those at convalescence are in Supplementary Table 1. 
For the identification of cell subpopulations, data-driven 
unsupervised clustering was applied to samples from all 
participants and timepoints (Figure 2). The unsupervised analysis 
revealed 92 unique clusters (Supplementary Figure 2A, marker 
plots, Supplementary Figure 2B), of which 24 clusters were 
significantly different between all participant groups (Figure 2A; 
Supplementary Figure 3). When comparing patients with severe or 
moderate disease during acute infection, the cell frequencies were 
significantly different for 11 of the 24 clusters (Figure 2B; Table 2, 
and marker plot in Supplementary Figure 2C). During acute 
infection, the frequencies of CD4+ central memory (CM) T 
follicular helper (Tfh) cell population [CCR7+CD45RAlow 

CXCR5+ inducible costimulatory (ICOS)+] (U1, i.e., unstimulated 
cells cluster 1), CD8+ CM CXCR3+ T cells [U2, also expressing 
programmed cell death-1 (PD-1) and TIGIT], MAIT cells [two 
subpopulations; CD4+CD8+ (U3) and CD4−CD8+ (U4, expressing 
KLRG1)], and a subpopulation of memory CXCR5+ B cells (U5) 
were significantly lower in the severely ill patients than in the 
moderately ill patients (Figure 2C). Further, the frequencies of 
CD19lowCD38+high plasma cells (U6), NK cells (U7, expressing 
CD16 and CD161), two subpopulations of CD14+CD169+CD85j+ 

monocytes (U8, CD123− and U9, CD123+), and two DC 
populations (U10, CD123− and U11, CD123+) were significantly 
higher in severe compared to moderate disease (Figure 2C). Older 
age was correlated with a reduction in the CD4+ Tfh CM T cells (U1) 
and MAIT CD4+CD8+cells (U3) and an increase in the percentage 
of the MAIT CD8+KLRG1+ cells (U4) (Figure 2C). Sex only affected 
Frontiers in Immunology 06
the CD8+ CM T subpopulation (U2, Figure 2C), with men having a 
significantly lower frequency than women. 

Cluster 1 (U1), consisting of CD4+ Tfh CM cells, expressed low 
levels of the co-inhibitory receptor PD-1, which reduces T-cell 
activity (30). The CD8+ memory T-cell cluster (U2) expressed 
CXCR3, indicating a memory subtype (31). Cluster 5 (U5), a 
CD27+IgD− B cell cluster, indicated a memory phenotype 
(marker plot in Supplementary Figure 2C). Furthermore, the NK 
cell cluster (U7) expressed CD161, CD56, CD57, NKG2A, CD16, 
and CD38, suggesting a generally activated inhibitory NK cell 
population (32). Both monocyte subpopulations (U8 and U9) 
expressed CD169, CD141, CD14, and CD16, while U9 expressed 
somewhat higher CD16 in addition to CD123 (Supplementary 
Figure 2C; Table 2). 
Supervised gating of unstimulated cells 
and cell populations as potential 
biomarkers for severe influenza 

To confirm the results from downscaled unsupervised 
clustering, supervised gating on all cells was performed using the 
most characteristic markers for the cell populations identified by the 
unsupervised downscaled analyses (Table 2). All 11 clusters were 
verified with significant differences in cell population frequencies 
according to severity during the acute infection phase 
(Supplementary Figure 2D). Further, using only one or two 
markers for each cell population, four of the 11 cell populations 
differentiating between the severely and moderately ill patients were 
successfully gated, suggesting that these markers may be useful as 
potential biomarkers for high-throughput screening of severe 
influenza: CD4+ T cells (CD4+; p = 0.04), MAIT (TCRVa7.2+; p  =  
0.0003), NK cells (CD56+CD3−, p = 0.02), and activated monocytes 
(CD169+CD3−, p = 0.0017). 

We also conducted supervised gating of nine major cell 
populations (Supplementary Figure 1). Five of the nine clusters 
had significantly different cell frequencies in samples from patients 
with severe and moderate disease at T1 (CD4, MAIT, NKT, NK, 
and monocytes), compared to the 11 subpopulations found when 
using unsupervised gating. 
Immune cell profiling of stimulated cells by 
unsupervised analysis 

Cells were stimulated with PMA and ionomycin in vitro to assess 
inherent activation capacity. The unsupervised clustering of stimulated 
cells from all participants and timepoints revealed 85 unique cell clusters 
(Supplementary Figure 4A). The expression of lineage markers defined 
the different cell types (Supplementary Figure 3B). In total, 18 clusters 
were significantly different between all participant groups (Figure 3A), 
and eight  of  these 18 clusters were identified with significantly different 
cell frequencies according to severity during acute infection (Table 3 
and Figures 3B, C and identification by marker plot in 
Supplementary Figure 4C). 
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TABLE 1 Demographic and clinical characteristics of study participants during acute infection at hospitalization (T1). 
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All participants Subset of participants included in the single-cell immune profiling 

Mod¤ Sev¤¤ Mod vs. Sev Healthy controls All patients Mod¤ Sev ¤¤ Mod vs. Sev 

50 41 NA 15 27 15 12 NA 

65 (18, 95) 75 (22, 102 * 66 (37, 86) 69 (20, 102) 62 (20, 83) 85 (22, 102) *** 

29 (58) 20 (49) NS 7 (47) 12 (44) 8 (53) 4 (33) NS 

16 (32) 6 (15) ** 5 (33) 10 (37) 8 (53) 2 (17) NS 

15 (30) 21 (51) NS 3 (20) 10 (37) 2 (13) 8 (67) * 

0 (0) 6 (15) ** NA 3 (11) 0 (0) 3 (25) NA 

17 (34) 13 (32) NS NA 7 (26) 4 (27) 3 (25) NS 

19 (38) 15 (37) NA NA 0 (0) 0 (0) 0 (0) NA 

5 (10) 1 (2) NA NA 0 (0) 0 (0) 0 (0) NA 

24 (48) 25 (61) NA NA 27 (100) 15 (100) 12 (100) NA 

37 (74) 29 (71) NS 10 (67) 16 (59) 9 (60) 7 (58) NS 

NA NA NS NA 20 (74) 11 (73) 9 (75) NA 

ignificant; CMV, cytomegalovirus.
 
y ill.
 
Characteristics 
Healthy controls All patients 

Participants, n 79 91 

Age, median years (range) 64 (32, 86) 69 (18, 102) 

Female, n (%) 55 (70) 49 (54) 

Zero risk factor, n (%) 34 (43) 22 (24) 

Two or more risk factors, n (%) 16 (20) 36 (40) 

Intensive care unit (ICU) admission, n (%) NA 6 (7) 

Vaccinated seasonal influenza, n (%) NA 30 (33) 

Influenza B, n (%) NA 34 (37) 

Influenza A/H1N1#, n (%) NA 6 (7) 

Influenza A/H3N2#, n (%) NA 49 (54) 

Previous CMV infection, n (%) 53 (67) 66 (73) 

High viral load, n (%) NA NA 

Influenza infection was confirmed by PCR.
 
Ctrls, controls; Mod¤, moderately ill patients; Sev¤¤, severely ill patients; NA, not applicable; NS, not s
# Two of the patients with influenza A infection were not further subtyped. They were both moderate
* p < 0.05; ** p < 0.01; *** p < 0.005. 
l
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We observed a lower frequency of several CD4+ CM cell subsets 
[stimulated cells, clusters 1 (S1), S2 (included in S1), and S3] and a 
CD8+ effector memory T-cell subset (TEM) (S4) in the severely ill 
patients compared to the moderately ill patients at infection 
(Figure 3B). Moreover, in the severely ill patients, a higher 
Frontiers in Immunology 08
frequency of cells was found in a cluster containing both NKT and 
CD8+ terminally differentiated effector memory T cells (TEMRA) 
(S5) and in three NK cell clusters (S6, S7, and S8) at infection 
(Figure 3B). S1, the largest CD4+ CM T-cell cluster (average 54.5% in 
all participants), contained S2 but not S3 and was negative for 
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FIGURE 2 

Differences in unstimulated cell population frequencies between severely and moderately ill patients. (A) A FlowSOM-generated t-SNE plot based on 
expression of all markers on cells from all samples at both timepoints (n = 59). Eleven clusters (U1–U11, illustrated by unique colors) had significantly 
different cell frequencies between severe and moderately ill patients during active infection (T1). (B) Hierarchical tree for all unique clusters (U1– 
U24); clusters that are significant for at least one comparison are named. Colors correspond to the group comparisons that were significant. 
(C) Boxplots/line plots of the percentage of cells per group in each of the 11 clusters from 2a. Dependency of age and sex was tested and used to 
define the plot type. ST1: severe during acute infection, T1 (n = 12), MT1: moderate T1 (n = 15), ST2: severe during convalescence, T2 (n = 5), MT2: 
moderate T2 (n = 11), C: control (n = 15), ST1F = 5 women, ST1M = 8 men, MT1F = 8 women, MT1M = 7 men, ST2M = 5 men, MT2F = 6 women, 
ST2M = 5 men, CF = 7 women, and CM = 8 men. There were no women among the severely ill patients at T2. Dots represent individual participants, 
the box indicates median with 25th and 75th percentiles, and the whiskers indicate the 1.5 × interquartile range (IQR). Line plots show the predicted 
value with 95% confidence interval. *adj p < 0.05, **adj p < 0.01, ***adj p < 0.001, binomial regression with FDR-adjusted for 92 clusters. Line plots 
show the median with predicted value and with 95% confidence interval. FlowSOM, flow self-organizing map; FDR, false discovery rate. 
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TABLE 2 Characteristics of unstimulated cell clusters differing at infection between severe and moderate influenza. 

B
o
d
in

 e
t al. 

10
.3
3
8
9
/fim

m
u
.2
0
2
5
.15

76
8
6
1 

Fro
n
tie

rs in
 Im

m
u
n
o
lo
g
y 

0
9

 
fro

n
tie

rsin
.o
rg

Cluster Cell type Average percentage Meta Markers characterizing the clusters and used for confirma­
l manual 
ating 

Cell 
frequency 
in severe 
versus 

moderate 
patients 

Sign. 
after 

manual 
gating 

CD19-, CD4+, CD8­, 
 ICOS+, CD45RA-, TCRgd-, TCRVa7.2­ ↓ 

Yes 

CD19-, CD4-, CD8+ , 
28+, CD45RA-, TCRgd-, TCRVa7.2­ ↓ 

Yes 

7+, CD27+, TCRVa7.2+, TCRgd­

↓ 
Yes 

D19-, CD8+, CD27­, 
Va7.2+, TCRgd­ , KLRG1+ ↓ 

Yes 

CD19+, CD27+, IgD­

↓ 
Yes 

R4-, CCR6-, CCR7-, CD127-neg, CD134­, 
D160-, CD169-, CD25­
-, CD45RA+, CD5­, 
D8-, CXCR3-, CD95+ , 
Rgd-, TCRVa7.2-, ICOS-, IgG-, IgD­

↑ 

Yes 

D19-, CD56+, TCRgd­, 
RVa7.2­

↑ Yes 

+, CD19-, CD11c+ , 
23-, TCRgd-, TCRVa7.2-, CD85j ↑ 

Yes 

CD19-, CD11c+high, 
CD141+, TCRgd-, TCRVa7.2-, CD85j ↑ 

Yes 

c+, CD123+, TCRgd-, TCRVa7.2­

↑ 
Yes 

CD19-, CD11c+high, 
23-, CD19-, TCRgd­, 
, CD14-, CD141+, CD169­

↑ 
Yes 

ting down, Lower frequency compared to moderate.
 
(%) of cells across 
all participants 

cluster 
level 

tiona
g

U*1 CD4+ Tfh CM 2 60 CD3+, CD45+,
CCR7+, CD27+, CD28+, CXCR5+

U2 CD8+ CM 
CXCR3+ 

2.4 30 CD3+, CD45+,
CCR7+, CXCR3+, CD27+, CD

U3 MAIT CD4+CD8+ 0.7 30 CD3+, CD45+, CD19-, CC

U4 MAIT CD8+KLRG1+ 0.4 30 CD3+, CD45+, 
CD28-, CD57+, TCR

U5 B CD27+IgD - 1.5 50 CD3-, CD45+,

U6 Plasma 
B CD19lowCD38high 

0.1 50 CD3-, CD45+, CD4-, CD38high, CC
CD15-, CD16-, C

, CD27-, CD2
CD56-, CD57-, C

HLA-DR-, CXCR5-, PD-1-, TC

U7 NK CD56+ 18.6 10 CD3-, CD45+, C
TC

U8 Mo CD169+ CD123­ 0.5 40 CD3-, CD45
CD14+high, CD169+, CD1

U9 Mo CD169+ CD123+ 0.3 40 CD3-, CD45+,
CD14+high, CD169+, CD123+,

U10 DC CD123+ 0.2 40 CD3-, CD45+, CD19-, CD1

U11 DC CD123­ 0.4 30 CD3-, CD45+,
CD11b+, CD1

TCRVa7.2-, CCR7-lo

* U = significantly different cluster between moderately and severely ill patients based on unstimulated cells. Arrow pointing up, Higher frequency. Arrow po
Arrow pointing up, Higher frequency.
 
Arrow pointing down, Lower frequency compared to moderate.
 
 
,

 

R

C

 

8

 
 

1

 

w

in

https://doi.org/10.3389/fimmu.2025.1576861
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Bodin et al. 10.3389/fimmu.2025.1576861 
 

   

M T2 = Moderate at convalescence 
S T2 = Severe at convalescence 

S
T1
S

T
 f

1 m
M

T1
M 
f
T1

 m
S

T2
S

T
 f

2
M
 m T2

 f

M
T2

 m C f
C m

 
20 40 60 80 10

0 
S

T1
M

T1
S

T2
M

T2 C 

S
T2

m
M

T2S
T1

M
T1

S
T2

M
T2

S
T1
S

T
 f 1  m

M
T1

M
T
 f 1  m

S
T2
S

T
 f

2 m
M

T2

M
T

 f
2 m C f

C m
 

S
T1

M
T1

S
T2

M
T2 C 

A B 

tS
N

E2
 

10 

0 

−10 

−10 0 10 
tSNE1 

S8 

S1 

S9 

S10 

S2 

S11 

S6 
S14 
S15 

S16 

S13 

S4 

S7 

S5 

S12 

S18 

S17 

S3 

S0_(Other cells, ns) 
S1_(CD4 CM) 
S2_(CD4 CM PDL2+) 
S3_(CD4 CM CD137+) 
S4_(CD8 EM PD1+) 
S5_(NKT) 
S6_(NK GranzB+IFNg+) 
S7_(NK GranzB+) 
S8_(NK GranzB+TIM3+) 

C 

S1_(CD4 CM) S2_(CD4 CM PDL2+) S3_(CD4 CM CD137+) 

* *

C
e
ll 

fr
e
q
u
e
n
cy

 (
%

 o
f 
P

B
M

C
)

C
e
ll 

fr
e
q
u
e
n
cy

 (
%

 o
f 
P

B
M

C
)

2 

1 

C
e

ll 
fr

e
q

u
e

n
cy

 (
%

 o
f 
P

B
M

C
) 

C
e

ll 
fr

e
q

u
e

n
cy

 (
%

 o
f 

P
B

M
C

) 
C

e
ll 

fr
e
q
u
e
n
cy

 (
%

 o
f 
P

B
M

C
) * * 

675 

50 

25 

4 

2 

00 

Age (years) 
S5_(NKT) S6_(NK GranzB+IFNg+) S4_(CD8 EM PD1+) 

** 
* 

14 

0 

1 

2 

3 

4 

S
T1

f

S
T1

m
M

T1
 f

M
T1

 m
S

T2
f

S
T2

m
M

T2
 f

M
T2

m C
f
C m

 

C
e

ll 
fr

e
q

u
e

n
cy

 (
%

 o
f 
P

B
M

C
) * *15

C
e

ll 
fr

e
q

u
e

n
cy

 (
%

 o
f 
P

B
M

C
)

*60 *** 
* 

S T1 = Severe at infection 
M T1 = Moderate at infection 

* 
* 

10 

f

M
T2

m
C f

* 

1.0 

1.5 

40 

20 

0 

C
mC 

0 

S
T

C = Control0.5 

1 f

S
T1

 m
M

T1

f = Female 
m = Male 

f

M
T1

m
S

T2
 f

5 

S7_(NK GranzB+) S8_(NK GranzB+TIM3+) 

C
e

ll 
fr

e
q

u
e

n
cy

 (
%

 o
f 
P

B
M

C
)* *2.0** ** 

14 

6 

4 

2 

0.00 

FIGURE 3 

Differences in cell population frequencies after stimulation with PMA/ionomycin between severely and moderately ill patients. Eight clusters (S1 to 
S8) had significantly different percentages of cells per sample between severely and moderately ill patients during acute infection (T1). (A) t-SNE plot 
based on all markers and all samples at both timepoints, with the eight significant clusters illustrated by unique colors. NS = not significantly 
different. (B) Hierarchical tree for all unique clusters (S1–S18); clusters that are significant for at least one comparison are named. Colors correspond 
to the group comparisons that were significant. (C) Boxplots/line plots of the percentages of cells per group in clusters S1–S8. Dependency of age 
and sex was tested and used to define the plot type. ST1 = severe during acute infection, T1 (n = 12), MT1 = moderate T1 (n = 15), ST2 = severe 
during convalescence, T2 (n = 5) MT2 = moderate T2 (n = 11), and C = control (n = 15). There were no women among the severely ill patients at T2. 
Dots represent individual participants, the box indicates median with 25th and 75th percentiles, and the whiskers indicate the 1.5 × interquartile 
range (IQR). Horizontal lines indicate significant differences based on FDR-adjusted p-values. *adj p < 0.05, **adj p < 0.01, ***adj p < 0.001, binomial 
regression with FDR-adjusted for 85 clusters. Line plots show the median with predicted value and with 95% confidence interval. PMA, phorbol 12­
myristate 13-acetate; FDR, false discovery rate. 
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TABLE 3 Characteristics of PMA/ionomycin-stimulated cell clusters differing between severe and moderate influenza. 
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Cluster Cell type Average percentage (%) of cells 
across all participants 

Metacluster 
level 

Markers defining the clusters and used for con­
firmatory manual gating 

Sev T1 vs. 
Mod T1 

Sign. after 
manual gating 

20 CD3+, CD45+, CD19−, CCR7+, CD25+, CD27+, CD45RA−, TCRgd− ↓ Yes 

40 CD3+, CD45+, CD19−, CCR7+, CD25+, CD27+, CD28+, CD45RA− , 
TCRgd−, PD-L2+ 

↓ Yes 

20 CD3+, CD45+, CD19−, CD27+, TCRgd−, CD137+ ↓ Yes 

30 CD3+, CD45+, CD19−, CD27+, CD28+, CD45RA−, TCRgd−, TNFa+ , 
IL-1b+, MIP-1b+, IFNg+, CD107a+ 

↓ Yes 

50 CD3+, CD45+, CD19−, CD57+, CD28−, CD45RA+, CCR7−, TCRgd− , 
TNFa−, PD-1+, GranzB+, CD107a+ 

↑ Yes 

30 CD3−, CD45+, CD19+, CD56+, GranzB+, CD107a+, IFNg+, CD57+ , 
MIP-1b+, TNFa+, TCRgd− 

↑ Yes 

50 CD3−, CD45+, CD19−, CD56+, GranzB+, CD107a+, IFNg-, 
TCRgd−, CD38+ 

↑ Yes 

20 CD3−, CD45+, CD19−, CD56+, GranzB+, CD107a+, TNFa+, MIP-1b+ , 
TIM3+, CD57+, TCRgd− 

↑ Yes 

ted cells.
 

derate.
 
S*1 CD4+ CM 54.3 

S2 CD4+ CM PD-L2+ 1.1 

S3 CD4+ 

CM CD137+ 
2.2 

S4 CD8+ EM PD-1+ 3.6 

S5 NKT CD3+CD56+ 0.6 

S6 NK CD56+ 

GranzB+ IFNg+ 
15.6 

S7 NK 
CD56+ GranzB+ 

1.2 

S8 NK CD56+ 

GranzB+ TIM3+ 
0.5 

* S, significantly different clusters between moderately and severely ill patients based on stimula
PMA, phorbol 12-myristate 13-acetate.
 
Arrow pointing up, Higher frequency. Arrow pointing down, Lower frequency compared to mo

https://doi.org/10.3389/fimmu.2025.1576861
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Bodin et al. 10.3389/fimmu.2025.1576861 

 

CD137/4IBB. S2 expressed CD272/PD-L2 (programmed cell death 1 
ligand 2), an immune checkpoint for the negative regulation of the 
adaptive immune response (33), and S3 expressed CD137/4-IBB 
[tumor necrosis factor receptor (TNFR) superfamily member], 
suggesting antigen-activated T cells (34) (Supplementary 
Figure 3C). The NKT/TEMRA subpopulation (S5) expressed high 
levels of granzyme B (GranzB) and CD107a, and the CD8+ EM T cells 
(S4) expressed high levels of several cytokines (TNFa, IFNg, and
IL-10) and the chemokine MIP-1b, while GranzB expression was low. 
Among the three NK cell subsets, S6 included most of all NK cells 
(average of 15.6% in all participants) and together with S8 contained 
high levels of CD57+ cytokine-secreting cells (GranzB, IFNg, TNFa, 
IL12p-70, perforin, IL-1b, IL-2, and chemokine MIP-1b). In addition, 
NK cell cluster S8 expressed TIM-3 (T-cell immunoglobulin and 
mucin domain 3),  a negative regulator of Th1-type immune 
responses. The third NK cluster (S7) expressed lower levels of 
CD57 and fewer cytokines, but higher CD38 expression (mediating 
NK cell activation (35)) compared to S6 and S8. Women had a higher 
frequency of cells in cluster S7 than men (Figure 3B), and they had 
higher frequencies of CD4+ CM T cells (S1) and GranzB-secreting 
NKT cells (S5) and a lower frequency of CD8+ EM PD-1+ and 
GranzBlow T cells (S4) than men. There was a significant increase in 
the frequency of CD4+ CM PD-L2+ T cells (S2) with increasing age 
(Figure 3C). We confirmed the significant difference in cell 
population frequency between the patient groups in all eight 
Frontiers in Immunology 12 
clusters by supervised gating using the most prominent markers 
(Table 3; Supplementary Figure 3D). 
Immune cell population differences 
between all participant groups 

We identified the cell cluster differences between all participant 
groups (severely and moderately ill patients and controls) and 
different timepoints (acute and convalescent phases) and reported 
the IRRs for significant comparisons (Figure 4). We identified the 
significant clusters using marker plots (Figures 2B, 3B; 
Supplementary Figure 4). The comparison of severe and 
moderate disease at T1 is also shown in Figures 2 and 3. 

Comparing patient groups at the time of acute infection to 
healthy controls, there were 14 clusters with different frequencies 
between the severely ill patients and controls (Figure 4B) and 11 
between the moderately ill patients and controls during acute 
infection (Figure 4C). Subpopulations of monocytes, plasma cells, 
and CD4+ CM/Tfh PD-1

+ T cells appeared more frequently in both 
patient groups, while memory B cells, CD14 monocytes, and 
plasmacytoid DC were less frequent in both patient groups 
(Figures 4B, C). 

In total, there were eight significantly different clusters of cell 
populations in the severely compared to moderately ill patients 
            

            

Sev T1 vs Mod T1 Sev T1 vs Ctrl Mod T1 vs Ctrl  Sev T2 vs Mod T2 Sev T2 vs Ctrl Mod T2 vs Ctrl 

Sev T1 vs Mod T1 Sev T1 vs Ctrl Mod T1 vs Ctrl Sev T2 vs Mod T2 Sev T2 vs Ctrl Mod T2 vs Ctrl 

FIGURE 4 

Differences in cell population frequencies between all participant groups during acute infection and convalescence. Incident rate ratio (IRR) for all 
clusters with significantly different cell population frequencies between severe, moderate, and control groups during acute infection (T1) or 
convalescence (T2) in unstimulated (A–F) and stimulated (G–L) cells based on negative binomial regression analysis. Red represents cell 
subpopulations with higher IRR, and blue represents cell subpopulations with lower IRR. FDR-adjusted p-values: *adj p < 0.05, **adj p < 0.01, *** adj 
p < 0.001. ns = no significant difference between healthy controls and moderate at convalescence (f and l). FDR, false discovery rate. 
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during convalescence (Figure 4D). The severely ill patients still had 
lower frequencies of MAIT subpopulations and higher frequencies 
of NK, monocyte, and dendritic subpopulations. Also at 
convalescence, the severely ill patients had different frequencies of 
11 cell subpopulations compared to controls (Figure 4E). A higher 
frequency  of  CD169+ monocyte  and  CD161+ NK  cell  
subpopulations and a lower frequency of MAIT subpopulations 
and memory B cells were identified in the severely ill patients 
compared to controls. In contrast, the moderately ill patients had no 
different subpopulations compared to the controls. 

Comparing the cluster frequencies of the stimulated cells during 
acute infection, there were more subpopulations with different 
frequencies between the severely ill patients and the controls (12) 
(Figure 4G) than between the moderately ill patients and the 
controls (3) (Figure 4H). The CD4+ T-cell signaling differed upon 
severity, with a higher frequency of a cluster containing 
polyfunctional (IFNg and TNFa) PD-1+ IL-10-secreting CD4+ 

effector memory T cells and regulatory T cells in the severely ill 
patients than in the controls (Figure 4G). A higher frequency of 
activated CD154+ and suppressive PD-L1+ CD4+ T cells was 
observed in the moderately ill patients than in the controls 
(Figure 4H). The frequency of Th17 cells was lower in the 
severely ill patients compared to the healthy controls, but this was 
not the case for the moderately ill patients (Figures 4G, 
H, respectively). 

The comparison of cell frequencies at convalescence revealed 
lower frequencies of two CD4+ CM subpopulations and one CD8+ 

EM subpopulation and higher frequencies of four NK 
subpopulations in the severely compared to moderately ill 
patients (Figure 4J). Further, the frequencies of subpopulations of 
CD4+IL-10+ EM T cells and NK cells (CD33+GranzB+ and 
GranzB+/IFNg+) remained higher in the severely ill patients than 
in the controls, while the frequencies of CD4+ CM T and CD8+ EM 
T subpopulations were lower (Figure 4K). The latter subpopulations 
were the same as those identified to be lower in stimulated cells 
from the severely compared to moderately ill patients during acute 
infection (Figure 4G), while Th17 cell frequency no longer differed 
between the severely ill patients and controls during convalescence 
(Figure 4K). Furthermore, the cell frequencies in moderate disease 
normalized to levels in healthy controls during convalescence, as no 
difference in cell subpopulations was found in both unstimulated 
and stimulated cells (Figures 4F, L). 
Differential gene expression analysis 

We further conducted a dcRT-MLPA assay for transcriptomic 
analysis to explore potential variations at the gene expression level 
between the severely (n = 41) and moderately (n = 50) ill influenza 
patients, compared to the healthy controls (n = 79) (Table 1). A 
scaled PCA plot of 128 genes (Supplementary Table 6) showed that 
the gene expression profile in the severely and moderately ill 
patients during acute infection was similar and partially separated 
from the gene expression of the healthy controls and from both 
patient groups during convalescence (Figure 5A). At convalescence, 
Frontiers in Immunology 13 
the gene expression of the patient groups resembled that of the 
controls (Figure 5A). 

When comparing severe and moderate influenza patients, there 
were no differentially expressed genes during either acute infection 
or convalescence based on a combination of the Wilcoxon test and 
fold-change analysis (Figure 5C). However, applying linear 
regression analysis with adjustment for age and sex revealed that 
CD4 expression was significantly lower in the severely compared to 
moderately ill patients during acute infection only (adj p = 
0.018, Figure 5B). 

Forty-two and thirty-six genes were found to be differently 
expressed during acute infection between controls and the severely 
or moderately ill patients, respectively (adj p < 0.01–0.001) 
(Figure 5C). Thirty of these genes were shared between the severe 
and moderate disease groups (data not shown). Most of the 
upregulated genes during acute infection were IFN-signaling genes 
(IFI44, IFI6, and  IFITM1.3), while most of the downregulated genes 
belonged to the adaptive immune response corresponding to typical 
T-cell and B-cell subsets (CD3E, CD4, and  IL-7R) (Supplementary 
Figure 5C). The gene expression patterns in the convalescent phase 
were similar to expression seen in the healthy controls for both 
patient groups (Supplementary Figure 5C); however, four (BRL1, 
IL7R, RAB33A, and  GZMA) and one (BRL1) differentially expressed 
genes were found in the severely and moderately ill patients, 
respectively, compared to healthy controls. 

Acute gene expression in patients infected with influenza A/ 
H3N2 (n = 49) and influenza B (n = 34) was not significantly 
different, thus not affected by the infecting influenza strain (data 
not shown). 
Influenza-specific humoral and cellular 
responses 

There were no differences in acute or convalescent HAI titers 
due to the severity of any of the viruses (data not shown). HAI titers 
were induced after infection, and titers were the highest at 
convalescence in A/H3N2-infected patients (p = 0.001, n = 28 
paired observations, 13 severe and 15 moderate; Wilcoxon) but not 
after influenza A/H1N1 (n = 23 paired observations, eight severe 
and 15 moderate) or B infection (n = 5 paired observations, one 
severe and four moderate). 

We also analyzed influenza-specific cellular responses by 
stimulating PBMCs with either homologous inactivated whole 
virus [A/H3N2, A/H1N1(Cal09), or B virus] or peptide panels 
representing conserved influenza CD4+ and CD8+ T-cell epitopes in 
the dual IFNg and IL-2 EliSpot assay. No significant differences 
between the severely and moderately ill patients were found at any 
timepoint (data not shown). 
Plasma CXCL13 levels 

CXCL13 levels in plasma were measured as a biomarker for 
activated B and T cells in germinal centers contributing to antibody 
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production (27). Acute CXCL13 levels were significantly higher in 
the severely ill patients (n = 41) compared to the moderately ill 
patients (n = 50) (p < 0.05, Wilcoxon test) and also significantly 
higher than during convalescence, which were similar in both 
patient groups and controls (n = 79) (Supplementary Figure 5). 
The CXCL13 values were not affected by sex or age at 
either timepoint. 
Frontiers in Immunology 14 
Integrated analysis to define an immune 
profile associated with severe influenza 

By integrating all the significant findings between the severely 
and moderately ill patients at acute infection into a heatmap (n = 
21), we defined a severity immune profile (Figure 5A). The results 
during convalescence were also included in the heatmap. The 
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Differential gene expression in moderately and severely ill patients compared to healthy controls. (A) Scaled principal component analysis (PCA) plot 
representing individuals, status, and timepoint. (B) CD4 gene expression in severely and moderately ill patients at infection and convalescence and in 
healthy controls. Each point represents an individual, box plot shows group median with 25th and 75th percentiles, and whiskers indicate 1.5 × 
interquartile range (IQR). Differences were analyzed by linear regression analysis. (C) Differentially expressed genes (DEGs) at infection and 
convalescence between all participant groups. The vertical axis (y-axis) corresponds to the fold change (axis on log2 scale), and the FDR-adjusted p-
values are indicated as significance levels in parentheses. Red color represents genes with higher expression, and blue color represents genes with 
lower expression. N = 230 (severe at infection, n = 41; moderate at infection, n = 50; severe at convalescence, n = 23; moderate at convalescence, 
n = 37; control, n = 79). *adj p < 0.05, **adj p < 0.01, ***adj p < 0.001. IQR, interquartile range; FDR, false discovery rate. 
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heatmap shows a distinct immune profile for the severely ill patients 
at acute infection compared to the moderately ill patients and 
healthy controls. During convalescence, the severely ill patients had 
higher similarities to their profile at acute infection, whereas the 
convalescent profile of the moderately ill patients more closely 
resembled that of the healthy controls. This indicates that some of 
the cell population alterations during acute infection in the severely 
ill patients were still present at convalescence. 

To investigate the relationship between the 21 putative biomarkers, 
we performed a correlation analysis of all variables significantly 
different at acute infection between the severely and moderately ill 
patients for both patient groups and controls (Figure 6 for severe cases 
and Supplementary Figure 6 for the moderately ill patients and 
controls). A strong positive correlation was demonstrated both 
between circulating plasma B cells and CXCL13 levels in plasma and 
between CD4+ T cells and MAIT cells in the severe patients 
(Figure 5B). In these patients, CD4 gene expression correlated with 
CD4+ and CD8+ population frequencies, and there was a negative 
correlation between CD4 expression and monocyte subpopulation 
frequencies, DCs, and NK subpopulations (U8 and U9 unstimulated 
monocytes, U10 and U11 unstimulated DCs, and S6 stimulated 
cytokine-producing NK cells). Moreover, we found that NK cell 
frequencies (U7 unstimulated cells and S6 and S8 stimulated cells) 
were positively correlated with monocytes (U8 and U9 unstimulated 
cells) and DCs (U10 and U11 unstimulated cells) in the severe group. 
Discussion 

Influenza poses a global health challenge, and identifying 
immune biomarkers for disease severity may guide clinical follow-
Frontiers in Immunology 15 
up and future vaccination strategies. In this study, we identified 
distinct immune cell profiles differing between severe and moderate 
influenza disease. All patients included were hospitalized, albeit 
mostly not critically, with only a few requiring ICU treatment. 
Analyses of bulk gene expression revealed only CD4 as 
differentially expressed upon severity, while unsupervised single-cell 
mass cytometry analysis identified several subpopulations of immune 
cells with different frequencies according to severity; therefore, single-
cell assessment offers a more powerful approach to characterize and 
compare disease states. Despite a large inter-individual variation of 
immune cell populations usually found in healthy individuals (36), 
we identified immune cell subpopulations differentiating between 
moderate and severe influenza in hospitalized individuals. 

Overall, our findings suggest that disease severity is associated 
with alterations in the immune response, with a reduction in 
memory-like T-cell responses and an increase in proinflammatory 
phenotypes, including inhibitory monocytes and NK cells. During 
convalescence, the severely ill patients maintained proinflammatory 
immune cell composition, while the cell subpopulations of patients 
with moderate disease resembled those of healthy controls. This 
insight contributes to a deeper understanding of the immune cell 
dynamics during influenza infection and long-term effects. 

The association between lower levels of memory cell responses 
and disease severity supports prior research demonstrating the 
protective influence of certain immune cell subsets against 
symptomatic influenza. Beneficial effects have been shown for 
CXCR5+CD4+ Tfh cells (37, 38), CD137

+CD4+ and CXCR3+CD8+ 

CM T cells (39), and CD27+IgD− memory B cells (40, 41). In 
accordance with this, we observed a functional difference in CD4+ 

subpopulations. Specifically, patients with moderate illness had 
higher frequencies of activated CD137+CD4+ CM T cells, where 
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Immune profile of influenza disease status and correlation analysis of results in severely ill patients. (A) Severity immune profile based on the median 
value per outcome significantly different between moderate and severe patients during acute infection (T1) (21 different outcomes). These outcomes 
are presented for all participant groups during acute infection (T1) and convalescence (T2) (severe T1, n = 10; moderate T1, n = 12; severe T2, n = 4; 
moderate T2, n = 10; controls, n = 15). Percentages of immune cell subsets and plasma CXCL13 levels are log-transformed, differential gene 
expression is log2-transformed and scaled, and a participant group median is shown in the heatmap. (B) Correlation matrix of the 21 significant 
outcomes at T1, presented for the severely ill patients (ST1 = severe T1, n = 10). 
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CD137 expression previously has been associated with antigen­
specific responses  (42). Additionally, we found an increased 
frequency of PD-L2+CD4+ CM  in  the same patient  group.
Engagement of PD-L2 has been reported to mediate negative 
feedback and the downregulation of excessive cytokine 
production (33), possibly indicating a beneficial response in the 
moderately ill patients compared to the severely ill patients. 

The lower frequencies of MAIT cells in patients with severe 
disease aligned with previous findings, linking the fatal outcome of 
influenza disease to decreased numbers of MAIT cells (23). 
Consistent with this, studies investigating severe influenza and 
COVID-19 have confirmed reduced counts of circulating MAIT 
as well as CD4+ and CD8+ T cells (43, 44). This may reflect the 
migration of immune cells to the infection site in the lungs, as 
evidenced by elevated numbers of T and B cells detected in 
bronchoalveolar lavage (BAL) samples from both influenza and 
COVID-19 patients (12, 23, 45). Since KLRG1 signaling can inhibit 
the proliferation and function of immune cells, a reduction in 
KLRG1+ MAIT cells in severe influenza may reflect a dysregulation 
of immune cell proliferation (46). A similar proportion of CMV 
infection in the patient groups does not suggest any association 
between severity and CMV infection, and a previous study even 
showed that CMV infection was associated with increased influenza 
A-specific T-cell responses early upon acute influenza infection 
(47). Seasonal influenza vaccination rate was low (approximately 
25%) and similar in both patient groups and therefore does not 
seem to be a reason for the different memory T and B subpopulation 
distribution, even though there are most likely large individual 
variations in vaccine responses, as previously shown in T-cell 
subpopulation distribution (48). 

The diminished expression of the CD4 gene in severe cases 
during infection is in line with previous studies (49) and supports 
our observation of reduced numbers of circulating CD4+ cells. 
While CD4 was the only gene differing upon severity in our 
study, both patient groups exhibited upregulation of IFN-

signaling genes indicative of the innate immunity activation and 
downregulation of genes linked to adaptive immune responses 
during acute infection, consistent with earlier findings (16, 49). 
The absence of differences in the expression of genes related to 
neutrophil activation, antimicrobial responses, and inflammatory 
pathways between the patient groups in our study may reflect 
heterogeneity in severity definition, severity grade, and possible 
variations in patient sampling timepoints across studies. Despite a 
comparable gene expression pattern between the two patient 
groups, mass cytometry identified 11 cell subpopulations 
distinguishing between severe and moderate disease, again 
illustrating the sensitivity of high-dimensional single-cell analyses 
as opposed to bulk gene expression. 

NK and NKT cells play a crucial role in connecting innate and 
adaptive immunity, triggering antigen-specific T- and B-cell 
responses, aiding viral clearance, and acting as primary cytokine 
producers. This cytokine production, when excessive, may 
contribute to immunopathology, as seen during a cytokine storm 
(50–52). Our study revealed elevated frequencies of cytokine­
producing NK and NKT cells in severely ill patients, including 
Frontiers in Immunology 16 
the main population of GrzB+IFNg+ NK cells and the 
subpopulations of GrzB+IFNg− and GrzB+IFNg+TNFa+TIM-3+NK 
cells. The upregulation of TIM-3 on NK/NTK cells suggests a 
negative feedback mechanism, leading to the inhibition of 
cytokine production in the target cytotoxic T cell (52). This may 
reduce the excessive NK cell activation and the risk of cytokine 
storm and alleviate immunopathology, as shown in a mouse model 
where enhanced TIM-3 activity improved survival after influenza 
infection (53). Notably, previously reported frequencies of NK and 
NKT subpopulations in severe influenza cases show inconsistency 
(12, 13, 51). 

In our study, severity was also found to be associated with 
elevated frequencies of monocytes (Mo) CD169+CD14+CD16+/ 
l owCD141+CD85j+CD123+/− ,  as  well  as  CD123+/  − DC  
subpopulations. Monocytes bearing these markers are recognized 
as activated and proinflammatory (54–56). In addition, cross-
linking of CD85j inhibits the activation of B cells, T cells, NK 
cells, and macrophages (57). Increased frequency of intermediate 
monocytes has been reported after influenza infection (25), 
suggesting a potential inflammatory response (58, 59). Older age 
has also been associated with a higher frequency of classical 
CD14+CD16− monocytes, and specifically, an increased 
expression of activation markers on monocytes and dendritic cells 
was associated with a frailty phenotype (60). Consistent with our 
results, the severity of COVID-19 has also been linked to 
proinflammatory monocyte populations expressing CD169, which 
is upregulated upon activation and serves as an early marker for 
SARS-CoV-2 infection in patients requiring oxygen treatment (54, 
61–63). CD141 expression was previously shown to be increased in 
monocytes in both moderate and severe COVID-19 cases (64), 
while CD123 was upregulated in severely ill COVID-19 patients 
requiring ventilation (65). The lower frequencies of the identified 
DC populations at MT1, but not MT2 (in the moderately ill group 
compared to the control group), may reflect a redistribution of 
immune cells to the lungs during active infection. This is in 
accordance with the reduced levels of several other cell 
subpopulations at T1 compared to T2 (memory B cells, 
plasmacytoid DC, and classical monocytes) and supported by 
previous reports (66). A similar shift in the severely ill group 
seemed to be present as well; however, higher frequencies of these 
DC populations were seen in the severely ill patients compared to 
the moderately ill patients at both T1 and T2. Comorbidities may 
account for the increase in plasmacytoid DC frequency (67, 68), 
although they are often linked to a reduced DC frequency (60, 69). 

Taken together, the increased frequencies of specific 
subpopulations of NK, NKT, Mo, and DC observed in severe 
influenza infection may suggest a more proinflammatory state, 
possibly exacerbated by advanced age and underlying risk factors. 
Compared to healthy controls, we observed higher frequencies of 
circulating plasma cells in both patient groups during infection, 
with the highest frequency observed in the severe cases. This is in 
line with studies of COVID-19 disease, where patients with 
peripheral plasma cells had a higher likelihood of severe clinical 
outcomes (70). In the severely ill patients, plasma cell frequencies 
correlated with plasma CXCL13 levels. Elevated plasma CXCL13 
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levels have previously been linked to antibody production after 
influenza vaccination (27). For influenza A/H3N2 patients, HAI 
titers were significantly higher during convalescence, indicating 
active antibody production. However, no differences in specific 
antibody titers were observed due to severity, which is in line with a 
previous influenza study (71) but contradictory to severe COVID­
19 disease (72, 73). 

The severely ill patients in our study were older and had more 
risk factors compared to the moderately ill patients. High frequencies 
of Mo, NK, and NKT cells and especially low MAIT cell frequencies 
during influenza have been linked to frailty and elevated risk of severe 
disease, supporting the findings in our study (12). An increase in the 
frequency of a CD14−CD16high monocyte population was present in 
post-COVID-19 conditions (74), whereas we identified an increase in 
CD14+CD16+/low monocytes. Somewhat conflicting data exist on 
monocyte subpopulation distribution and age since an increase in 
the frequency of both CD14+CD16− and CD16+ Mo subpopulations 
as well as NK cells was reported to be associated with age, while the 
plasmacytoid DC population is reduced in both size and capacity 
with higher age (55, 60, 75, 76). The immune responses observed in 
the elderly have been associated with a decline in the frequency of 
lung-resident memory T cells and circulating memory B-cell 
frequency (12, 39). We also identified a general reduction in the 
CD4+CD8+ MAIT subpopulation with advancing age, in agreement 
with previous research (77, 78). Conversely, the CD4−CD8+ MAIT 
subpopulation increased with age. Nevertheless, age alone could not 
explain the observed differences in immune cell profiles in relation 
to severity. 

Certain features of severe disease, such as lower frequencies of MAIT 
and memory T and B cells, as well as elevated frequencies of 
proinflammatory NK cells and monocytes, persisted into the 
convalescence phase. At this timepoint, 6 months after active 
infection, we expected that the immune status had returned to 
baseline as observed in the moderately ill patients, but this was not the 
case for the severely ill patient group. However, differences in cell 
population frequencies may have existed prior to infection, indicating 
that a pre-infection immune profile could also serve as a predictor of 
influenza severity (79). The lower frequency of CD8 EM cells in severely 
ill patients compared to healthy controls at convalescence may be due to 
a higher number of comorbidities in the influenza patients, indicating 
frailty (80). Alternatively, our findings may reflect that severely ill 
patients need a longer time to return to a normal state after a 
prolonged activation phase (71), as seen after SARS-CoV-2 infection 
(81). A reduction in CD4+ CM cells and an increase in non-conventional 
monocytes (CD14lowCD16high) was, however, also present in post­
COVID-19 conditions (74). Increased proinflammatory phenotypes 
could also indicate low-grade chronic infection, as previously reported, 
especially in older individuals with multiple risk factors (82). Persisting 
low-grade infection is characterized by higher frequencies of IL-10­
secreting CD4+ effector memory T cells (83), which agrees with our 
findings in the severely ill patients in both the acute and convalescent 
phases. Elevated granzyme A expression and frequency of NK cells in 
severely ill patients at convalescence may reflect an ongoing infection or 
delayed recovery, as reported previously (84, 85). 
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The high number of phenotypically and functionally distinct 
cell populations distinguishing severe and moderate disease 
highlights the superior sensitivity of high-dimensional immune 
cell profiling at the single-cell level, as opposed to bulk 
information from gene expression analysis. We were able to 
identify phenotypically and functionally distinct cell populations 
as candidate biomarkers for severe influenza. Manual gating of 
these cell populations using a considerably smaller number of 
markers verified the populations as different in severe disease. 
Additionally, when gating CD4+ T cells, MAIT cells, NK cells, 
and activated monocytes using only one to two markers for each 
population, this difference remained significant, which strengthens 
our observations and suggests that these could be further explored 
as potential biomarkers for severe influenza in a clinical setting. 
This would also allow the use of less comprehensive screening 
methods, like high-throughput flow cytometry. 

A limitation of this study is the relatively low number of 
participants and particularly few patients in the ICU subgroup, 
reducing the difference between the patient groups, which probably 
limited the predictive power of our immune profile. However, 
strong correlations between CD4 gene expression, CXCL13 
plasma levels, and specific immune cell clusters supported our 
findings from mass cytometry analysis. Due to the small sample 
size, we were unable to test the interaction of sex or age with disease 
status–timepoint. However, when the implication of sex or age is 
additive, i.e., was similar for all the disease status–timepoint, this 
was included in the analysis. The analyses were only presented 
when differences between severity groups were identified. 
Longitudinal analyses, i.e., analyses within individuals at T1 and 
T2, were not included due to the few samples at T2 in the severely ill 
group. A higher number of samples would increase the robustness 
of the findings and possibilities for specific age- and  sex-
associated analyses. 

Moreover, the immune cell population differences identified in 
this study are based on H3N2 infection but may also be relevant for 
other influenza strains due to epitope conservation (e.g., 57% of 
CD4 and 63% of CD8 epitopes are either identical or conserved 
when comparing seasonal IAV and H5N1 (86)). 

In  conclusion, this study  illustrates the  power and  high
sensitivity of high-dimensional single-cell analyses compared to 
bulk analyses in the identification of functional cell population 
frequencies as potential biomarkers for disease severity. The 
immune profile characteristic of severe influenza included lower 
frequencies of MAIT cells and memory B- and T-cell 
subpopulations, with higher frequencies of proinflammatory NK 
cells, monocytes, dendritic cells, and plasma cells. Interestingly, the 
severity-associated alterations persisted at convalescence, possibly 
accelerated by higher age and the presence of several underlying 
conditions, inducing frailty. Some immune signatures of post­
COVID-19 conditions overlap with the long-term immune 
features we present here of severe influenza. Although the clinical 
usefulness of the severity profile identified here requires further 
evaluation in future larger studies, reduced CD8 immunity 
associated with severe influenza disease suggests that vaccination 
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strategies like mRNA vaccines directed to improve CD8 responses 
may be advantageous to improve protection against severe influenza. 
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