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Introduction: Cryofibrinogen-associated glomerulonephritis (CF-GN) is a rare 
disease that lacks comprehensive research and requires further investigation to 
improve our understanding of its pathophysiology. 

Methods: Based on the morphological findings from a kidney biopsy and blood 
tests, an elderly patient was diagnosed with CF-GN. Biological materials obtained 
from peripheral blood were utilized to treat cultured mesangial cells and mice. 

Results: The patient presented with nephrotic syndrome and chronic kidney 
failure. The biopsy revealed a membranoproliferative glomerulonephritis pattern 
with distinct substructures and positive fibrinogen staining. Cryofibrinogen was 
detectable under cold conditions, and monoclonal immunoglobulin (MIg) was 
exclusively identified within cryoprecipitates. Genetic analysis uncovered an 
intronic mutation. The patient partially responded to immunosuppressive 
therapy, but later relapsed with paraproteinemia, and the MIg was detected to 
have cryoactivity. To investigate the pathophysiology of CF-GN further, its 
cryoactivity was detected when mixing the serum (with or without MIg) with 
healthy control plasma. When exposed to the patient’s cryoprecipitates, cultured 
mesangial cells showed significant proliferation, phagocytosis of fibrinogen, and 
lysosomal degeneration. Injection of these cryoprecipitates into mice induced 
proliferative glomerulonephritis and other organ damage. 

Conclusion: This study provides valuable insights into the diagnosis, treatment, 
and pathophysiology of CF-GN with paraproteinemia. The identification of the 
complex of cryofibrinogen and MIg as a potential mechanism of glomerular 
damage shed light on the pathogenesis of this rare disease. 
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Introduction 

Cryofibrinogenemia (CF) is a unique medical condition 
characterized by the presence of cryoprotein in plasma precipitates 
when cooled (1, 2). Cryofibrinogenemia may be primary (essential) or 
secondary to other underlying disorders, such as carcinoma, infection, 
vasculitis, autoimmune disease, or associated with cryoglobulinemia 
(3–7). Main clinical manifestations mostly involve the skin, whereas 
renal involvement is rare (4% to 21%) (8–12). The pathological 
characteristics included a membranoproliferative glomerulonephritis 
(MPGN) pattern, positive fibrinogen staining with negative or weak 
staining for immunoglobulins (Igs) and complements, and large 
microtubular structures under electron microscopy (EM) (13). These 
features helped distinguish the condition from cryoglobulinemic 
glomerulonephritis (CryoGN). In elderly patients, some case reports 
have identified paraproteinemia as the second cause and the primary 
culprit in the development of CF-GN (11, 14). However, the 
mechanisms underlying the development of cryofibrinogen­
associated glomerulonephritis (CF-GN) and  the role of monoclonal

immunoglobulin (MIg) in cryoprecipitate formation and subsequent 
kidney injury remain largely unexplored, and there are no established 
diagnostic criteria or consensus regarding optimal management (12). 

This study aimed to analyze the clinicopathological 
characteristics,  treatment,  and  outcomes  of  persistent  
cryofibrinogenemia  associated  with  paraprote inemia .  
Furthermore, to explore the etiology and pathogenesis of CF-GN, 
an animal model of systematic injury via CF injection was 
established, and CF-induced mesangial cell injury stimulated by 
CF and MIg was analyzed in vitro. Additionally, the relationship 
between MIg and CF was hypothesized and clarified using 
cryoactivity experiments. 
Methods 

Patient and animals 

A 73-year-old female was admitted with mild edema and 
abnormal urinalysis. Cryoprecipitates from her plasma were 
detected and collected to create the animal model. Eight male 
C57BL/6 mice, 6–8 weeks old and weighing 16–24 g, were 
purchased from Shanghai Sippe-Bk Lab Animal Corporation. 
Written informed consent was obtained from the patient for the 
publication of any potentially identifiable images or data included in 
this article. All clinical and experimental protocols were approved 
by the ethics committees of Hangzhou TCM Hospital Affiliated to 
Zhejiang Chinese Medical University (2023KLL081) and Zhejiang 
Chinese Medical University (IACUC-20230227-09). 
Pathology detection in renal tissue 

The frozen and paraffin-embedded samples were stained by 
immunofluorescence (IF) including fluorescein isothiocyanate 
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(FITC) conjugated IgA, IgG, IgM, C3c, C1q, k, l, and polyclonal 
rabbit  anti-human  fibrinogen  antibody  (F0111,  1:50,  
DAKO, Denmark). Monoclonal mouse anti-human CD68 (Kit­
0026 ,  Maxim  Corpora t ion ,  China)  was  detec ted  by  
immunohistochemistry. The remaining paraffin-embedded tissue 
was microdissected and analyzed by mass spectrometry (LMD-MS). 
EM and immunoelectron microscopy (IEM) to detect fibrinogen, g 
(SAB3701290, 1:100, Sigma), k, and l were performed by standard 
protocols and were observed under a transmission electron 
microscope (JOEL-1400, Japan). Details are provided in 
Supplementary Materials and Methods. 
Detection of cryoprecipitates 

The patient’s blood was collected into a pre-warmed tube 
without anticoagulant for cryoglobulin detection and into an 
EDTA anti-coagulant tube for cryofibrinogen detection. Both the 
sera and plasma were centrifuged at 37°C and then cooled to 4°C for 
7 days. Precipitates were observed at 4°C and dissolved by warming 
to 37°C. The concentration of fibrinogen in the plasma and 
precipitates was measured by the von Clauss method on a 
coagulation analyzer (Sysmex, Japan). 

Monoclonal immunoglobulins, including IgA, IgG, IgM, k, l, 
and fibrinogen in serum, plasma, and precipitates were detected by 
immunofixation electrophoresis (IFE) on a Hydrasys device (Sebia, 
Evry, France) according to the manufacturer’s protocols. Free light 
chains were detected by FreeliteTM at the UK Binging Site on a 
Behring BNII fully automatic apparatus. 

The precipitates were centrifuged, embedded into 2.5% agarose, 
and fixed into 2.5% glutaraldehyde overnight. The approach for 
both EM and IEM were performed as above. 
Genetic analysis 

A specialized gene panel targeting thrombosis and hemostasis­

related genes, including fibrinogen, were sequenced using next-
generation sequencing (NGS) techniques, with DNA capture 
facilitated by a GenCap capture kit (MyGenostics Inc, Beijing, 
China). Bioinformatics analyses were conducted using standard 
software. All mutations identified by DNBSEQ-T7 sequencing and 
genomic DNA from the available family members were verified 
through by Sanger sequencing. 

PCR amplification was performed using FGB-specific exon­
spanning primers (spanning exons 1–7). The PCR products were 
then separated on a 1% agarose gel and visualized using a gel 
imaging system. Total RNA was extracted and cDNA was 
synthesized using a Primescript™ RT reagent kit (TaKaRa, 
Kusatsu, Japan). The quantitative analysis of fibrinogen alpha 
chain (FGA), fibrinogen beta chain (FGB), and fibrinogen gamma 
chain (FGG) mRNA was performed using qRT-PCR on an Applied 
Biosystems QuantStudio 5 Real-Time PCR System. Details are 
provided in Supplementary Materials and Methods. 
frontiersin.org 

https://doi.org/10.3389/fimmu.2025.1576917
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Tang et al. 10.3389/fimmu.2025.1576917 
Cryoactivity of MIg 

To study the interaction between MIg and cryofibrinogen, we 
first incubated the patient’s serum from the first admission (no 
MIg) and the second (with MIg) with plasma from healthy controls 
at 4°C, as previously described (14). A serum with IgG l 
paraprotein from a patient with monoclonal gammopathy of 
unknown significance (MGUS) was used as a negative control. 
Next, we removed IgG l using Protein A beads (Pierce™) and 
applied the supernatant to a gravity column. Furthermore, 
molecular docking was applied to predict whether there are 
interaction sites between fibrinogen and MIg. 
Animal model 

Four mice received monthly intraperitoneal injections of 
cryoprecipitates from the patient with high-dose (two mice with 
300 ml) and low-dose (two mice with 200 ml), and four mice were 
controls. Two low-dose mice were sacrificed after the third and 
fourth injections, while high-dose mice were sacrificed after the 
final injection. The urinary protein-to-creatinine ratio (UPCR) was 
monitored monthly, and serum ALB and Scr levels were tested pre­
injection and at sacrifice. At the end of the experiment, the mice 
were anesthetized via intramuscular injection of 50 mg/kg Zoletil, 
followed by cardiac blood sampling and collection of tissue samples. 
Euthanasia was then performed by cervical dislocation. Tissues 
were processed for light microscopy (LM) and EM. Kidney sections 
were stained for fibrinogen, Alexa Fluor (AF) 594-conjugated goat 
anti-mouse IgG (ab150116, 1:100, Abcam, UK), AF647-conjugated 
goat anti-mouse IgM (ab150123, 1:100, Abcam, UK), and FITC-
conjugated goat anti-mouse IgA (ab97234, 1:100, Abcam, UK) by IF 
method, and rat anti-mouse C5b-9 (sc-66190, 1:50, Santa Cruz, 
USA) by IHC method. Other organs including brain, lung, heart, 
liver, intestine, and skin were processed and examined by LM and 
EM. Details are provided in Supplementary Materials and Methods. 
All authors complied with the ARRIVE guidelines during 
animal experiments. 
 

Cell culture 

Human mesangial cells (HMCs) were kindly gifted by Prof. 
Chunhua Weng of Zhejiang University,  Medical College

(Hangzhou, China). To further investigate the role of 
cryoprecipitates and MIg in mesangial cells, HMCs were cultured 
in DMEM (Gibco, Grand Island, NY) and treated with 
cryoprecipitates and purified MIg (IgG l from the patient and 
other individuals) for 24h to examine cell proliferation, fibrinogen/ 
MIg uptake, and ultrastructure. Cell proliferation was assessed 
using a BeyoClickTM 594 EdU kit (Beyotime, Shanghai, China) 
and quantified with Harmony 4.8 imaging and analysis software 
(PerkinElmer). Fibrinogen and IgG l uptake was detected by IF and 
visualized with Cytospin 4 (Thermo Fisher Scientific). EM was 
Frontiers in Immunology 03 
performed as previously described for cryoprecipitates. Details are 
provided in Supplementary Materials and Methods. 
Statistical analysis 

Cell counts and mesangial matrix area were quantified using 
Image-Pro Plus 6.0, and the average values were analyzed with 
GraphPad Prism (version 6.01). 
Results 

Clinical history 

A 73-year-old woman with mild edema and abnormal renal 
function was admitted with a history of hypertension for more than 
three years (up to 180/90 mm Hg) and a cerebral infarction six 
months ago. Laboratory tests revealed increased serum creatinine 
(Scr, 126 mmol/L), proteinuria (3.4 g per 24h), and hematuria (7–8 
red blood cells/ul). Serum albumin was 28.7 g/L, hemoglobin was 95 
g/L, and complement C3 was 76 mg/dL. Coagulation markers and 
serological tests for antinuclear antibodies, antineutrophil 
cytoplasmic antibodies, MIg, and malignancy were normal. 
Physical examination showed mild pitting edema of the lower 
extremities, with no rash, joint swelling, or abdominal tenderness. 
She was taking nifedipine, irbesartan, aspirin, and atorvastatin. The 
patient was clinically diagnosed with nephrotic syndrome and 
chronic kidney disease stage 3. 

The flowchart of the experimental procedures is shown 
in Figure 1. 
Kidney biopsy 

Immunofluorescence (IF) showed segmental IgM and C3 
deposits in the glomeruli, with negative results for IgA, IgG, C1q, 
k, and  l. Fibrinogen staining by IF revealed a subendothelial 
“sausage-like” pattern (Figure 2A). Light microscopy (LM) 
displayed a MPGN pattern and nodular sclerosis (Figures 2B, C). 
There was a massive infiltration of CD68+ macrophages in the 
glomerular tuft (Figure 2D). Electron microscopy (EM) further 
elucidated diffuse foot process effacement and dense deposits within 
the mesangial and subendothelial areas, many of which exhibited 
substructures. Scattered thrombi with large tubules (250–350 nm in 
diameter) and curved fibrils with random distribution (10 nm in 
diameter), surrounded by macrophages, were detected in the 
capillary lumen (Figures 2E, F). Immunoelectron microscopy 
(IEM) confirmed fibrinogen deposition in mesangial and thrombi 
substructures, as well as in macrophage lysosomes, while g, k, and l 
were negative (Figures 2G, H). 

Mass spectrometry of renal tissue identified high levels of 
fibronectin and fibrinogen, predominantly the fibrinogen beta 
chain. IgG1, C3 and C4 levels were also elevated, in contrast to 
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lower immunoglobulin (Ig) and light chain levels (Figure 2I). 
Therefore, the pathology diagnosis was cryofibrinogen-associated 
glomerulonephritis (CF-GN). 
 

Cryoprecipitates analysis and genetic test 

Cryoprecipitates were observed in plasma but not in serum at 4° 
C and dissolved upon warming to 37°C (Figures 3A, B). Although 
serum and plasma IFE tests were negative, IFE of the 
cryoprecipitates identified IgG l along with a faint fibrinogen 
band, indicating the coexistence of cryofibrinogen with MIg 
(Figures 3C, D). Fibrinogen levels were 3.1 g/L (normal 2–4 g/L) 
in plasma and 4.6 g/L in the precipitates. EM of the cryoprecipitates 
showed crystal structures similar to those seen in kidney biopsy 
deposits, and IEM revealed sparse gold-labeled fibrinogen, 
correlating with the kidney findings (Figures 3E, F). 

Genetic analysis revealed a heterozygous c.719-27G>C variant in 
intron 4 near the splice site of the FGB gene in the patient 
(Figure 3G). This mutation was also present in the patient’s son,

but not in her daughter. Although predicted as a variant of uncertain 
significance, the Bayesian framework score indicated a pathogenicity 
probability of 18.8% (14). For further investigation, we performed 
PCR to examine the length of FGB cDNA to determine whether the 
intron mutation affects the splicing site. However, the PCR product 
bands of both the healthy control and the patient were 1156 bp in 
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size, suggesting that the intron 4 mutation does not affect FGB 
splicing. In addition, qRT-PCR was used to measure the mRNA 
levels of fibrinogen alpha chain (FGA), fibrinogen beta chain (FGB), 
and fibrinogen gamma chain (FGG). The patient’s FGB level was 2.4 
times higher than that of her daughter, while FGG was 1.6 times 
higher, and FGA was 1.2 times higher (Figure 3H). 
Follow-up 

The patient was treated with oral prednisone (1 mg/kg per day, 
tapered) and FK506 (1 mg/kg, orally, once daily). Scr and urine 
protein-to-creatinine ratio initially decreased, but increased again 
three months later. Nephrotic syndrome recurred after another 
three months due to a lack of FK506, resulting in hospital 
readmission. Plasma fibrinogen levels returned to baseline and 
serum C3 decreased significantly (66.5 mg/dL). IgG l MIg was 
detected by IFE in both precipitates and serum. Bone marrow 
biopsy and flow cytometry showed 0.5% mature plasma cells 
without light chain restriction, and the serum free light chain 
ratio  was  normal  (0.76,  normal  0.31-1.56).  No  other  
cryofibrinogen-associated systemic disease was found. Therefore, 
the patient was diagnosed with MGUS. Treatment was adjusted to 
corticosteroids with cyclophosphamide (0.6g per dose, intravenous 
infusion), resulting in a stable renal and hematologic conditions 
over an additional one year of follow-up (Figure 3I). 
FIGURE 1 

Flowchart of the experimental procedures, including patient studies, in vivo, and in vitro experiments. CF-GN, cryofibrinogen-associated 
glomerulonephritis; CF, cryofibrinogenemia; MIg, monoclonal immunoglobulin; HMCs, human mesangial cells; IF, immunofluorescence; IHC, 
immunohistochemistry; LM, light microscopy; HE, hematoxylin & Eosin Staining; EM, electron microscopy; IEM, immunoelectron microscopy; MS, 
mass spectrometry; IFE, immunofixation electrophoresis. 
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FIGURE 2 

Renal pathology characteristics of the patient. (A) Fibrinogen was positive along capillaries (IF, 400×). (B, C) Diffuse mesangial expansion, nodular 
sclerosis, and a hyaline thrombi (arrow) (PASM, 400×&1000×). (D) CD68 was enriched within capillaries (IHC, 400×). (E, F) A thrombi with large 
tubules and curved fibril substructures surrounded by macrophages (EM, 4000×&40000×). (G, H) Gold-labeled fibrinogen was intensively distributed 
in lysosomes of the macrophage within the capillary lumen and was also scattered in the substructure of the mesengial area (IEM, 
10000×&40000×). (I) Proteomic analysis of kidney tissue showed the highest proportion of the fibrinogen beta chain, together with relatively high 
spectral counts of IgG1, C3 and C4 (MS). IF, immunofluorescence; PASM, periodic Schiff-methenamine staining; IHC, immunohistochemistry; EM, 
electron microscopy; IEM, immunoelectron microscopy; MS, mass spectrometry. 
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MIg-Fibrinogen interaction in 
cryoprecipitation 

To further investigate cryofibrinogen formation in this patient, 
we mixed her serum with plasma from a healthy control. The 
patient’s serum from the first admission, which did not show MIg, 
formed granular cryoprecipitates at 4°C and completely dissolved at 
37°C (Figures 4A–C). In addition, serum from the second 
admission, which showed MIg, formed gelatinous cryoprecipitates 
at 4°C and only partially dissolved at 37°C, whereas the MIg from 
other individuals couldn’t form cryoprecipitates (Figures 4D–F). 
These observations suggest that MIg may be critical for 
cryofibrinogen formation. Next, we removed IgG from the serum 
of the second admission, and the remaining serum components 
mixed with normal plasma did not induce cryoprecipitates 
(Figures 4G, H). Molecular docking revealed the extra-molecular 
interactions between fibrinogen and IgG Fab fragment, with a total 
of 3012 Ångströms2 buried in the interface, indicating a close 
contact between these molecules (Figure 4I). 
Frontiers in Immunology 06
Mice with cryoprecipitate injection 

To investigate the effect of cryofibrinogen on glomeruli in vivo, 
we injected mice with cryofibrinogen or vehicle. The animal model 
experimental workflow is depicted in Figure 5A. Mice receiving 
cryofibrinogen injections showed significantly increased proteinuria 
compared to the vehicle group (P=0.0045) (Figure 5B). However, it 
peaked and began to decrease after three injection cycles, suggesting a 
robust innate immune response in mice. Serum creatinine and serum 
albumin levels had no significant difference between the two groups 
(P>0.05). Kidneys harvested at sacrifice showed positive fibrinogen in 
the glomerular capillary lumen, while IgG and C5b-9 were positive in 
the mesangial area (Figures 5C–E). LM showed significant mesangial 
expansion and immune deposits (P<0.001) (Figures 5F, G). EM 
showed fibrin tactoids within the capillary lumen, mesangial 
proliferation and mesangial electron dense deposits without 
substructures (Figures 5H, J). These findings suggest the 
development of immune complex-mediated mesangial proliferative 
glomerulonephritis (IC-MesPGN) in cryoprecipitate-injected mice. 
FIGURE 3 

Cryoprecipitates detection. (A) The precipitates were detected in patient’s plasma but not in serum under 4°C. (B) The precipitates dissolved under 
37°C. (C, D) Monoclonal IgG l was detected in precipitates coexisting with weak fibrinogen (IFE). (E) Crystal-like precipitates with straight column 
shape at vertical section and tubules with spiral shape at cross-section (10000×). (F) Gold labeled fibrinogen scattered within the crystal area (IEM, 
40000×). (G) Genetic analysis identifed heterozygous c.719-27G>C variant in intron 4 of FGB gene. (H) The relative mRNA expression level of FGB 
was more than two times higher in the patient comparing with her daughter, followed by FGG and FGA. (I) Treatment and follow-up of fibrinogen 
level and kidney injury. FGB: fibrinogen beta chain; FGG, fibrinogen gamma chain; FGA, fibrinogen alpha chain; Scr, serum creatinine; ALB, albumin; 
CTX, cyclophosphamide; Pred, prednisone; UPCR, urinary protein-to-creatinine ratio; Fib, fibrinogen, MIg, monoclonal immunoglobulin. 
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Skin, brain, liver and intestine showed normal morphology in 
both groups. Two mice that received cryoprecipitates injections 
showed intra-alveolar red cell extravasation and neutrophil 
infiltration in the lungs, while one mouse exhibited focal necrosis 
by LM and loss of striated muscle fibers by EM of the heart 
(Figures 5K–M). However, the coronary artery and aorta were 
not occluded. 
Effect of cryoprecipitates and MIg on 
mesangial cells 

To investigate the direct effects of cryoprecipitates and MIg on 
mesangial cells, we cultured mesangial cells with cryoprecipitates, 
MIg and vehicle control. The percentage of EdU-positive cells in the 
cryoprecipitates and MIg from the patient was significantly higher 
compared to that in MIg from other individuals and in the vehicle 
control, indicating that the patient’s cryoprecipitates and MIg 
stimulate mesangial cell proliferation (Figures 6A–C). In addition, 
the proportion of fibrinogen-positive cells increased in the 
cryoprecipitates group, suggesting cytophagic activation 
(Figures 6D–F). In contrast, the uptake of MIg was negligible, 
whether from the patient or from other individuals. EM revealed 
that approximately 50% of mesangial cells in the cryoprecipitates 
Frontiers in Immunology 07 
and MIg from the patient group exhibited hypertrophy, 
mitochondrial depletion, and lysosomal degeneration, whereas 
less than 10% of cells in the MIg from other individuals and the 
vehicle control group showed this phenotype (Figures 6G, H). 
However, no unique substructures or fibrin tactoids were 
observed in the cells. 
Discussion 

In CF patients, laboratory analyses commonly show normal 
levels of fibrinogen and complement, with a few exceptions 
exhibiting increased levels and prolonged D-dimers (2, 3, 9, 11, 
14–17). In our case, fibrinogen levels in plasma remained within the 
normal range throughout the entire course of the disease, and C3 
level was slightly decreased at onset but became conspicuously 
lower upon the relapse of NS, indicating immune system activation. 
The histological features of CF-GN present predominantly as an 
MPGN pattern, yet exhibit limited Ig and complements deposition, 
which might be easily misdiagnosed as cryoglobulinemic 
g lomeru lonephr i t i s  (CryoGN) ,  chron i c  t h rombo t i c  
microangiopathy (TMA), C3 glomerulonephritis, or fibronectin 
glomerulopathy (3, 4, 6, 11, 17–21). Therefore, fibrinogen staining 
on renal tissue is crucial when these histological characteristics are 
FIGURE 4 

The interaction of MIg with fibrinogen. (A) The patient’s serum (first admission without MIg) mixed with plasma from a health control showed 
granular cyroprecipitates under 4°C. (B) Wholly dissolved mixed blood of panel (A) under 37°C. (C) IFE detection of the mixed blood from panel B 
showing negative MIg. (D) Serum of the patient (second admission with MIg) mixed with plasma from a health control showed gelatinous 
cyroprecipitates under 4°C. (E) Partially dissolved mixed blood of panel D under 37°C. (F) IFE detection of blood in panel (E) showed MIg (IgG l). 
(G) IFE was negative when IgG including MIg in the serum of her second admission was extracted. (H) The patient’s serum after extraction was 
mixed with plasma from a health control, and no cryoprecipitates were detected under 4°C. (I) The molecular docking revealed a robust interaction 
between MIg and fibrinogen. Grey, IgG Fab fragment; Purple, fibrinogen alpha chain; Yellow, the residues involved in the interface; Green, fibrinogen 
beta chain; Light pink, fibrinogen gamma chain. IFE, immunofixation electrophoresis; MIg, monoclonal immunoglobulin. 
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FIGURE 5
 

Laboratory data and pathological characteristics in animal model injected with cryoprecipitates. (A) The animal model experimental workflow.
 
(B) Laboratory data showed significantly increased proteinuria in the mouse model compared to the control (P<0.05). (C) Positive fibrinogen within
 
the capillary lumen (IF, 1000×). (D) Positive IgG in mesangial area (IF, 1000×). (E) Positive C5b-9 in mesangial area (IHC, 1000×). (F) Mesangial
 
proliferation (PASM, 1000×) (G) Immune complex deposits in mesangial area (Masson, 1000×). (H) Scattered fibrin tactoid (EM, 10000×). (I) Mesangial
 
expansion and cell proliferation (EM, 3000×). (J) Electron dense deposits in mesangial area, but without substructure (EM, 10000×). (K) Intra-alveolar
 
red cell extravasation and neutrophil infiltration (HE, 1000×). (L) Myocardial necrosis (HE, 1000×). (M) Loss of striated muscle fibers (EM, 10000×). LD,
 
low dose; HD, high dose; Ctrl, Control; Fib, fibrinogen; CP, cryoprecipitates; UPCR, urinary protein-to-creatinine ratio; Scr, serum creatinine; ALB,
 
albumin; IF, immunofluorescence; IHC, immunohistochemistry; LM, light microscopy; PASM, periodic Schiff-methenamine staining;
 
EM, electron microscopy.
 
Frontiers in Immunology 08 frontiersin.org 

https://doi.org/10.3389/fimmu.2025.1576917
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Tang et al. 10.3389/fimmu.2025.1576917 

 

present. In this patient, fibrinogen deposition was predominantly 
observed in the subendothelial area, demonstrating a characteristic 
“sausage-like” pattern that corresponded to electron-dense deposits 
on EM, which is more frequently observed in immune-complex­

mediated MPGN. Clinically, skin manifestations often serve as the 
initial indicators and arterial or venous thrombotic events are 
frequent (9, 22–26). The occurrence of kidney disease is relatively 
rare, ranging from 0-22% (8, 9, 18, 22, 27, 28). Despite this, 74% IgA 
nephropathy was reported to show positive CF in plasma, even 
though no clear association between CF and IgA nephropathy has 
been illustrated (6). Clinical manifestations of CF-GN are variable, 
including 10% with a positive MIg (4, 6, 12, 29, 30). In our study, the 
patient manifested kidney-dominant injury but without 
dermatological impairment, which may be related to the specific 
physicochemical properties of cryoprecipitates. In the animal study, 
we found that the heart and lungs were involved, in addition to 
kidney injury, indicating multi-organ injury and the variety of 
clinical manifestations seen in patients. 

Some case reports have described paraproteinemia in CF-GN 
patients (11, 14, 18–20, 31, 32). The monoclonal component may 
exist in serum but not in cryoprecipitates or only appear after 
cryoprecipitation (11, 14, 17, 18). However, the pathogenesis of MIg 
Frontiers in Immunology 09
and its association with CF remain elusive. Euler HH et al. 
postulated that the MIg with cryoactivity acted as an antibody 
against fibrinogen and caused cryoprecipitation, whereas Gant CM 
et al. hypothesized that cryoprecipitate formation was directly 
related to the presence of MIg (14, 16). Nash JW et al. suggested 
that MGUS might be a more important cause of cryofibrinogenemia 
than previously thought (18). In our case, the serum with MIg of the 
patient had cryoactivity, even though it was undetected by IFE on 
her first admission; whereas the serum without MIg or the serum 
with monoclonal protein from other patients did not exhibit 
cryoactivity. Furthermore, the molecular docking indicates that 
fibrinogen might have a close contact with IgG Fab fragment. 
Those phenomena suggest that the patient’s MIg  has  special
characteristics that induce fibrinogen with genetic variants to 
form cryoprecipitates, which might be the culprit of CF, even in 
trace quantities. 

Some studies suggest that CF has a familial inheritance with an 
autosomal dominant mode (25, 28, 33–35). Nevertheless, it was 
insufficient to confirm without a genetic test. In our case, a 
heterozygous intronic mutation in the FGB gene was identified in 
both the patient and her son, which might not affect the 
conformation of fibrinogen protein, but appeared to relatively 
FIGURE 6 

Human mesangial cells stimulated by cryoprecipitates. (A) Higher proportion of EdU positive cells (purple red) in the cryoprecipitates’ group than the 
control group (B) (IF, 200×). (C) The proliferation of mesangial cells induced by cryoprecipitates and MIg from the patient was statistically higher 
than that induced by MIg from other individuals and the vehicle control (P<0.01). (D) Fibrinogen positive HMCs (green) in the precipitates group but 
not in the control group (E) (IF, 1000×). (F) Cryoprecipitate-induced fibrinogen positive HMCs significantly outnumbered those induced by MIg or 
vehicle (P<0.01). (G) Mesangial cell hypertrophy, mitochondrial depletion and lysosomal degeneration in the cryoprecipitate and MIg from the patient 
groups, but not in other groups (H) (EM, 5000× of large images & 30000× of inserted images). **P < 0.01. 
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increase the mRNA expression level of FGB in the patient. 
Moreover, LMD-MS identified the highest proportion of FGB 
protein among all chains. Therefore, we performed experiments 
including PCR and RT-PCR to determine whether the intron 
mutation affects cDNA length and mRNA level. The results 
demonstrated that the intron mutation did not alter the cDNA 
length of FGB but increased its mRNA expression. We hypothesize 
that intronic mutations may increase expression levels by 
enhancing transcription, relieving repression, stabilizing mRNA, 
or altering epigenetic states (36). Increased mRNA expression may 
elevate beta protein levels or alter the characteristics of fibrinogen, 
potentially increasing its affinity for MIg and causing abnormal 
fibrinogen consumption. This genetic background likely serves as 
the first hit predisposing to CF formation. Crucially, the presence of 
isomeric MIg acts as a second hit by binding fibrinogen and forming 
a mega-complex that precipitates under cold conditions. This 
pathogenesis resembles that of complement mediated thrombotic 
microangiopathy, potentially explaining the disease’s rarity. The 
patient developed symptoms late, possibly due to gradual MIg 
accumulation or MPGN’s slow progression. Her son carried the 
same genetic variant but remained asymptomatic due to the absence 
of paraprotein, confirming that MIg acts as an essential “second hit” 
in disease pathogenesis. 

Hatzfeld JA et al. reported that fibrinogen stimulates the 
proliferation of human hematopoietic cells in vitro (7). Our in 
vitro study revealed mesangial cell proliferation, abnormal 
morphological features, and phagocytosis of fibrinogen in the 
cryoprecipitates  group,  suggesting  that  the  toxicity  of  
cryoprecipitates may lead to MPGN lesions in vivo. In addition, 
mesangial cells exhibited significant proliferation and dysmorphism 
in response to patient-derived MIg, but not to MIg from other 
Frontiers in Immunology 10 
individuals, underscoring the pivotal role of patient-specific MIg in 
the pathogenesis of cryoprecipitates. As previously reported, MIg 
can induce proliferative glomerulonephritis (e.g., CryoGN and 
pro l i f e r a t i v e  g l omeru l oneph r i t i s  wi t h  monoc l on a l  
immunoglobulin deposits), which could explain the proliferation 
and dysmorphic features of HMCs after  stimulation (37, 38). 
However, the HMCs internalized only the cryoprecipitates but 
not the MIg alone. The results indicate that the fibrinogen-MIg 
cryoprecipitate complex, but not MIg alone, can functionally induce 
mesangial cell transformation and lead to persistent tissue injury. 

Besides, the animal model of proliferative injuries was similar to 
those in patients after continuous injection of cryoprecipitates. 
Although we injected mice with varying doses of cryoprecipitates, 
neither the observed proteinuria nor the morphological changes 
demonstrated dose dependency. This suggests that the pathological 
effects may be initiated upon reaching a threshold concentration of 
pathogenic factors rather than through cumulative dose effects. 
Pathologically, the presence of IgG and the absence of substructures 
in the mouse model suggests that a polyclonal IgG complexed with 
human fibrinogen is morphologically distinct from MIg but shares 
the same pathogenetic mechanism (18). This similar immune 
complex associated glomerular nephritis (ICGN) pattern was also 
observed in patients (11, 14). Moreover, sparse subendothelial 
deposits without substructure were observed in our patient, and 
IgG1 heavy chain and complement were detected by LMD-MS/IF, 
indicating ICGN rather than fibrinogen deposits alone, which is 
consistent with the pathogenesis observed in the animal model. 
Hence, we speculate that CF-GN may exhibit features of either 
MesPGN or MPGN, with or without IC deposits. The isomeric MIg 
may exhibit high affinity for Fc fragment accumulation, potentially 
becoming embedded within the dense central region of the mega-
FIGURE 7 

Mechanisms of cryofibrinogen-associated glomerulonephritis. (A, B) Monoclonal protein (IgG l) is secreted from a cluster of plasma cells, and 
interact with fibrinogen to form immune complex. (C) Cryoprecipitates form under cooling conditions and deposit at multiple locations. These 
deposits are engulfed by macrophages and cause membranoproliferative glomerulonephritis. Pink cells: mesangial cells; Blue cells: podocytes; Dark 
blue cells: macrophages; Grey cells: neutrophils; Black curved lines: GBM. 
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complex due to its crystalline structure. Hence, IgG may have been 
masked, making it resistant to IF detection. In addition, MS is more 
sensitive in detecting proteins with substructures, such as those in 
amyloidosis. Both of these factors could explain the discrepancies 
between IF and MS detection (39). The diverse pathological 
characteristics may contribute to the underdiagnosis of CF-GN. 
Therefore, CF-GN with paraproteinemia should be considered 
within the spectrum of monoclonal gammopathy of renal 
significance (MGRS) to better inform treatment strategies. The 
proposed mechanisms of CF-GN are shown in Figure 7. 

Cryofibrinogenemia is a treatable and potentially reversible 
disease (8, 9, 23). The maintenance therapy involves avoiding 
cold exposure and taking anticoagulants and fibrinolytic agents, 
whereas the treatment of secondary cryofibrinogenemia involves 
the management of associated diseases (9, 23). The patient was 
educated to avoid coldness, but anticoagulants and fibrinolytic 
agents were not prescribed due to normal coagulation and 
fibrinolysis levels, and lack of thrombus manifestation. Currently, 
treatments of kidney diseases are often tailored to the underlying 
etiology and the severity of renal involvement (11). The presence of 
CF, immune complex formation, complement activation, and the 
MPGN pattern suggest that immunosuppressive therapy can be 
considered to be effective, even in cases with neoplasms (8, 9, 11, 12, 
14, 16, 17, 22, 27). Cyclophosphamide was proved to be more 
effective than FK506, however, relapses were frequently reported (8, 
9, 14, 27). Moreover, despite negative results from the exploration of 
the patient’s hematologic status, continuous hematological 
supervision and treatment aimed at reducing monoclonal 
paraprotein levels should be considered accordingly (17). 

This study has several important limitations. First, as a single-case 
investigation, its findings lack generalizability. Second, we were unable 
to definitively establish a causal relationship between the observed 
genotype mutations and phenotypic abnormalities. Third, the precise 
interaction mechanisms between monoclonal immunoglobulin (MIg) 
and fibrinogen remain to be fully elucidated. Moreover, the short 
duration with limited stimulation in the  animal  model may  not fully  
represent kidney injury or facilitate deeper exploration of molecular 
mechanisms and susceptibility of agents. 

In conclusion, cryofibrinogenemia is at risk of being 
serologically overlooked or pathologically underdiagnosed. MIg 
has a cryoactivity and a close interaction with fibrinogen, which is 
responsible for the formation of cryoprecipitates. A thorough MIg 
detection in elderly patients presenting with CF is essential, and 
immunosuppressive or monoclonal-targeted therapy should be 
considered accordingly. 
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