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Sepsis-induced
immunosuppression:
mechanisms, biomarkers
and immunotherapy
Xun Gao1,2*, Shijie Cai1,2, Xiao Li1,2 and Guoqiu Wu1,2

1Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing,
Jiangsu, China, 2Department of Laboratory Medicine, Medical School of Southeast University, Nanjing,
Jiangsu, China
Sepsis, a life-threatening organ dysfunction resulting from a dysregulated host

response to infection, initiates a complex immune response that varies over time,

characterized by sustained excessive inflammation and immunosuppression.

Sepsis-induced immunosuppression is now recognized as a major cause of

septic death, and identifying effective strategies to counteract it poses a

significant challenge. This immunosuppression results from the disruption of

immune homeostasis, characterized by the abnormal death of immune effector

cells, hyperproliferation of immune suppressor cells, release of anti-

inflammatory cytokines, and expression of immune checkpoints. Preclinical

studies targeting immunosuppression, particularly with immune checkpoint

inhibitors, have shown promise in reversing immunocyte dysfunctions and

establishing host resistance to pathogens. Here, our review highlights the

mechanisms of sepsis-induced immunosuppression and current diagnostic

biomarkers, as well as immune-enhancing strategies evaluated in septic

patients and therapeutics under investigation.
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1 Introduction

Sepsis is a life-threatening organ dysfunction resulting from a dysregulated host

response to infection (1). About 48.9 million cases of sepsis were recorded globally in

2017, of which 11 million patients died of sepsis, accounting for 19.7% of global deaths (2).

Although the mortality rate of sepsis has declined globally in recent years, it remains one of

the most significant medical problems worldwide (3). In addition, the pathogenesis of

sepsis has not been fully clarified, and clinical treatment still relies on physical therapies

such as controlling infection and maintaining organ function, which results in a long

treatment process and poor prognosis. Therefore, understanding the immune regulatory

mechanisms of sepsis are crucial for the prevention and treatment of the disease.
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The immune status of septic patients changes dynamically at

different stages, involving complex interactions between multiple

immune cells and molecular mechanisms (4). When invade,

pathogens or pathogen-associated molecular patterns (PAMPs),

damage-associated molecular patterns (DAMPs) may recognize

pattern recognition receptors (PRRs) like RIG-I-like receptors

(RLRs), Toll-like receptors (TLRs), and NOD-like receptors

(NLRs), et al, on innate immune cells, triggering the innate

immune responses characterized by the secretion of amounts of

cytokines and chemokines, accompanied by the activation of the

coagulation and complement system. An uncontrolled

inflammatory response (cytokine storm) or worse still, multiple

organ dysfunction syndrome (MODs) may occur as a consequence

(5). If the immune system clears pathogens promptly during the

early systemic inflammatory response, immune balance can be

rapidly restored. However, if pathogens are not removed in time,

they can lead to long-term immunosuppression, immune collapse,

and even physical disabilities in patients, known as immune-

suppression (6) (Figure 1). In the context of sepsis, the immune

status alterations across various stages are intricate. A complex

interplay between hyperinflammation and immunosuppression can

manifest either sequentially or concurrently. The conventional

theory posits that the early phase of sepsis is dominated by a pro-

inflammatory response characterized by cytokine storm, and the

early-stage mortality is attributed predominantly to MODs due to

this hyper-inflammation. After the hyper-inflammation stage, the

patients are either gradually recovered or transitioned into

persistent immunosuppressive state characterized by immune cell
Frontiers in Immunology 02
exhaustion whereas this late-stage mortality is frequently associated

with secondary infection. If the immunosuppression persist,

patients would then suffer long-term death as a result of immune

dysfunction and chronic catabolism (4, 7, 8) (Figure 2).

The excessive inflammatory responses and cytokine storms

have long been considered primary contributors to the high

mortality of sepsis, while therapeutic interventions targeting TNF-

a or IL-6, et al, have not yielded the anticipated improvements in

patient survival in the past decades (9, 10). Additionally, the use of

antibiotics, fluid resuscitation, and organ support therapy have

limited prognostic impact in patients with sepsis. This

discrepancy between the theoretical understanding of sepsis

pathophysiology and the practical outcomes of targeted therapies

underscores the complexity of the disease and the need for a more

nuanced approach to treatment. In recent years, the role of

immunosuppression in sepsis has been increasingly emphasized.

Persistent immunosuppression is characterized by excessive and

aberrant immune cell death, sustained release of anti-inflammatory

mediators, expansion of immunomodulatory cell populations, and

upregulation of immune checkpoint molecules, which collectively

compromise host defenses against pathogens (11–14). This

immunosuppressive state not only increases the risk of secondary

infections but also diminishes the efficacy of therapeutic

interventions such as immunotherapy and antibiotics (15, 16).

Clinical studies have demonstrated that persistent lymphopenia in

sepsis patients is strongly associated with 28-day mortality,

prolonged hospitalization, and a higher incidence of secondary

infections. Notably, sepsis-associated immunosuppression is
FIGURE 1

Overview of homeostatic disturbance in sepsis. During sepsis, the immune response is initiated when the host recognizes PAMPs and DAMPs
involving both innate and adaptive immune system. Several mechanisms, including the proliferation of inflammatory cells, secretion of inflammatory
cytokines and activation of the complement system, can escalate pro-inflammatory responses. Conversely, heightened abnormal death of immune
effectors cells, production of anti-inflammatory cytokines, expansion of immunosuppressive cells and expression of specific immune checkpoints
can exacerbate anti-inflammatory responses. Dominance of the pro-inflammatory response often correlates with a massive cytokine storm, leading
to MODs. Conversely, the dominance of the anti-inflammatory response typically results in secondary infections and a poor prognosis. The figure
was created via BioRender (https://BioRender.com).
frontiersin.org

https://BioRender.com
https://doi.org/10.3389/fimmu.2025.1577105
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Gao et al. 10.3389/fimmu.2025.1577105
recognized as a major contributor to mortality through its role in

facilitating secondary infections (4, 17). Therefore, understanding

and coping with sepsis immunosuppression is crucial for improving

patient prognosis and therapeutic outcomes.

Here, we summarize current advances in the mechanisms

underlying sepsis-induced immunosuppression, including the

dysfunction of immune effector cells, expansion of immune

suppressive cells, overproduction of anti-inflammatory cytokines,

and dysregulation of immune checkpoint pathways. We also

comprehensively summarize the diagnostic and therapeutic

biomarkers related to sepsis immunosuppression, highlighting

their translational potential in guiding the development of

precision therapies for septic patients. Finally, we discuss new

insights in immunosuppression-targeted therapies for sepsis,

offering a framework to refine clinical staging and advance

evidence-based management strategies.
2 Mechanisms of sepsis induced-
immunosuppression

The phenomenon of “septic immunosuppression” was first

identified by Volk et al. in 1996 (18), and studies on the mechanisms

of “sepsis immunosuppression” emerged since then. Over the past

decades, research into sepsis-induced immunosuppression has mainly

focused on the dysregulation of immune effector cells and their failure

to defend against infection, leading to increased susceptibility to

secondary infections and death (5, 19). In recent years, with deeper

understanding of the mechanisms, numerous studies have shown that

sepsis-induced immunosuppression originates from the disorder of

innate and adaptive immunity, characterized by the death and

dysfunction of immune effector cells, overproduction of

immunosuppressive cells, and release of anti-inflammatory cytokines.

Increased expression of immune checkpoint molecules further

aggravates immunosuppression (4, 20). Below, we comprehensively
Frontiers in Immunology 03
summarize the well-known existing studies on the mechanisms of

sepsis-induced immunosuppression, with an overview shown

in Figure 3.
2.1 Reduction and dysfunction of immune
effector cells

In sepsis, the number of immune effector cells is often severely

reduced, leading to immunosuppression and exacerbation of

infections (21), which mainly involves apoptosis, autophagy,

pyroptosis and ferroptosis.

Apoptosis is a regulated form of cell death that removes

damaged cells and maintains homeostasis under physiological

conditions (22), which is particularly prominent in CD4+ T cells,

CD8+ T cells, B cells, natural killer (NK) cells, and follicular DCs. In

the past decades, apoptosis in sepsis-related immunosuppression

has gained much attention. Lymphopenia due to apoptotic loss is a

common characteristic of septic patients (23). Postmortem analyses

reveal profound splenic T cell depletion with concurrent PD-L1

upregulation in sepsis fatalities compared to non-infectious

mortality controls (24), which may be attributed to the increased

levels of cytochrome C, Bim, caspase-3, caspase-8, and caspase-9,

while decreased expression of B-cell lymphoma/leukemia-2 (Bcl-2)

(25). Likewise, studies have shown that macrophage apoptosis is

significantly increased in sepsis, accompanied by the activation of

signaling pathways involving Fas/FasL and TNF-related pathways

(26). Consequently, these apoptotic cells are engulfed by

macrophages and cleared from the inflamed area, triggering the

production of IL-10 and TGF-b, decreased expression of HLA-DR,

and endotoxin tolerance, all of which impair the ability of antigen-

presenting cells (APCs) to stimulate lymphocytes (27, 28).

Currently, the anti-apoptotic strategies have been successfully

proven to reduce mortality after sepsis in mice (29), indicating

that inhibiting apoptosis may be a strategy to restore immune

function against infection.
FIGURE 2

Time course and transition from hyper-inflammation to immunosuppression phase in sepsis. Both pro-inflammatory and anti-inflammatory
responses are rapidly triggered after the onset of sepsis, and the transition from immune homeostasis to immune imbalance plays vital roles in the
pathogenesis and progression of sepsis. The early stage is mainly dominated by the hyper-inflammation, during which the excessive “cytokine storm”

often lead to early death of patients. On the contrary, if the body can restore normal immunity and rebalance, patients will enter the recovery stage
or be gradually dominated by immunosuppression and suffer late or long-term death due to secondary infections, immune dysfunction and chronic
catabolism. The figure was created via BioRender (https://BioRender.com).
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Autophagy, a catabolic process involving lysosomal degradation

and recycling of cytoplasmic components, can be either

cytoprotective or induce cell death (30, 31). In sepsis,

lipopolysaccharide (LPS) activates selective autophagy through

TLR4-MyD88-dependent or MyD88-independent as well as NF-

kB pathways (32). Autophagy plays a role in packaging pathogen

components, while excessive autophagy can reduce inflammation,

and prevent DAMP and PAMPs from binding to PRRs, thereby

suppressing immune activation during sepsis (33). Additionally,

autophagy can promote sepsis-induced apoptosis of T lymphocytes

and reduce the inflammatory response by negatively regulating the

abnormal activation of macrophages (34, 35). However, mice with a

reduced autophagy capacity in lymphocytes due to cell-specific

deletion of Atg5 or Atg7 showed an increased mortality together

with higher release of the anti-inflammatory IL-10 and immune

dysfunction in abdominal sepsis, suggesting that impaired

autophagy can whereas contribute to immunosuppression (36).

Therefore, the effect of autophagy on the immune status of sepsis

may vary according to the stage.
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In recent years, newly identified programmed cell death such as

pyroptosis and ferroptosis, have also been found to be induced

during sepsis and to play pivotal roles in sepsis-induced

immunosuppression (37). Pyroptosis is a form of inflammatory

cell death primarily mediated by caspase-dependent gasdermin-D

(GSDMD) activation (38), characterized by loss of membrane

integrity, cell swelling, rupture, and subsequent release of pro-

inflammatory mediators (22). During sepsis, immunocyte

pyroptosis may exert biological effects through classical pathways:

Caspase-1 is activated, recognizes and cleaves GSDMD, after which

the cleaved GSDMD forms pores in the cell membrane, ultimately

triggering pyroptosis. Additionally, pyroptosis can occur through

non-classical pathways involving caspase-4/5 in humans or caspase-

11 in mice, which activate GSDMD to induce pyroptosis (39, 40).

Pyroptosis may lead to the release of IL-1b, IL-18, and High

Mobility Group Box-1 (HMGB1), recruiting immune cells to

aggregate the inflammatory response, which are correlated with

the hyperinflammation and subsequent immunosuppression (41).

Notably, septic patients exhibit elevated caspase-1 expression in
FIGURE 3

Mechanisms underlying immunosuppression in sepsis. Sepsis-induced immunosuppression involves dysfunction of immune effector cells, expansion
of immune suppressive cells, secretion of anti-inflammatory mediators and expression of immune checkpoints, primarily concerning neutrophils, T
lymphocytes, B lymphocytes, macrophages and dendritic cells (DCs), et al. The figure was created via BioRender (https://BioRender.com).
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immune cells compared to healthy individuals (41). Furthermore,

the costimulatory molecule GITR has been shown to promote

immunosuppress ion in seps i s by enhanc ing NLRP3

inflammasome-mediated macrophage pyroptosis (42), whereas

inhibition of the TMEM173-GSDMD-F3 pathway improves septic

mice survival by blocking disseminated intravascular coagulation

(DIC) (43), providing further evidence for pyroptosis in

sepsis immunosuppression.

Similarly, ferroptosis is an iron-dependent cell death process

driven by lipid peroxidation, involving iron overload, reactive

oxygen species (ROS) generation, and accumulation of

polyunsaturated fatty acids in phospholipids (44). During sepsis,

infection induces upregulation of nuclear receptor coactivator 4

(NCOA4), which mediates selective ferritin autophagy, resulting in

Fe³+ release and iron-dependent cell death (45). Emerging evidence

indicates that ferroptotic cells release DAMPs, activating

downstream signaling pathways that exacerbate sepsis-associated

organ failure (46). Importantly, elevated serum iron levels, infection

markers, and lipid peroxidation have been significantly correlated

with increased long-term mortality and cognitive impairment in

sepsis patients (47). Together, these evidences support the pivotal

roles of ferroptosis in sepsis-induced immunosuppression.
2.2 Expansion and hyperactivation of
immunosuppressive cells

2.2.1 Regulatory T cells
The expansion of Tregs during sepsis suppresses the immune

system by releasing anti-inflammatory cytokines, upregulating co-

inhibitory receptors, and metabolic reprogramming from glycolysis

to oxidative phosphorylation, which not only enhances their

suppressive capacity but also correlates with long-term mortality

in septic patients (48, 49). Mechanistically, Tregs inhibit effector T

cell proliferation and function via direct secretion of inhibitory

cytokines (e.g., IL-10 and TGF-b) and cell-contact-dependent

suppression (50). Notably, Tregs can directly induce effector T

cell apoptosis while impairing their antimicrobial activity,

potentially mediated by Smad2/Smad3 signaling (51, 52).

Furthermore, Treg-derived cytokines drive a feedforward

immunosuppressive loop by promoting expansion of myeloid-

derived suppressor cells (MDSCs) and establishing an

immunosuppressive microenvironment, thereby exacerbating

systemic immune paralysis in sepsis (53, 54).

2.2.2 MDSCs
MDSCs constitute a heterogeneous cell population

predominantly composed of immature myeloid cells with broad

immunosuppressive activity targeting both innate and adaptive

immunity (55). The pathological expansion of MDSCs in sepsis is

driven by sustained production of inflammatory factors like IL-6

and TNF-a, and the activation of signaling pathways such as

STAT3 and NF-kB (56, 57). The expansion of MDSCs is closely

linked to chronic immune suppression in septic patients, affecting
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the severity and progression of sepsis and the incidence of

secondary nosocomial infections due to their inhibitory effects on

T cell proliferation and function (58, 59). Co-culture of MDSCs

isolated from septic patients with T cells showed the impaired

ability of antigen-driven T cells to proliferate and secrete

proinflammatory factors such as IFN-g (58). Notably, while

immature myeloid cell numbers remain elevated for ≥ 6 weeks

post-sepsis onset, only MDSCs acquired after the 2-week post-onset

window exhibit potent inhibition of T lymphocyte proliferation and

IL-2 synthesis, suggesting their pivotal role in maintaining chronic

immunosuppression during the late phase of sepsis (60).

2.2.3 M2 macrophages
Macrophages are functionally polarized into classically

activated (M1) and alternatively activated (M2) subtypes, defined

by their divergent roles in inflammation regulation. M1

macrophages exhibit pro-inflammatory phenotypes critical for

pathogen clearance, whereas M2 macrophages display anti-

inflammatory properties that facilitate tissue repair and resolution

of inflammation (61). Notably, M2 macrophage polarization has

emerged as a key driver of sepsis-induced immunosuppression.

Mechanistically, during the late immunosuppressive phase of sepsis,

M2 macrophages are activated by Th2 cytokines (IL-4 and IL-13),

LPS, glucocorticoids, IL-10, IL-6, or TGF-b (62). In turn, these

polarized M2 macrophages establish a self-reinforcing

immunosuppressive cascade through massive secretion of IL-10

and TGF-b, thereby inducing host immune paralysis and

predisposing to recurrent infections (63). Moreover, M2

macrophages express high levels of C-type lectins (CD206) and

scavenger receptors (CD163), promoting the secretion of

chemokines (CCL17 and CCL18) to recruit eosinophils, basophils,

Th2, and Tregs, exhibiting an “anti-inflammatory cytokine profile”

(64). Further research is needed to elucidate their complex

regulatory network and functional mechanisms during sepsis.
2.3 Increased release of anti-inflammatory
mediators

Anti-inflammatory mediators play pivotal roles in the

immunosuppression of sepsis, with specific actions including the

inhibition of pro-inflammatory mediator secretion, the impairment of

immune cell function, the promotion of M2 macrophage polarization,

and the increase of immunosuppressive Tregs, etc. (65, 66). The most

prominent cytokines in sepsis related immunosuppressive were IL-4, IL-

10, IL-27, IL-37, IL-38 and TGF-b (28) (Figure 4).

IL-4 and IL-10 are crucial anti-inflammatory cytokines mainly

secreted by Th2 cells, monocytes/macrophages and Tregs, et al, upon

activation (67, 68). The release of IL-4 and IL-10 in sepsis suppress Th1

inflammatory response by reducing IFN-g, TNF-a and IL-1b secretion
by Th1 cells and inhibit Th1 cells polarization (65, 69). Specifically, IL-4

drives naive T cell differentiation toward Th2 lymphocytes, a process

that can be blocked by anti-IL-4 antibodies (70); whereas IL-10 can

exacerbate immunosuppression by promoting Treg and MDSCs
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production, inhibiting DCs maturation and neutrophil function,

leading to impaired antigen presentation and pathogen clearance

(71–73). Clinically, elevated plasma IL-10 levels demonstrate strong

correlations with increased nosocomial infections and mortality rates,

validating its central role in sepsis-associated immunosuppression (74).

Collectively, these functions promote a Th2-biased immune response

and weaken resistance to bacteria and viruses. TGF-b is a

multifunctional cytokine belonging to the transforming growth factor

superfamily. As for its anti-inflammatory properties, it plays a role in

the induction of induced Treg cells (iTreg cells) from CD4+ T cells,

alternative macrophage activation which maintain an anti-

inflammatory phenotype, and act as an up-regulator of anti-

inflammatory response (75, 76). IL-27, a dual-functional member of

the IL-12 cytokine family, modulates sepsis pathogenesis through cell-

type-specific actions on macrophages, DCs, and lymphocytes. While

enhancing early inflammatory responses, IL-27 paradoxically

suppresses Th1/Th17 differentiation and potentiates IL-10

production from Tregs and type 1 regulatory T (Tr1) cells during

late-phase sepsis (77–79).

In recent years, the novel anti-inflammatory IL-35, IL-37, and

IL-38 have also been implicated in sepsis immunosuppression,

partly by inhibiting the release of pro-inflammatory mediators

(80). Notably, Study have shown that IL-37 could significantly

downregulate the expression of HLA-DR and CD86 in septic

mice, inhibiting antigen presentation and indicating an

immunosuppressive effect in sepsis (81). Clinically, septic patients

exhibit elevated IL-37 levels that inversely correlate with
Frontiers in Immunology 06
inflammatory cytokine production and positively associate with

immunosuppression severity (82). Previously, we have also shown

that in COVID-19 patients developed into sepsis, IL-38 was

increased and correlated with disease severity (83, 84), which

consistent with mechanistic studies regarding IL-38 in promoting

Treg expansion, while alleviating macrophage related pro-

inflammatory responses in sepsis (85, 86).
2.4 Increased expression of immune
checkpoints

Cell surface inhibitory immune checkpoints (also known as

negative costimulatory molecules), including PD-1, PD-L1, CTLA-

4, TIM-3, et al, are implicated in the immunosuppression of sepsis,

by functionally inhibit phagocytosis and cytokine release of

immune cells and promote T-cell exhaustion (87). As early as

2011, studies have reported increased expression of PD1-related

molecules in sepsis patients, accompanied by decreased cytokine

production, HLA-DR and CD28 expression, while increased

activation of immunosuppressive Tregs (88, 89), providing direct

evidence that PD1 is essential to the poor prognosis of sepsis. This

concept is further supported by the finding that inhibition of PD-1

improved survival in septic patients (90). In terms of detailed

mechanisms, upregulated PD-1 and PD-L1 in sepsis lead to

suppression of T-cell function, and this interaction between PD-1

on T cells and PD-L1 on APCs (e.g., DCs) leads to T-cell exhaustion
FIGURE 4

The role of anti-inflammatory cytokines in modulating immune responses and contributing to sepsis related immunosuppression. During the
occurrence and progression of immunosuppression in sepsis, IL-4, IL-10, IL-27, TGF-b, IL-37, and IL-38 act as key anti-inflammatory mediators,
promoting the differentiation of naïve T cells into T helper (Th) subsets, including Th2, and Th17. These mediators also suppress the activation of
immune cells such as DCs, monocytes, and promote the polarization of macrophages toward an anti-inflammatory M2 phenotype. Additionally, they
enhance the proliferation of Tregs and MDSCs, which further contribute to the suppression of inflammation. Notably, the reduction in HLA
expression on immune cells also happened as a result of the activation of these anti-inflammatory signals. The figure was created via BioRender
(https://BioRender.com).
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(87, 91). The PD-1 and PD-L1 interaction may also diminish

myeloid cell function during sepsis, as indicated by decreased

phagocytic capacity of both neutrophils and macrophages in

sepsis patients (92). CTLA-4, an inhibitory receptor mainly

expressed on activated T cells, inhibits T cell activity and play an

immunosuppressive role in sepsis by binding to B7 molecules and

CD80/CD86 (93). Recently, it was suggested that the upregulation

of TIM-3, an immune checkpoint molecule in NKT cells, can

promote NKT cell apoptosis, contributing to sepsis-related

immunosuppression (68). TIM-3+CD4+ T cells show reduced

proliferative ability and elevated expression of inhibitory markers

compared to TIM-3-CD4+ T cells, and conditional deletion of TIM-

3 in CD4+ T cells reduces mortality in response to sepsis (94).

Additionally, TIGIT, an inhibitory receptor with Ig and ITIM

domains, is predominantly expressed on T cells and NK cells;

high expression of TIGIT has also been associated with immune

dysfunction in sepsis (95). LAG-3 acts as an immunosuppressor in

sepsis by inhibiting the activation and proliferation of T cells

through binding to MHC II (96). However, so far, different

studies have varying interpretations of the specific mechanisms of

action of immune checkpoint molecules in sepsis, and the

regulatory mechanism remains unclear, especially in patients with

different types of sepsis.
2.5 Heterogeneity of immunosuppression
in sepsis in terms of infection types

Sepsis is a dysregulated host response to infections caused by

bacteria, fungi, viruses, or other pathogens, with distinct pathogenic

mechanisms across pathogen types. In bacterial sepsis, endotoxins

such as LPS bind to Toll-like receptor 4 (TLR4), thereby activating

the NF-kB signaling pathway and driving the overproduction of

an t i - inflammatory med ia tor s , a key cont r ibu tor to

immunosuppression (97). Bacterial pathogens may also evade

immune clearance through biofilm formation, antioxidant

enzyme synthesis, and exotoxin secretion, exacerbating

immunosuppression (98).For fungal sepsis, beta-glucans on

fungal cell walls activate the Dectin-1 receptor, triggering Syk and

CARD9 signaling pathways that induce the production of both

inflammatory and immunosuppressive cytokines (99).

Concurrently, fungal infections impair antigen presentation by

DCs and macrophages, while suppressing T cell and B cell

activation (100). In viral sepsis, pathogens (e.g., SARS-CoV-2 or

cytomegalovirus) activate RLRs and TLRs to initiate type I

interferon (IFN-I) release (101). However, when evading the host

immune system, virus also inhibits antigen presentation, cause a

decrease in the activity of NK cells and cytotoxic T lymphocytes

(CTLs), as well as blocking antibody production by B cells (102).

Despite pathogen-specific mechanisms, bacterial, fungal, and viral

sepsis share common immunosuppressive pathways, such as

immune cell apoptosis induction and antigen presentation

blockade. While our understanding of the pathogenesis of sepsis

has significantly advanced in recent years, there is still much work

to do to translate these new insights into effective treatments.
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3 Impacts of immunosuppression on
immune functions

Sepsis directly or indirectly impairs the function of virtually all

types of immune cells, involving macrophages, neutrophils,

lymphocytes, NK cells, as well as intrinsic lymphoid cells (ILCs), the

dysfunction of which may further aggravate immunosuppression of

sepsis, forming positive feedbacks (Figure 5).

Monocytes and Macrophages. As a result of immunosuppression,

the polarization of macrophage transitions from M1-type to M2-type,

resulting in impaired antigen presentation and phagocytic dysfunction

of M1 macrophages and increased secretion of anti-inflammatory

factors of M2 macrophages, which partly depends on the decreased

expression of MHC molecules, Tim4 and NALP-3 and the lack of

costimulatory molecules (26, 103).

Immature Neutrophils. Notably, the expansion of immature

neutrophils is also a characteristic and a result of sepsis related

immunosuppression (104). In the first week following sepsis, patients

exhibit profound changes in neutrophil characteristics; immature

neutrophils, identified phenotypically by low expression of CD10 and

CD16 (CD10dimCD16dim), are associated with increased early

mortality after sepsis due to their immunosuppressive function

(105, 106). Consistent with this observation, the existence of a

subset of CD10-CD64+CD16low/−CD123+ immature neutrophils,

that could be used for early identification of sepsis in patients was

proposed (107). In murine models of sepsis, high expression of

HMGB1 contributes to neutrophil dysfunction by limiting the

activation of NADPH oxidase; neutrophils from septic patients,

when cultured with plasma and anti-HMGB1, demonstrate a

higher capacity to activate NADPH oxidase (108). Additionally,

under the immunosuppressive stage, neutrophils also form NETs

in sepsis, which, while trapping pathogens, also contribute to

immunosuppression by interacting with Tregs (109).

T lymphocytes. In the early stages of sepsis, T lymphocytes typically

exhibit an over-activated state, leading to the release of substantial

amounts of inflammatory factors. As sepsis progresses in to the phase

of immunosuppression, T cells gradually transition into an

immunosuppressive state (48). Studies have revealed marked

alterations in the mTOR pathway of T lymphocytes from septic

patients, leading to a catabolic state characterized by a failure to

induce glycolysis, oxidative phosphorylation, ATP production, or

glucose uptake, ultimately impairing cellular proliferation (110).

Notably, sepsis impairs the CD4+ T cell recall response and post-

septic CD4+ T cells are highly glycolytic and exhibit a Th17

phenotype (111).

B lymphocytes. Regarding B lymphocytes, Manu Shankar-Hari

et al. confirmed the hypothesis that B lymphocyte loss is a

consequence of sepsis induced immunosuppression, involving

different subsets, with the depletion and dysfunction of the memory

B-cell population being the primary outcome of sepsis-induced

immunosuppression (112). Notably, the impaired function of

memory B cells and plasma cells results in an inability to secrete

immunoglobulins in response to antigens (113). Additionally, surviving

B lymphocytes exhibit an exhausted phenotype, characterized by

increased IL-10 production and decreased MHC II expression (114).
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NK cells. Impaired function of effector NK cells may also occur

as a result of immunosuppression during sepsis. Secondary

infections in patients who survived sepsis are often due to

dysfunction in neutrophils, NK cells, and the inhibition of T-cells

in the lung (115). As mentioned by Tang et al., NK cell activity is

significantly impaired in patients with sepsis, potentially leading to

a weakened immune response to infection and an increased risk of

secondary infection (116). In septic patients, cytotoxicity of NK cells

dramatically decreased, likely due to the reduction of CD3-

CD56+NK cells; after stimulation with phorbol-12 myristate 13-

acetate (PMA) and ionomycin, the production of IFN-g and TNF-a
by CD3-CD56+ NK cells in septic patients is also impaired (117).

ILCs. Notably, in recent years, the function of ILCs during

sepsis induced immunosuppression has gained much attention.

ILCs are a distinct class of lymphocyte subpopulations from T

and B cells, including ILC1, ILC2, ILC3, and ILCreg. Helper ILC1s

require T-bet for development and produce IFN-g as their main

effector cytokine; ILC2s depend on GATA-3 and produce “Th2”

cytokines (IL-4, IL-5, IL-9, and IL-13); ILC3s depend on RORgt and
secrete “Th17” cytokines (IL-17), or “Th22” cytokines (IL-22) (118,

119). It was found that ILC2 and ILC3 in the peripheral blood of

sepsis patients was significantly reduced via apoptosis (120), and the

reduction of ILCs may lead to immune escape of pathogens and

deterioration of sepsis outcomes (119). A study showed that rhIL-7

immunotherapy could ameliorate sepsis-induced lung ILC loss,

thereby ameliorating immunosuppression and survival in mice
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(121), providing further evidence for the role of ILCs in sepsis-

related immunosuppression. Additionally, it was reported that IL-

33 activates ILC2s, which produce IL-4 and IL-13 and drive M2

polarization of macrophages, resulting in the expansion of Tregs

and immunosuppression via the production of IL-10 (122).
4 Immunosuppression-guided
diagnostic biomarkers in sepsis

Over the past decades, numerous studies have identified

biomarkers associated with sepsis-induced immunosuppression,

significantly contributing to the diagnosis and treatment of sepsis.

This paper aims to provide a comprehensive overview of both

established and emerging immunosuppression-related biomarkers

in sepsis, highlighting their clinical utility with actionable

thresholds and assessing their clinical relevance. The relevant

content is summarized in Table 1.
4.1 HLA-DR

HLA-DR expression serves as a robust indicator of monocyte

antigen presentation capacity. In clinical studies, monocyte HLA-DR

(mHLA-DR) has been employed as a marker for innate immunity.

Notably, mHLA-DR levels in septic patients are significantly lower
FIGURE 5

Impacts of immunosuppression on the immune cell functionality during sepsis. Immunosuppression during sepsis induces multifaceted dysfunction
across immune cell populations. In macrophages, M1 subsets demonstrate impaired phagocytic capacity, while M2 macrophages exhibit upregulated
secretion of anti-inflammatory mediators. Immature neutrophils acquire pathological functions, including suppression of T lymphocyte proliferation,
exacerbation of neutrophil dysfunction, and potentiation of neutrophil extracellular traps (NETs) formation. T cells show reduced proliferative activity
and diminished Th1 cytokine production, whereas B cells display decreased immunoglobulin secretion alongside elevated IL-10 production and
MHC II expression. NK cells manifest compromised cytotoxicity coupled with reduced IFN-g and TNF-a expression, collectively exacerbating T cell
insufficiency. Notably, regulatory cell populations, including Tregs and the recently characterized ILCs, undergo expansion with concomitant
increases in IL-10 production. The figure was created via BioRender (https://BioRender.com).
frontiersin.org

https://BioRender.com
https://doi.org/10.3389/fimmu.2025.1577105
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Gao et al. 10.3389/fimmu.2025.1577105
than those in healthy individuals (137). Reduced mHLA-DR levels

are linked to immune dysfunction and poor prognosis in septic

patients and critically ill COVID-19 Patients (138, 139). Clinically,

mHLA-DR quantification using flow cytometry is recommended

within 3–8 days after sepsis onset to guide immunomodulatory

interventions (140). A significant correlation between SOFA score

at admission and a decreased mHLA-DR expression at days 3–4 and

6–8 after onset was observed (141), with mHLA-DR < 15,000 AB/C

or a percentage < 60% serving as a validated threshold for defining

immunosuppression and predicting secondary infection risk (123).

Furthermore, studies have demonstrated that mHLA-DR levels in 30-

day non-survivors were significantly lower than in survivors, and

septic patients with mHLA-DR ≥ 52.29% had a 6.798 times higher

30-day survival rate (142). This threshold may help stratify patients

for targeted therapies. Importantly, septic patients with decreased

mHLA-DR levels often do not return to normal until six months

post-discharge, a pattern observed in patients with poor prognoses

(143). Taken together, consensus now exists for considering low-

monocyte mHLA-DR as a surrogate for sepsis-induced

immunosuppression, making it the most extensively studied and

validated biomarker in this domain.
4.2 Immune checkpoints

In sepsis, numerous studies have reported associations between

increased PD-1 expression on T cells and PD-L1 expression on
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APCs with lymphopenia, T cell apoptosis, and mortality in sepsis

patients. In 2016, a multivariate analysis found that increased

monocyte PD-L1 expression was an independent predictor of

mortality after sepsis, highlighting the significance of the PD-1

pathway in sepsis-induced immune dysregulation (124). Elevated

PD-1 expression is also indicative of poor clinical outcomes in

septic patients (125). The expression levels of PD-1 and PD-L1 in

neutrophils and monocytes of septic shock patients are significantly

higher than those in non-infected ICU patients and are positively

correlated with sepsis severity and mortality (92). Therefore,

dynamic monitoring of PD-1/PD-L1 expression may guide

immunotherapy trials targeting these checkpoints in patients with

sustained immunosuppression. Similarly, high CTLA-4 expression

in sepsis is associated with immunosuppression, making it another

biomarker for this condition (144). Actually, Cheng et al.

demonstrated that CTLA-4 expression > 25% on CD4+ T cells

was associated with a 3.2-fold increased risk of 28-day mortality,

supporting its role in patient stratification for anti-CTLA-4

therapies for sepsis related immunosuppression (126). Through

an RNA sequencing assay, Huang et al. found that the expression of

TIM-3 on CD4+ T cells in septic patients with immunosuppression

was significantly elevated and has been proposed as a prognostic

marker for immune paralysis (94). Recently, Filippo Mearelli et al.

examined 12 immune checkpoint markers in 113 patients with

bacterial sepsis, and revealed that patients exhibiting elevated serum

levels of IRAK-M and Galectin-1 (cutoff values: 2.32 ng/mL and

4.44 ng/mL, respectively) displayed clinical features of
TABLE 1 Immunosuppression-related diagnostic biomarkers in sepsis.

Type
of biomarkers

Name
Expression patterns in sepsis

immuno-suppression
Thresholds Reference

HLA-DR mHLA-DR Decrease
mHLA‐DR < 15,000 AB/C or

percentage < 60%
(123)

Immune
checkpoint markers

PD-1/PD-L1 Elevate — (92, 124, 125)

CTLA-4 Elevate
CTLA-4 expression > 25% on

CD4+ T cells
(126)

TIM-3 Elevate — (94)

IRAK-M Elevate > 2.32 ng/mL (127)

Galectin-1 Elevate > 4.44 ng/mL (127)

Immunocyte markers

Lymphocytes Decrease < 1.1 × 109/L (123)

NLR Elevate > 4.18 (128)

Treg Elevate Th17/Treg ratio < 0.69 (129)

Siglec-F+ Neutrophils Elevate — (14)

HLA-DRlowS100A9highMonocytes Elevate — (130)

Cytokine markers

IL-10 Elevate > 10 pg/mL (131)

IL-10LCR Elevate > 23.39 ng/mL (132)

IL-27 Elevate > 5.0 ng/mL (133)

IL-37 Elevate > 107.05 pg/mL (134)

TNF-a Decrease < 200 ng/L (135, 136)
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immunosuppression and poorer prognosis, with a 7-day mortality

rate of 26% and an in-hospital mortality rate of 49% (127).

Therefore, IRAK-M and Galectin-1, as inhibitory immune

checkpoint biomarkers, could help identify a high-risk sepsis

phenotype that might be suitable for enrollment in future

checkpoint inhibitor trials.
4.3 Immunocytes

Immunocyte lymphopenia, characterized by reduced peripheral

blood T and B lymphocyte counts, is a hallmark of acquired

immune dysfunction in sepsis (145). Studies demonstrate that

non-surviving sepsis patients exhibit a progressive decline in

peripheral blood lymphocytes between days 2–7 post-onset,

associated with a 3.5-fold increased mortality risk compared to

survivors (146). Persistent lymphocyte counts below 1.0×109/L

serves as a clinical indicator of immune dysregulation, correlating

with higher mortality rates and susceptibility to chronic infections

(123). A retrospective observational study further revealed that a

neutrophil-to-lymphocyte ratio (NLR) > 4.18 on day 7 predicts 28-

day mortality with 81.94% specificity (128).

Additionally, patients with septic shock frequently develop

immune collapse, characterized by reduced HLA-DR expression

and elevated Tregs (119). Persistently high Treg levels are strongly

linked to sepsis-induced immunosuppression and poor outcomes

(147), with both Treg counts and the Th1/Th2 ratio proposed as

biomarkers of immune suppression (123). Notably, aberrant Treg

expansion often coincides with an inverted Th17/Treg ratio,

indicating immunosuppression progression (148). This Th17/Treg

imbalance is strongly correlated with disease severity with a ratio <

0.69 predicting mortality (AUC = 0.766) (129). Therefore, dynamic

monitoring of lymphocyte counts can provide insights into the

balance between innate and adaptive immunity, predict risks of

secondary infections and mortality, and guide clinical interventions.

Incorporating these thresholds into routine clinical laboratory

panels could help identify high-risk patients requiring

intensified surveillance.

Neutrophil dysfunction in sepsis includes reduced

chemiluminescence intensity, while specific protein activations

(e.g., CD88, TREM-1) may serve as diagnostic biomarkers for

sepsis. Notably, diminished neutrophil CD88 expression predicts

subsequent secondary infections and immunosuppression of sepsis

(149). Recent study by Liao et al. identified Siglec-F+ neutrophils as

immunosuppressive markers, with targeted depletion of this subset

enhancing function of T lymphocytes and improving survival in

preclinical models (14). The S100A8/A9 heterodimer,

predominantly expressed in neutrophils and monocytes, emerges

as a key immunosuppressive mediator in sepsis via impairing DCs

maturation and promotes MDSCs accumulation (150).

Transcriptomic analyses of monocytes from 29 sepsis patients

and 15 healthy donors revealed upregulated S100A8 and S100A9

expressions linked to MDSC recruitment (59). Concurrently, a

distinct monocyte subset (HLA-DRlowS100A9high) was further

identified as a driver of immunosuppression during sepsis;
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immune depression, thereby providing a novel therapeutic

strategy for the management of sepsis (130).
4.4 Cytokines

The immunosuppressive state in sepsis involves dysregulation

of multiple cytokines, whose dynamic levels reflect disease severity

and serve as diagnostic/prognostic biomarkers (151). During the

immunosuppressive phase of sepsis, anti-inflammatory mediators

typically demonstrate progressive elevation. Clinical evidence

suggests that longitudinal IL-10 monitoring from day 1 to day 3

post-onset shows prognostic value for septic outcomes (131), while

IL-10/lymphocyte ratio (IL-10LCR) at a cutoff of 23.39 ng/mL

predicts 28-day mortality with 70.0% sensitivity and 74.4%

specificity (132). In addition, using a cutoff of 5.0 ng/mL, the

specificity of IL-27 to diagnose bacterial infection in

immunocompromised septic patients reached 94% (133); and a

cutoff value of IL-37 for predicting 28-day mortality in septic

patients has been suggested as 107.05 pg/mL (134). Conversely,

monocytes isolated from immunosuppressed sepsis patients exhibit

markedly reduced production of pro-inflammatory cytokines,

including TNF-a, IL-1b, IL-6, and IL-12 (135). Notably, Ploder

et al. revealed persistent TNF-a suppression in circulating

monocytes from non-surviving sepsis patients identifies it as a

reliable immunosuppression marker (136). Mechanistically, LPS-

stimulated monocytes from immunosuppressed sepsis patients

show significantly attenuated TNF-a secretion than controls,

making monocytic TNF-a production below 200 ng/L under LPS

s t imu l a t i on s e r v ing a s a d i agnos t i c t h r e sho ld fo r

immunosuppression in sepsis patients (135). Notably, single-

cytokine assessment was inadequate to fully diagnosis sepsis

immunosuppression due to the lack of specificity, serial

monitoring using combined panels (IL-10, TGF-b, IL-37, et al) is
therefore recommended for serial monitoring to track immune

trajectory in the future.
5 Advances in targeted
immunomodulation for sepsis-
induced immunosuppression

Despite the failure of numerous clinical trials, some promise

likely still exists in using anti-inflammatory treatment strategies in

the early hours after the onset of sepsis such as IL-1 receptor

blockade or anti-TNF treatments based on the identification of

those that could survive from anti-inflammatory therapies in

combination with antibiotics and resuscitation (152, 153).

Nevertheless, most patients who survive the critical stage may

eventually die of immunosuppression, and for those who

developed into immunosuppressive conditions, immune-

stimulation is therefore promising to revitalize the immune

system to allow clearance of initial infectious foci or to fight

secondary infections (123), and the field now increasingly focuses
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on reversing immunosuppression in later stages, a critical frontier

where immune checkpoint inhibitors, cytokine therapies, as well as

cell therapy like mesenchymal stem cells (MSCs), et al. show

transformative potential. Here, we focus on the research of

immunomodulatory therapy and provide a detailed summary of

developments over the past decades, as depicted in Figure 6.

At the vanguard of this revolution are PD-1/PD-L1 axis

inhibitors, which have progressed from murine sepsis models

demonstrating restored T-cell functionality to pioneering human

trials. In tested septic mice, 4-octyl itaconic acid modulates immune

homeostasis in sepsis by activating Nrf2 and negatively regulating

PD-L1, which may provide new therapeutic strategies (154). The
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established the safety profile of the PD-1 inhibitor nivolumab and

the PD-L1 inhibitor BMS-936559 in septic patients (90, 155), with

ex vivo analyses revealing anti-PD-1 antibodies rescue exhausted

CD8+ T cells by restoring IFN-g production (156), a finding

corroborated by parallel discoveries in TIM-3 and LAG-3

knockout mice models, showing that knockout of TIM-3 and

LAG-3 reduces immunosuppression-related mortality of septic

mice (94, 96). Notably, the use of TIGIT antibodies can restore

the function of T cells from sepsis patients ex vivo, suggesting that

blocking TIGIT may be a new approach for the immunotherapy of

sepsis (157). However, these immunoadjuvant therapies are still
FIGURE 6

Targeting Immunomodulatory Therapy for Sepsis-immunosuppression. The immunomodulatory strategies of sepsis-induced immunosuppression
mainly include immune checkpoint inhibitors, interferons and interleukins (IL-7, GM-CSF, IFN-g, Thymosin alpha 1), MSCs and intravenous
immunoglobulin. The figure was created via BioRender (https://BioRender.com).
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under investigation, warranting large scale clinical trials, and

whether they are promising in septic patients still has a long way

to go.

Complementing checkpoint inhibitors are cytokine-based

strategies undergoing clinical validation. Recombinant IL-7

emerges as a particularly promising candidate, demonstrating

capacity to reverse sepsis-associated lymphopenia through mTOR

pathway modulation (110), while showing excellent tolerability in

randomized trials (158). In a prospective, randomized, double-

blind, placebo-controlled trial involving 27 patients with septic

shock and severe lymphopenia, rhIL-7 induced a three- to

fourfold increase in absolute lymphocyte counts and circulating

CD4+ and CD8+ T cells that persisted for weeks (159). Therefore,

for those septic patients with severe lymphocyte alterations, rhIL-7

therapy is recommended to be one of the most promising potential

adjuvant treatments. Moreover, in a recent completed multicenter

and multinational, double-blind, double-dummy randomized

clinical trial involving 280 patients with sepsis, the rhIL-7 was

used to monitor the individualized immunomodulation therapy for

those with immunoparalysis (160). The therapeutic effect of IFN-g
in septic patients has been recently validated. As early as in 2002,

clinical studies has shown that inhaled IFN-g treatment led to

recovery of HLA-DR expression in alveolar macrophages and

decreased incidence of ventilator-associated pneumonia (161).

Later, a case report found that IFN-g therapy combined with

nivolumab (an anti-PD1 antibody) was effective in restoring

immune function and eliminating invasive infection (162); and it

was also being investigated in a phase 2 clinical trial to test whether

rhIFN-g would reverse the hypoinflammation and restoration of

immune dysfunction of septic patients (163), and but no

randomized, controlled trials have tested IFN-g therapy in ICU

patients to date. Similarly, GM-CSF (sargramostim) has

transitioned from early clinical trial in 2002 and 2009 showing

improved monocyte HLA-DR expression (164, 165), to recent

multicenter trials in reporting reduced ICU acquired infections of

immunosuppressed patients (166), proving further evidence that

GM-CSF thus represents a promising immunoadjuvant therapy in

patients with sepsis, although larger randomized controlled trials

are now warranted to confirm these initial results. Notably, the

ongoing SepTIC trial that includes investigation of sargramostim

for improving outcomes in a high-risk subset of patients admitted

to the ICU with sepsis starting in 2023 (167), would help exemplify

the field’s growing sophistication in targeting immune paralysis

across diverse populations.

The therapeutic arsenal continues expanding with novel

modalities like thymosin a1 (Ta1) and IgGAM. A randomized

controlled study showed that patients treated with Ta1 exhibited

reduce mortality by 18% than the control group, accompanied with

reduced mechanical ventilation time and ICU stay (168). In

addition, IgGAM, a class of multi-component immunoglobulins

rich in IgA and IgM, exerts therapeutic effects in sepsis primarily

through mediating opsonization, neutralizing antigens, and

regulating Fc receptor expression. The related drug Pentaglobin

has demonstrated beneficial effects on sepsis in clinical trials (169,

170). However, the use of IgGAM is still controversial, with risks of
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various adverse effects and a lack of clear biomarkers to guide its

accurate administration. Currently, a clinical trial based on serum

IgM titers for IgGAM treatment in patients with septic shock is

ongoing (NCT04182737) (171). Hopefully, as an adjuvant therapy,

IgGAM may be a potentially effective immunotherapy for treating

sepsis patients with immune-paralysis. Perhaps most intriguing

therapies in the immunomodulation of sepsis are cellular

therapies. MSCs not only mitigate organ damage via NLRP3

inflammasome suppression (172), but also synergize with

antimicrobials through extracel lular vesicle-mediated

immunomodulation (173, 174). A Phase I open-label dose-

escalation safety trial evaluating the efficacy of advanced MSC-

based therapy in septic patients has enrolled 11 participants, though

results remain unpublished (175), this multimodal approach

epitomizes the field’s progression from single-target interventions

to systems-level immune reprogramming.
6 Conclusions and perspectives

Over the past decade, researchers have made substantial progress

in elucidating the mechanisms underlying sepsis-induced

immunosuppression, including the identification of novel biomarkers

for immune monitoring (e.g., dynamic changes in HLA-DR expression

and lymphocyte funct ion) and the deve lopment of

immunomodulatory therapies aimed at improving clinical outcomes.

Nonetheless, there are still limitations in the current studies. A primary

concern is the continued reliance on animal models that inadequately

replicate the biphasic immunological transition from initial

hyperinflammation to subsequent immunosuppression observed in

human beings. This fundamental discrepancy likely underlies the

recurrent translational failures of immunotherapies that showed

efficacy in rodent models but proved ineffective in human trials, such

as early TNF-a inhibition strategies. Furthermore, while observational

studies have established associations between immunosuppression and

secondary infections in sepsis patients, the absence of controlled

intervention trials leaves a pivotal question unresolved: Do

immunostimulants directly mitigate infection risks, or are they

merely markers of preserved immune competence? Compounding

this uncertainty, current diagnostic approaches relying on static

biomarker measurements may provide incomplete assessments of

immune status. These limitations have direct clinical implications, as

negative trial results may reflect suboptimal treatment timing rather

than inherent therapeutic inefficacy.

To address these challenges, future investigations should

prioritize three key domains. First, future research must focus on

addressing the pathophysiological heterogeneity of sepsis through

multi-omics approaches integrating genomic, metabolic, and

immune signatures, as the high dimension of multi-omics

profiling has been used to reveal the complexity of sepsis

immunity and inflammation, enabling simultaneous analysis of

multiple levels of RNA, proteins, lipids, and metabolites (176).

Second, to enhance the clinical relevance of preclinical findings for

sepsis, studies should focus on elucidating the temporal evolution of

immunosuppression using longitudinal bio sampling and advanced
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functional assays. Third, in the past years, AI-enhanced learning is

gradually used to determine individualized treatment strategies for

septic patients. Although the system is under development for

bedside use in a prospective randomized clinical trial in the ICU

(177), the tool has help physicians make decisions. Therefore,

implementing machine learning-driven predictive models that

synthesize real-time biomarker data with electronic health records

may enable precision stratification of septic patients for time-

targeted immunotherapies.

In summary, this review synthesizes current understanding of

immunopathological cascade of sepsis-induced immunosuppression,

encompassing mechanistic insights, biomarker discovery, and

emerging therapeutic interventions. We propose that understanding

the heterogeneity of sepsis, dynamic monitoring of disease progression,

and applying precise and individualized therapy are goals of future

research to improve the survival of immunocompromised

septic patients.
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49. Venet F, Pachot A, Debard AL, Bohé J, Bienvenu J, Lepape A, et al. Increased
percentage of CD4+CD25+ regulatory T cells during septic shock is due to the decrease
of CD4+CD25- lymphocytes. Crit Care Med. (2004) 32:2329–31. doi: 10.1097/
01.CCM.0000145999.42971.4B

50. Gaborit BJ, Chaumette T, Chauveau M, Asquier-Khati A, Roquilly A, Boutoille
D, et al. Circulating regulatory T cells expressing tumor necrosis factor receptor type 2
contribute to sepsis-induced immunosuppression in patients during septic shock. J
Infect Dis. (2021) 224:2160–9. doi: 10.1093/infdis/jiab276

51. Guo R, Zhao G, Bai G, Chen J, Han W, Cui N, et al. Depletion of
mTOR ameliorates CD4+ T cell pyroptosis by promoting autophagy activity
in septic mice. Int Immunopharmacol. (2023) 124:110964. doi: 10.1016/
j.intimp.2023.110964

52. Goswami TK, Singh M, Dhawan M, Mitra S, Emran TB, Rabaan AA, et al.
Regulatory T cells (Tregs) and their therapeutic potential against autoimmune
disorders - Advances and challenges. Hum Vaccin Immunother. (2022) 18:2035117.
doi: 10.1080/21645515.2022.2035117

53. Sehgal R, Maiwall R, Rajan V, Islam M, Baweja S, Kaur N, et al. Granulocyte-
macrophage colony-stimulating factor modulates myeloid-derived suppressor cells and
treg activity in decompensated cirrhotic patients with sepsis. Front Immunol. (2022) 13.
doi: 10.3389/fimmu.2022.828949

54. Durand M, Hagimont E, Louis H, Asfar P, Frippiat J-P, Singer M, et al. The b 1
-adrenergic receptor contributes to sepsis-induced immunosuppression through
modulation of regulatory T-cell inhibitory function. Crit Care Med. (2022) 50:e707–
e718. doi: 10.1097/CCM.0000000000005503

55. Singh A, Peschel A, Mehling R, Rieber N, Hartl D. Myeloid-derived suppressor
cells in bacterial infections. Front In Cell Infect Microbiol. (2016) 6:37. doi: 10.3389/
fcimb.2016.00037

56. Millrud CR, Bergenfelz C, Leandersson K. On the origin of myeloid-derived
suppressor cells. Oncotarget. (2017) 8:3649–65. doi: 10.18632/oncotarget.12278

57. Veglia F, Sanseviero E, Gabrilovich DI. Myeloid-derived suppressor cells in the
era of increasing myeloid cell diversity. Nat Rev Immunol. (2021) 21:485–98.
doi: 10.1038/s41577-020-00490-y

58. Mathias B, Delmas AL, Ozrazgat-Baslanti T, Vanzant EL, Szpila BE, Mohr AM,
et al. Human myeloid-derived suppressor cells are associated with chronic immune
suppression after severe sepsis/septic shock. Ann Surg. (2017) 265:827–34. doi: 10.1097/
SLA.0000000000001783
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