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Glycemic control and vaccine
response: the role of mucosal
immunity after vaccination in
diabetic patients
Moaz A. Mojaddidi , Moutasem Aboonq and Saeed A. Alqahtani*

Department of Basic Sciences, Taibah University, Medina, Saudi Arabia
This review explores the critical interplay between glycemic control, mucosal

immunity, and vaccine response in diabetic patients. Diabetes mellitus,

characterized by impaired glucose regulation, significantly impacts immune

function, particularly at mucosal surfaces. Poor glycemic control diminishes

vaccine-induced antibody responses and compromises mucosal defenses, such

as secretory IgA production, increasing susceptibility to infections. We synthesize

evidence highlighting the importance of optimizing glycemicmanagement prior to

vaccination to enhance immunogenicity. Furthermore, we examine the potential

of personalized vaccination strategies, tailored to individual glycemic status, age,

BMI, and kidney function, to improve vaccine efficacy in this vulnerable population.

Additionally, we discuss the role of adjunct therapies, including probiotics,

nutritional interventions, and lifestyle modifications, in modulating the gut

microbiota and reinforcing mucosal barrier integrity. This review underscores the

necessity for an interdisciplinary approach, integrating metabolic management

with innovative vaccine designs, tomaximize protection against infectious diseases

in diabetic patients. Future research should prioritize longitudinal studies assessing

both systemic and mucosal immunity and refine personalized vaccination

strategies to ensure robust and durable protection.
KEYWORDS
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Introduction

Diabetes mellitus, encompassing both type 1 and type 2 diabetes, presents distinct

challenges in glycemic control due to differing pathophysiologies. Type 1 diabetes is

characterized by an autoimmune destruction of pancreatic beta cells, leading to an absolute

deficiency in insulin secretion, often manifesting acutely with symptoms such as polydipsia,

polyphagia, and weight loss (1). In contrast, type 2 diabetes results from a combination of

insulin resistance and a relative insulin secretory defect, typically progressing more gradually

and often associated with obesity (1). Effective management of both types involves a

multifaceted approach, including diabetes self-management education, self-monitoring of
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blood glucose, and medication adherence, which are crucial for

preventing complications and improving quality of life (2). Studies

indicate that children with type 1 diabetes generally possess satisfactory

knowledge about glycemic control, although continuous education is

recommended to maintain this awareness (3). Factors such as

socioeconomic status, dietary knowledge, and self-efficacy

significantly influence glycemic control, highlighting the need for

personalized management plans that incorporate lifestyle

modifications and psychological support (4). Technological

advancements, such as continuous glucose monitoring (CGM) and

digital health tools, further enhance diabetes management by providing

real-time data and facilitating remote consultations (2). Overall, an

integrated approach combining education, lifestyle changes, and

technological innovations is essential for achieving optimal glycemic

control in both type 1 and type 2 diabetes (2, 4).

Mucosal immunity plays a crucial role in the immune response

to vaccines, particularly because many pathogens enter the host

through mucosal surfaces, such as the respiratory and

gastrointestinal tracts. Mucosal vaccines aim to induce protective

immune responses at these entry points, offering a first line of

defense by generating localized immune responses, including the

production of secretory IgA and the activation of tissue-resident

memory T cells (5, 6). Unlike traditional parenteral vaccines, which

primarily elicit systemic immunity, mucosal vaccines can provide

superior protection by targeting the site of pathogen entry, thus

preventing infection and transmission more effectively (7, 8). The

development of mucosal vaccines involves selecting appropriate

antigens, delivery routes, and adjuvants to enhance their efficacy, as

the unique anatomical and functional characteristics of the mucosal

immune system require specialized approaches (9). Despite the

challenges in developing effective mucosal vaccines, such as

overcoming the mucosal barrier and ensuring stability against

degradation, they offer significant advantages, including ease of

administration, cost-effectiveness, and non-invasiveness, making

them particularly suitable for use in resource-limited settings (7).

Recent advancements in mucosal vaccine strategies, including novel

adjuvants and delivery systems, have been pivotal during the

COVID-19 pandemic, highlighting their potential in providing a

dual-layered defense against respiratory pathogens (5). Overall,

mucosal immunity is integral to the development of vaccines that

can effectively prevent diseases at their point of entry, offering a

promising alternative to conventional vaccination methods.

Glycemic control appears to be a critical factor in the mucosal

immune response to vaccines in individuals with diabetes, as

evidenced by several studies examining the relationship between

glucose management and vaccine efficacy. Research indicates that

poor glycemic control can impair the immune response following

vaccination, as seen in patients with diabetes who exhibit lower

antibody responses compared to non-diabetic individuals after

receiving COVID-19 vaccines (10–12). Specifically, a study on

type 1 diabetes patients demonstrated that pre-vaccination

glucose control, particularly the time in range (TIR) and time

above range (TAR), significantly correlates with stronger antibody

responses post-vaccination, independent of HbA1c levels (13). This

suggests that maintaining optimal glucose levels before vaccination
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can enhance immunogenicity. Furthermore, transient increases in

blood glucose levels and insulin resistance have been observed

following COVID-19 booster vaccinations in type 1 diabetic

patients, highlighting the complex interplay between vaccination

and glycemic control (14). Systematic reviews also underscore the

importance of glycemic management in maximizing vaccine-

induced immunogenicity, particularly with inactivated virus

vaccines, although more extensive studies are needed to fully

understand these dynamics (12). Overall, these findings suggest

that effective glycemic control is essential for optimizing vaccine

efficacy in diabetic patients, supporting the hypothesis that it plays a

critical role in the mucosal immune response to vaccines.

The aim of this review is to explore the intricate relationship

between glycemic control, mucosal immunity, and vaccine response

in individuals with diabetes. By examining how fluctuating blood

glucose levels impact mucosal immune responses post-vaccination,

this review seeks to highlight the challenges faced by diabetics in

achieving optimal vaccine efficacy. Additionally, we aim to

investigate potential strategies, including glycemic management

and novel vaccine formulations, that could enhance mucosal

immunity and improve vaccine outcomes in this vulnerable

population. Through this exploration, we hope to provide insights

into optimizing vaccination strategies tailored to the unique

immunological needs of diabetics.
Glycemic control and immune
function

Poor glycemic control significantly impacts immune cells,

particularly macrophages and T cells, as well as mucosal immunity.

Elevated glucose levels can impair the immune system by promoting

excessive production of pro-inflammatory cytokines, which can lead

to immune dysfunction and pathological conditions (15). In the

context of diabetes, hyperglycemia is associated with chronic low-

grade inflammation and immune dysregulation, which can

exacerbate disease progression and complications (16). Specifically,

high blood glucose levels in diabetic patients can reduce the count

and function of innate immune cells, such as macrophages, and delay

antigen presentation, thereby impairing the clearance of pathogens

like Mycobacterium tuberculosis (17). This immune suppression is

further evidenced by the blunted immune responses observed in

diabetic patients with poor glycemic control, which is associated with

a lower capacity for virus-neutralizing antibodies and a diminished

CD4+ T cell response, increasing the risk of infections such as SARS-

CoV-2 (18). Moreover, hyperglycemia promotes oxidative stress and

the production of reactive oxygen species (ROS) in immune cells,

which further exacerbates immune dysfunction by damaging cell

structures and impairing immune cell signaling pathways. These

changes can lead to a chronic pro-inflammatory state, making it

difficult for the immune system to mount an adequate response to

pathogens (19). Specifically, elevated glucose can induce the

activation of the NF-kB pathway, which is known to increase the

secretion of pro-inflammatory cytokines such as TNF-a and IL-6,

further compromising immune responses. Further, chronic
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inflammation in both type 1 and type 2 diabetes exacerbates immune

dysfunction, with type 1 diabetes linked to autoimmune responses

and type 2 diabetes associated with systemic inflammation from

insulin resistance. Additionally, poor glycemic control does not

significantly alter the levels of salivary immunologic proteins,

suggesting that while systemic immune responses are affected,

mucosal immunity might remain relatively stable, although this

does not preclude the risk of oral infections in diabetic patients

(20). Additionally, glucose metabolism is crucial for T cell function,

and dysregulation can lead to hyperactive immune responses or

immune pathology, highlighting the need for tight regulation of

glucose uptake to maintain immune homeostasis (19). The

interplay between glucose levels and immune cell function is

complex, as both hyperglycemia and hypoglycemia can alter

immune mediators associated with macrophage and T cell

activation, further complicating immune responses in diabetic

conditions (21).

Resident and memory T cells are crucial for effective immune

responses, particularly in the context of vaccines. Memory T cells,

including tissue-resident memory T cells (TRM), provide long-lasting

immunity by “remembering” previous infections or vaccinations and

responding quickly upon re-exposure. These cells are particularly

important in mucosal immunity, where they reside at entry points

such as the respiratory and gastrointestinal tracts. In diabetic

individuals, particularly those with poor glycemic control, the

function of both resident and memory T cells is compromised.

Chronic hyperglycemia has been shown to impair the activation,

differentiation, and persistence of memory T cells, leading to a

weakened immune response following vaccination. Furthermore,

elevated blood glucose levels can reduce the ability of these cells to

migrate to infection sites and mount a strong, localized immune

response, which is critical for the effectiveness of mucosal vaccines.

In individuals with type 1 diabetes, impaired immune responses

are primarily due to autoimmunity, while in type 2 diabetes, chronic

inflammation related to insulin resistance plays a key role in the

immune suppression observed. This divergence in immune

dysregulation between type 1 and type 2 diabetes underscores the

importance of personalized vaccination strategies. Chronic

hyperglycemia can also impair T cell differentiation and reduce

the efficacy of memory T cell responses, which are vital for long-

term immunity, further diminishing the capacity of diabetic

individuals to respond effectively to infections and vaccinations.

Overall, maintaining optimal glycemic control is crucial for

preserving immune function and preventing complications in

diabetic patients. The dysregulation of immune responses due to

altered glucose metabolism underscores the importance of

managing blood sugar levels to ensure that both innate and

adaptive immune functions remain effective.
Mucosal immunity and vaccine
response

Mucosal immunity, particularly the role of secretory IgA, is

crucial in the body’s defense against pathogens, especially those
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entering through mucosal surfaces such as the respiratory and

gastrointestinal tracts. Secretory IgA is the predominant antibody

isotype at these sites and is essential for neutralizing pathogens and

preventing their adherence to epithelial cells, thus playing a pivotal

role in mucosal vaccine responses (22, 23). The mucosal immune

system is a complex network involving innate and adaptive

components, including mucosal B and T cells, dendritic cells, and

epithelial cells, which coordinate to produce IgA and other immune

responses (23, 24). Mucosal vaccines, which aim to induce both

systemic and mucosal immunity, are particularly promising as they

can elicit strong local immune responses at the site of pathogen

entry, offering a first line of defense (25–27). However, the

development of effective mucosal vaccines is challenging due to

the need for appropriate antigen delivery systems that can

withstand the harsh mucosal environment and effectively target

mucosa-associated lymphoid tissues (27). A key issue is the

development of adjuvants that can enhance the immune response

without causing excessive inflammation or damage to the mucosal

tissues (28).

In healthy individuals, the mucosal immune system is adept at

distinguishing between pathogenic and non-pathogenic antigens,

maintaining tolerance to innocuous substances while mounting

robust responses to harmful pathogens (28). However, in

individuals with diabetes, mucosal immune responses can be

altered. Diabetes is associated with immune dysregulation, which

may affect the production and function of secretory IgA and other

immune components, potentially leading to impaired vaccine

responses (28). This altered immune landscape in diabetic

individuals necessitates tailored vaccine strategies to ensure

effective mucosal immunity. The development of mucosal

vaccines that can induce both local and systemic immunity is

crucial, particularly for populations with compromised immune

responses, such as those with diabetes (29). Overall, while mucosal

vaccines hold great promise, their efficacy can vary significantly

between healthy individuals and those with underlying conditions

like diabetes, highlighting the need for continued research and

development in this field (22, 25, 28).
Diabetes and impaired mucosal
immunity

Elevated blood glucose levels, commonly associated with

conditions such as obesity and diabetes, have a significant impact

on mucosal immunity, particularly through the reduction of IgA

production and the dysfunction of the epithelial barrier.

Hyperglycemia has been shown to drive intestinal barrier

permeability by altering the transcriptional programming of

intestinal epithelial cells, which affects the integrity of tight and

adherence junctions. This disruption facilitates the systemic influx

of microbial products, thereby increasing the risk of enteric

infections and systemic inflammation (30). The dysfunction of

the mucosal immune system, particularly the mucosa-associated

lymphoid tissue responsible for secretory IgA production, is also

influenced by dietary changes and hyperglycemic conditions, which
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can lead to a compromised mucosal barrier and increased

susceptibility to infections (31). Furthermore, hyperglycemia

enhances the formation of neutrophil extracellular traps (NETs)

in the oral mucosa, contributing to barrier disruption and

inflammation, which underscores the broader implications of

hyperglycemia on mucosal immunopathology (32). In vitro

studies have demonstrated that high glucose exposure results in

morphological and functional changes in the intestinal barrier,

including reduced expression of junction proteins and increased

permeability, which further compromises barrier integrity (33).

These changes indicate broader dysregulation in trained

immunity, where chronic basal inflammation impairs long-term

immune responses to both infections and vaccines.

Trained immunity refers to the ability of the innate immune

system to “remember” previous exposures to pathogens or vaccines,

leading to a heightened response upon subsequent encounters. In

diabetic individuals, chronic low-grade inflammation induced by

hyperglycemia can alter this process, reducing the effectiveness of

immune responses and vaccines. This inflammation can impact

cytokine production, immune cell activation, and the ability of the

immune system to “remember” pathogens, ultimately compromising

both vaccine efficacy and infection defense.

Although hyperglycemia alone may not significantly alter

intestinal permeability, it can potentiate inflammatory responses,

such as the secretion of cytokines like IL-8, which exacerbate tissue

inflammation and barrier dysfunction (34). A critical value in

understanding this relationship is the maintenance of gut barrier

integrity, which is essential for preventing systemic inflammation and

autoimmune responses (35). Collectively, these findings highlight the

critical role of hyperglycemia in impairing mucosal immunity by

disrupting epithelial barrier function and reducing IgA production,

thereby increasing vulnerability to infections and inflammation.

Further, diabetes significantly impacts mucosal immunity, primarily

through alterations in cytokine production and immune cell activity

at mucosal surfaces. In type 1 diabetes, there is a notable reduction in

key cytokines such as IL-17A, IL-22, and IL-23A within the gut

mucosa, which is linked to inflammation rather than hyperglycemia.

This cytokine imbalance contributes to impaired gut integrity and

dysbiosis, characterized by a loss of segmented filamentous bacteria,

which are crucial for maintaining mucosal immunity (36). Similarly,

in type 2 diabetes, patients exhibit elevated levels of pro-

inflammatory cytokines like IL-1, TNF, IFN, and IL-17A in the

context of periodontal disease, indicating a heightened inflammatory

response that exacerbates mucosal tissue damage (37). The loss of gut

barrier integrity in type 1 diabetics can activate islet-reactive T cells,

further linking mucosal immune dysfunction to autoimmune

processes (38). Moreover, diabetes-induced immune dysfunction is

characterized by impaired proliferation and senescence of immune

cells, which parallels the concept of “inflammaging,” leading to

increased susceptibility to infections and conditions like

periodontitis (39). The impaired mTOR signaling pathway in

diabetes further contributes to immune suppression by inhibiting

the respiratory burst necessary for effective pathogen clearance,

highlighting a mechanistic link between metabolic dysregulation

and immune dysfunction (40).
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These processes exemplify how basal inflammation, often

exacerbated by chronic hyperglycemia, can significantly impair

the immune system’s ability to respond to infections and

vaccinations through trained immunity, making diabetic

individuals more susceptible to both infections and poor vaccine

responses. Table 1 summarizes the common causes of impaired

mucosal immunity in diabetics.
Influence of glycemic control on
vaccine effectiveness

Glycemic control significantly influences the effectiveness of

vaccines in patients with diabetes, as evidenced by various studies

focusing on different vaccines. For instance, in the context of

COVID-19 vaccines, poor glycemic control in patients with type 2

diabetes is associated with lower immune responses and a higher

incidence of breakthrough infections following mRNA-BNT162b2

vaccination. Patients with better glycemic control (HbA1c < 7%)

demonstrated higher virus-neutralizing antibody capacity and a

better CD4+ T/cytokine response compared to those with poor

control (HbA1c ≥ 7%) (18). Similarly, a systematic review

highlighted that patients with diabetes vaccinated with inactivated

COVID-19 vaccines like CoronaVac/SinoVac and BBV-152 had

lower seroconversion rates compared to non-diabetic individuals,

emphasizing the importance of glycemic management to enhance

vaccine immunogenicity (12). In older adults with diabetes, altered

glycemic control can stimulate proinflammatory mediators,

increasing infection risk, although vaccines like the influenza

vaccine have been shown to reduce hospitalization and mortality

rates without affecting glycemic control (47). Furthermore, a study in

Sri Lanka found that while glycemic control did not significantly

affect seroconversion rates post-Sinopharm COVID-19 vaccination, a

third of diabetic patients did not achieve protective antibody levels,

indicating the need for improved glycemic management (48). In type

1 diabetes, pre-vaccination glucose control, particularly maintaining

glucose time in range (TIR), was associated with stronger antibody

responses to the SARS-CoV-2 vaccine, underscoring the role of well-

controlled blood glucose in enhancing vaccine efficacy (13). A key

value here is the optimization of immune function through metabolic

control, ensuring that diabetic patients can mount an effective

response to vaccination (13). These findings collectively suggest

that maintaining optimal glycemic control is crucial for

maximizing the effectiveness of vaccines, including those for

COVID-19, influenza, and other infectious diseases, in diabetic

populations. Figure 1 provides a schematic diagram illustrating the

complex interplay between glycemic control, mucosal immunity, and

vaccine response.
Enhancing vaccine response in
diabetics

Enhancing vaccine response in diabetics, particularly through

improved glycemic control, is a multifaceted challenge that involves
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understanding the interplay between diabetes management and

immune function. Poor glycemic control in diabetic patients has

been associated with a diminished immune response to vaccines,

including COVID-19 vaccines, as evidenced by lower antibody

levels compared to non-diabetic individuals (10–12). This reduced

immunogenicity is exacerbated by factors such as higher age and

BMI, which are common in diabetic populations (10). To address

this, continuous glucose monitoring (CGM) has been suggested as a

cost-effective strategy to optimize glycemic control around the time

of vaccination, potentially enhancing the immune response (11).

Moreover, transient increases in blood glucose levels post-

vaccination have been observed, indicating the need for careful

monitoring and management of insulin resistance during this

period (14). The importance of maintaining optimal glycemic

control is further underscored by findings that diabetic patients

with well-managed blood sugar levels exhibit immune responses

comparable to healthy controls (49). Additionally, innovative

approaches such as the use of oral vaccines, as demonstrated in

animal models, show promise in reversing diabetes and improving

immune responses by reducing islet inflammation and promoting

tolerance (50). While these strategies primarily focus on systemic

immunity, enhancing mucosal immunity could also be beneficial.

Techniques like Transient Microbiota Depletion-boosted

Immunization (TMDI) have been shown to enhance mucosal

immune responses by expanding tissue-resident memory T cells,

suggesting a potential avenue for improving mucosal immunity in

diabetics (51). An unresolved issue is the long-term durability of

vaccine-induced immunity in diabetic patients, particularly given

the potential for waning antibody levels and the need for booster

doses (12, 52). Overall, integrating glycemic control with novel
Frontiers in Immunology 05
immunization strategies could significantly enhance vaccine

efficacy in diabetic patients, although further research is needed

to refine these approaches and address unresolved issues such as

vaccine type and administration frequency.

Adjunct therapies play a significant role in enhancing vaccine

efficacy by modulating the immune response through various

mechanisms. Probiotics, for instance, have emerged as promising

adjuvants due to their ability to enhance both mucosal and systemic

immunity, stimulate cytokine production, and regulate T-cell

activity. Specific strains like Lactobacillus rhamnosus GG have

been shown to improve immune responses to vaccines against

rotavirus, SARS-CoV-2, and influenza, and they also hold

potential in cancer immunotherapy by promoting T cell

infiltration and inhibiting tumor growth (53). Traditional

adjuvants, such as alum, enhance vaccine efficacy by protecting

antigens from rapid degradation and directing immune

responses towards either cell-mediated or antibody production

pathways (54). Physical adjuvants, like radiofrequency treatment,

offer a non-invasive alternative that can safely boost humoral and

cellular immune responses, as demonstrated in murine models for

H1N1 influenza vaccination (55). Additionally, micronutrient

supplementation, particularly with vitamins and minerals, has

been shown to improve vaccine efficacy by supporting

lymphocyte function and enhancing antibody titers, which is

crucial for populations with deficiencies (56). A significant value

in using micronutrient supplementation is addressing underlying

deficiencies that can impair immune function, thereby improving

the overall health and responsiveness of the individual to

vaccination (57). In pediatric populations, optimizing vaccine

efficacy involves using adjuvants and personalized vaccination
TABLE 1 Causes of Impaired Mucosal Immunity in Diabetes.

Cause Description References

Gut Microbiota Dysbiosis
Diabetes disrupts gut microbiota balance, reducing beneficial metabolites and weakening mucosal barrier
integrity and promoting systemic inflammation.

(41–43)

Increased Intestinal Permeability
Hyperglycemia damages tight intestinal junctions ("leaky gut"), allowing bacterial toxins (e.g., LPS) into
circulation, triggering chronic inflammation.

(41, 43, 44)

Impaired IL-22 Signaling
Reduced IL-22 levels (critical for mucosal repair) due to defects in IL-23/IL-22 axis activation, weakening
antimicrobial defenses.

(41, 43, 44)

Chronic Low-Grade Inflammation
Persistent inflammation from adipose-derived cytokines (TNF-a, IL-6) disrupts mucosal immune
homeostasis and suppresses protective responses.

(39, 41, 45)

Hyperglycemia-Induced
Oxidative Stress

High glucose generates ROS and AGEs, damaging mucosal epithelial/immune cells and impairing
immune function.

(39, 41, 45)

Altered Immune Cell Populations
Dysfunctional innate lymphoid cells (ILCs) and unconventional T cells reduce barrier defense and gut-
pancreas communication.

(42, 44, 45)

Disrupted Gut-Pancreas Axis
Autoimmune cross-reactivity in type 1 diabetes links gut mucosal immunity to pancreatic b-cell destruction,
exacerbated by environmental triggers (e.g., viruses).

(41–43)

Reduced Antimicrobial Peptides
Decreased defensins and other antimicrobial peptides at mucosal sites increase susceptibility to pathogens
(e.g., Citrobacter rodentium).

(43, 44, 46)

Endoplasmic Reticulum (ER) Stress
Hyperglycemia-induced ER stress impairs intestinal epithelial regeneration and barrier maintenance,
disrupting immune signaling.

(41, 44, 45)

Immune Cell Metabolic Dysregulation
Altered glycolysis and lipid metabolism in immune cells reduce their capacity to respond effectively at
mucosal surfaces.

(41, 44, 45)
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schedules to accommodate the developmental state of children’s

immune systems, thereby reducing post-vaccination complications

(58). Furthermore, complementary and alternative medicine

approaches, such as the use of resveratrol, green tea, and

curcumin, have shown potential in modulating immune

responses and could be integrated into vaccine strategies to

enhance efficacy (59). Overall, these adjunct therapies, whether

through biological, chemical, or physical means, provide diverse

and promising avenues to boost vaccine efficacy across different

populations and disease contexts.

Dietary and lifestyle interventions play a crucial role in

enhancing mucosal immune responses in individuals with

diabetes, primarily through the modulation of gut microbiota and

the incorporation of specific nutrients. The Mediterranean diet, rich

in omega-3 fatty acids, probiotics, and prebiotics, has been shown to
Frontiers in Immunology 06
improve immune function and manage diabetes by exerting anti-

inflammatory effects (60). The gut microbiota, a key player in

immune modulation, can be influenced by dietary interventions

such as the inclusion of short-chain fatty acids (SCFAs), which have

been shown to reshape the gut environment and reduce systemic

inflammation associated with diabetes (61). Furthermore, a gluten-

free, hydrolyzed casein diet has been demonstrated to normalize

inflammatory markers and b-cell chemokine expression in diabetic

models, highlighting the impact of diet on immune responses (62).

Nutrients such as vitamins, micronutrients, and bioactive

compounds like coenzyme Q10 and alpha-lipoic acid are essential

for maintaining immune homeostasis and have been linked to

improved immune function in type 2 diabetes (63). The gut-

associated lymphoid tissue, a critical site for mucosal immunity, is

significantly influenced by nutritional elements, which affect
FIGURE 1

Interplay between glycemic control, mucosal immunity, and vaccine response.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1577523
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Mojaddidi et al. 10.3389/fimmu.2025.1577523
lymphocyte activity and cytokine production, thereby enhancing

the body’s defense mechanisms (64). Additionally, the strategic

manipulation of the gut microbiota through dietary practices

can improve glycemic control and reduce diabetes-related

complications by influencing insulin sensitivity and inflammation

(65, 66). Physical activity, stress management, and adequate sleep

are also vital lifestyle modifications that support immune function

and glycemic control in diabetics (60). A key issue is the adherence

to long-term dietary and lifestyle changes, which can be challenging

for many individuals, requiring ongoing support and education (67,

68). Overall, a comprehensive approach that combines dietary

modifications with lifestyle changes can significantly enhance

mucosal immune responses and improve diabetes management.
Future directions and
recommendations

Future research should focus on developing personalized

vaccination strategies for individuals with diabetes, given the

unique challenges posed by this condition. One promising

approach could be the development of mucosal vaccines, which

are specifically designed to target the entrance points of pathogens,

such as the respiratory and gastrointestinal tracts. Mucosal vaccines

offer the advantage of inducing local immune responses, including

the production of secretory IgA, which are crucial for preventing

infections at these sites. This is particularly important for diabetic

patients, who may have impaired systemic immunity but can still

benefit from localized protection.

Vaccination schedules—including the timing of initial doses

and subsequent booster shots—could be tailored according to key

patient-specific factors such as glycemic control, age, body mass

index (BMI), and kidney function, all of which can influence the

effectiveness of the immune response in diabetic individuals. For

example, patients with poor glycemic control may benefit from

adjusted dosing schedules or additional booster doses to overcome

the dampened immune response often observed in hyperglycemic

states. On the other hand, those with better glycemic control could

potentially benefit from standard vaccination regimens, as their

immune responses may more closely resemble those of non-diabetic

individuals. In addition, taking into account factors such as age and

BMI, which are known to influence immunogenicity, should be

considered to optimize vaccine formulations and administration

schedules for different subgroups within the diabetic population. In

individuals with compromised kidney function, an important factor

given the prevalence of diabetic nephropathy, personalized

schedules may also help improve vaccine-induced protection by

mitigating the impact of renal impairment on immune responses.

There is also potential for mucosal vaccines to play a

particularly valuable role in diabetic populations. These vaccines

may provide more effective localized immunity, reducing the risk of

infection at common pathogen entry points. Further studies are

needed to explore the efficacy and safety of mucosal vaccines in

diabetic patients, which could lead to more effective and

patient-specific vaccination strategies.
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In parallel with personalized approaches, future clinical trials

should incorporate comprehensive endpoints that assess both

systemic and mucosal immunity. Traditionally, vaccine studies

have focused primarily on serum antibody titers; however, the

evaluation of mucosal immunity—particularly secretory IgA

responses at the entry points of pathogens—can provide a more

complete picture of vaccine efficacy. Designing trials that capture a

dual analysis of systemic and local immune responses will be critical

for understanding the full spectrum of protective immunity,

especially in populations where mucosal defenses may be

compromised. Moreover, exploring novel mucosal vaccine

candidates and innovative adjuvant combinations in these trials

could lead to formulations that are better suited for inducing robust

and durable mucosal immunity, thereby enhancing overall

protection against infectious diseases.

Finally, an interdisciplinary approach is essential to maximize

vaccine efficacy in patients with diabetes. Integrating nutritional,

metabolic, and immunological interventions can create a synergistic

effect that improves vaccine responses. For instance, addressing

nutritional deficiencies—such as that of vitamin A, which is vital

for mucosal immune function—could help restore a balanced

immune environment and support more effective vaccine

responses. Similarly, optimizing metabolic control through dietary

adjustments, physical activity, and medical management could

reduce chronic inflammation and improve immune cell function.

When these strategies are combined with advanced immunological

insights, they hold the promise of establishing a holistic framework

that not only enhances vaccine-induced immunity but also improves

the overall health and resilience of individuals with diabetes.
Conclusion

In conclusion, the available evidence underscores that glycemic

control is a critical determinant of vaccine responsiveness in

diabetic patients, with significant implications for both systemic

and mucosal immunity. Poorly controlled blood glucose levels are

associated with diminished antibody responses post-vaccination,

whereas optimal glycemic management appears to enhance

immunogenicity, particularly by bolstering mucosal defenses such

as secretory IgA production. These mucosal responses are crucial

for preventing pathogen entry at their primary sites, thereby

providing an essential first line of protection in diabetic

individuals who are at heightened risk of severe infections.

Moreover, evidence indicates that a personalized approach to

vaccination—tailoring booster schedules and vaccine regimens

based on factors such as glycemic status, age, BMI, and kidney

function—may be necessary to overcome the immunological

challenges associated with diabetes. By integrating continuous

glucose monitoring and other metabolic assessments into

vaccination strategies, clinicians can better predict and enhance

vaccine-induced immunity in this vulnerable population. Moreover,

the data suggest that a personalized approach to vaccination

tailoring booster schedules and vaccine regimens based on factors

like glycemic status, age, BMI, and kidney function may be
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necessary to overcome the immunological challenges associated

with diabetes. By integrating continuous glucose monitoring and

other metabolic assessments into vaccination strategies, clinicians

can better predict and enhance vaccine-induced immunity in this

vulnerable population. Additionally, adjunct therapies, including

nutritional and probiotic interventions, hold promise for further

modulating the gut microbiota and reinforcing mucosal barrier

integrity. Such strategies may not only improve glycemic control

but also augment the mucosal immune response, thereby

optimizing overall vaccine efficacy. A critical value is the holistic

approach to patient care, integrating multiple interventions to

address the complex interplay of factors affecting vaccine response

in diabetic patients. Ultimately, an interdisciplinary approach that

combines metabolic management with innovative vaccine design

and personalized immunization schedules is essential to maximize

protection in diabetic patients. Future longitudinal studies are

needed to refine these strategies and to determine the optimal

timing and formulation of booster doses that can sustain robust

immune protection over time.
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