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Introduction: Ovarian cancer (OC) exhibits high mortality and chemoresistance

rates, underscoring the urgent need for precise prognostic biomarkers and novel

therapeutic targets. SUMOylation, crucial in cellular stress responses, is

frequently dysregulated in various cancers. This study aims to characterize

SUMOylation and its regulators in OC and identify potential biomarkers and

therapeutic targets.

Methods: In this study, using multi-omics data, we characterized the unique

features of SUMOylation in OC and revealed the association between

SUMOylation-related genes (SRGs) and OC malignancy. We conducted

integrated machine learning and single-cell RNA sequencing data analysis to

identify key SRGs and explored their functional characteristics. The prognostic

potential of these SRGs was confirmed in ID8mousemodels and in samples from

213 OC patients at West China Second Hospital.

Results: An integrated machine learning framework identified 22 prognostic-

related SRGs from the TCGA-OV cohort. Further single-cell analysis refined

these findings, pinpointing five SRGs as biomarkers closely associated with OC

cell function, metabolism and the tumor microenvironment. In cancer cells, the

expression of four SRGs (PI3, AUP1, CD200 and GNAS) is closely associated with

epigenetic regulation and epithelial-mesenchymal signaling. Notably, we found

that AUP1 overexpression may contribute to chemoresistance in OC. In the

tumor microenvironment, CD8+ cytotoxic T cell with high CCDC80 (another

SRG) expression exhibit inhibited cytotoxicity activity.
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Discussion: Overall, five SRGs were identified and further evaluated as potential

prognostic and therapeutic targets, offering deeper insights into precision

oncology for OC.
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1 Introduction

Ovarian cancer (OC) is a leading cause of gynecologic cancer-

related mortality (1), with a poor prognosis and a 5-year survival rate

of approximately 20% in advanced stages (2). Chemoresistance to

standard platinum-based chemotherapy further contributes to poor

survival, particularly in advanced cases (3, 4). Despite significant

advances in targeted therapies, such as the combination of

bevacizumab with carboplatin and paclitaxel, which has improved

survival in stage IV patients (5), the high heterogeneity of ovarian

cancer limits the overall response (6). Moreover, immunotherapy has

shown only modest effectiveness in ovarian cancer and lacks FDA

approval (7). Thus, studies on novel prognostic signatures and

molecular biomarkers, with a focus on new molecular mechanisms,

are urgently needed.

One such mechanism is posttranslational protein modification

by small ubiquitin-like modifier (SUMO), termed SUMOylation,

which plays a crucial role in cellular responses to stress and is

altered in many cancers (8, 9). Inhibiting SUMOylation activity

in acute myeloid leukemia can resensitize cancer cells to

genotoxic chemotherapy (10). However, another study indicated

that high levels of SUMOylation repress the effects of TGFb
signaling on E-cadherin expression, revealing a negative

regulatory mechanism for epithelial–mesenchymal transition

(EMT), thus inhibiting cancer progression and metastasis (11).

Therefore, SUMOylation plays complex regulatory roles in

protumorigenic signaling, gene regulatory networks, antitumor

immunity and inflammatory cytokine production, exerting both

agonistic and antagonistic effects depending on the pathway (8,

12). However, research investigating SUMOylation in ovarian

cancer remains scarce.

Machine learning, a branch of artificial intelligence (AI) focused

on predicting data patterns via algorithms, has long played a crucial

role in cancer phenotyping, therapy and advanced techniques such

as signature extraction and prognosis prediction (13). Many studies

have used machine learning algorithms and TCGA data to pinpoint

therapeutic targets to improve ovarian cancer prognosis (14).

However, methods based on single-model pattern recognition fail

to meet the growing demand for precision medicine, as they often

lack in-depth consideration of target mechanisms and sufficient

clinical validation, thereby limiting their clinical translation (15).

Conversely, single-cell RNA sequencing has emerged as a powerful

tool for delineating distinct functional states at the cellular level in
02
ovarian cancer (16). Integrating multiple machine learning

approaches with single-cell data holds promise for identifying

more precise therapeutic targets and revealing intricate gene

regulatory networks in ovarian cancer.

In this study, via multi-omics data, we revealed unique

characteristic of SUMOylation in ovarian cancer and explored the

potential association between SUMOylation-related genes and

ovarian cancer malignancy. Through the application of integrated

machine learning techniques and single-cell analysis, we further

identified SRGs closely associated ovarian cancer cell function and

the tumor immune microenvironment (TIME). Additionally, we

identified a biomarker that may indicate poor postoperative

chemotherapy prognosis. This work holds promise for improving

therapeutic outcomes, enhancing patient prognosis and advancing

precision medicine in oncology.
2 Materials and methods

2.1 Data collection and preprocessing

Publicly available gene expression profiles and complete clinical

annotations for the TCGA-OV cohort were obtained from The Cancer

Genome Atlas (TCGA) database (https://portal.gdc.cancer.gov/) using

the TCGAbiolinks R package (version 2.34.0). Given that the

TCGA-OV gene expression data are derived from high-

throughput RNA sequencing (RNA-seq), we utilized fragments

per kilobase of exon model per million mapped fragments

(FPKM) values, as they are more comparable to microarray-

derived expression data and facilitate cross-sample normalization.

For microarray datasets, expression matrices and corresponding

clinical data were retrieved from the Gene Expression Omnibus

(GEO; https://www.ncbi.nlm.nih.gov/geo/) using the GEOquery

package (version 2.70.0), specifically for the datasets GSE13876,

GSE17260, GSE19829, and GSE26712. Gene annotation and probe

ID conversion for these microarray platforms were performed using

the tinyarray package (version 2.3.1). Additionally, single-cell RNA

sequencing (scRNA-seq) data from ten patients with advanced

ovarian cancer were obtained from the GSA-Human database

(https://ngdc.cncb.ac.cn/gsa-human/) under the accession number

PRJCA005422 and were reanalyzed in the present study. All the

code generated for analysis is available through Zenodo, DOI:

10.5281/zenodo.13152228 (https://zenodo.org/records/13152229).
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2.2 Analysis of scRNA-seq data

Single-cell RNA sequencing (scRNA-seq) data were processed

and analyzed using the Seurat R package (version 4.4.0). Raw data

were first converted into Seurat objects, followed by quality control

to remove low-quality nuclei. Specifically, cells were excluded if they

had fewer than 500 or more than 3,000 detected genes, or if more

than 20% of total transcripts originated from mitochondrial or

ribosomal genes. Data normalization was conducted using the

NormalizeData function with default parameters. The 2,000 most

variable genes were identified for principal component analysis

(PCA), which was used for dimensionality reduction. To address

batch effects across samples, the datasets were integrated using the

FindIntegrationAnchors and IntegrateData functions. After

integration, clustering analysis was conducted using the

FindNeighbors and FindClusters functions. The resolution

parameter was adjusted to optimize cluster granularity, enabling

the identification of distinct cell populations. Clusters were

visualized using uniform manifold approximation and projection

(UMAP) based on the top principal components. Cell types were

annotated according to canonical marker genes and supported by

reference to previous studies. Differential gene expression between

clusters or conditions was assessed using the FindMarkers function,

applying the Wilcoxon rank-sum test. Genes with an absolute log2
(fold change) greater than 0.1 and an adjusted p-value less than 0.05

were considered significantly differentially expressed.
2.3 Pathway analysis

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) annotations were retrieved using the

“org.Hs.eg.db” R package (version 3.17). Differentially expressed

genes were subjected to functional enrichment analysis using the

“clusterProfiler” package (version 3.14.3). Gene sets representing

functional pathways were obtained from the Molecular Signatures

Database (MSigDB). To assess pathway activity at the bulk RNA-

seq level, Gene Set Variation Analysis (GSVA) was performed using

the GSVA package (version 1.46.0). For single-cell RNA-seq data,

pathway activity was evaluated using the AUCell package (version

3.16), with the parameter aucMaxRank set to 5% to determine the

top-ranking genes contributing to each pathway activity score.
2.4 Identification of malignant epithelium
and pseudotime trajectory analysis

Copy number variations (CNVs) were inferred using the

CopyKAT R package, with normal epithelial cells designated as

the reference population. CopyKAT was executed with default

parameters to distinguish malignant from non-malignant

epithelial cells based on large-scale chromosomal aneuploidy. The

resulting copy number alterations (CNAs) were extracted and

visualized as heatmaps using the pheatmap R package, in which
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genes were ordered according to chromosomal location and cells

were grouped by cell type to enhance interpretability. Pseudotime

trajectory analysis was conducted via the Monocle2 package

(version 2.28.0). SUMOylation-related genes are temporal

markers of differential expression.
2.5 Construction of integrated machine
learning model

To identify prognostic SUMOylation-related genes (SRGs),

univariate Cox regression analysis was first performed using the

“survival” R package (version 3.5.7), with statistically significant SRGs

selected based on a threshold of p < 0.05. Next, to construct a robust

prognostic model, 80 algorithmic combinations derived from 10

distinct machine learning algorithms were applied to the selected

SRGs within the TCGA-OV cohort. These algorithms included

CoxBoost, elastic net (Enet), generalized boosted regression

modeling (GBM), least absolute shrinkage and selection operator

(Lasso), partial least squares regression for Cox (plsRcox), random

survival forest (RSF), Ridge regression, supervised principal

components (SuperPC), stepwise Cox regression, and survival

support vector machine (survival-SVM). Specific hyperparameters

for model training and fitting were as follows: RSF (ntree = 1000,

nodesize = 4, splitrule = “logrank”); Enet (a values ranging from 0.1

to 0.9 with 0.1 increments, l selected via 10-fold cross-validation);

Lasso and Ridge (a = 1 and a = 0, respectively, with l selected

through 10-fold cross-validation); Stepwise Cox (three directions

tested: forward, backward, and both); CoxBoost (number of

boosting steps determined by 10-fold cross-validation); survival-

SVM (gamma.mu = 1); GBM (n.trees = 10,000, interaction.depth =

3, shrinkage = 0.001, n.minobsinnode = 10); SuperPC (threshold

determined by 10-fold cross-validation, s0.perc = 0.5); and plsRcox

(number of components selected via 10-fold cross-validation).

To evaluate model performance, the average concordance index

(C-index) across the training, test, and validation datasets was

calculated for each algorithmic combination. The combination

yielding the highest average C-index was considered optimal and

selected for subsequent model development. Using the SRGs identified

through this optimal combination, a multivariate Cox regression

analysis was conducted via the “survival” R package to construct the

final SUMOylation-related gene model (SRGM), defined by the

formula: SRGM score = S(Ci × Ei), where Ci denotes the regression

coefficient of each gene and Ei its expression level. The prognostic

power of the SRGM was then validated across five independent

ovarian cancer cohorts through Kaplan–Meier survival analyses.

In addition, previously published mRNA-based prognostic models

for ovarian cancer were retrieved from PubMed up to September 2024.

For each of these models, the corresponding risk scores were computed

based on their reported formulae. Kaplan–Meier analysis was

subsequently used to assess their prognostic significance across the

training and validation cohorts. Finally, the C-index values of these

models were compared with those of our SRGM in each cohort to

comprehensively evaluate its predictive advantage.
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2.6 NicheNet analysis

For NicheNet analysis, the normalized gene expression matrix

was used as input. Ligand activity was predicted using the

predict_ligand_activities function with default parameters, enabling

the identification of potential ligand–receptor interactions and their

downstream target genes. This analysis facilitated the inference of key

signaling interactions between sender and receiver cell populations

within the tumor microenvironment.
2.7 Immune microenvironment analysis
and prediction of immunotherapy response

To evaluate immune infiltration between high- and low-SRGM

score groups, single-sample Gene Set Enrichment Analysis

(ssGSEA) was performed using predefined immune cell-type-

specific gene signatures, as listed in Supplementary Table S9. The

Tumor Immune Dysfunction and Exclusion (TIDE, http://

tide.dfci.harvard.edu/) algorithm was applied to predict patient

responses to immune checkpoint inhibitor (ICI) therapy based on

the gene expression count matrix of the TCGA-OV cohort. A

higher TIDE score was indicative of a better predicted response to

immunotherapy. A score of 0 was used as the threshold to

distinguish between predicted responders and non-responders.
2.8 Cell culture and transfection

The murine ovarian cancer cell line ID8 was cultured in

Dulbecco’s modified Eagle medium (DMEM, Gibco) supplemented

with 10% fetal bovine serum (FBS), 100 U/mL penicillin-

streptomycin, and 2 mM L-glutamine. Primary ovarian cancer cells

were isolated from tumor lesions following previously published

protocols (17). For lentiviral transduction, viral particles were

obtained from HANBIO (Shanghai, China). The overexpression

vector was constructed as pHBLV-CMV-MCS-[Gene of Interest]-

EF1-Luc-T2A-Puromycin, and the knockdown vector was based on

pHBLV-U6-MCS-[Gene of Interest]-EF1-Luc-T2A-Puromycin.

Transductions were performed according to the manufacturer’s

instructions, and cells were selected with 4 mg/mL puromycin

starting at 72 hours post-infection and maintained under selection

until uninfected control cells were eliminated. Expression was

confirmed by western blotting prior to further experiments.
2.9 Western blotting

Total protein was extracted from cells via RIPA buffer and

subsequently separated via sodium dodecyl sulfate–polyacrylamide

gel electrophoresis (SDS–PAGE). Following separation, the proteins

were transferred to polyvinylidene fluoride (PVDF) membranes

that had been preactivated with methanol. The membranes were
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incubated with blocking buffer at room temperature for 1 hour,

followed by overnight incubation at 4°C with primary antibody

mixture, which was diluted according to the manufacturer’s

instructions. The next day, after washing with a mixture of tris-

buffered saline and Tween 20 (TBST) four times for 15 minutes

each, the membranes were incubated with an HRP-conjugated

secondary antibody solution at room temperature for 50–70

minutes. Detection was performed via the use of an enhanced

chemiluminescence (ECL) reagent according to the manufacturer’s

protocol. Primary antibodies against the following targets were

used: PI3 (Abcam, 1:1000, ab81681), AUP1 (Osenses, 1:100,

OSU00005G), CD200 (Abcam, 1:1000, ab254193), GNAS

(Abcam, 1:1000, ab204996), SUMO1 (Abcam, 1:1500, ab133352),

and SUMO2/3 (Abcam, 1/1000, ab81371). All experiments were

independently repeated three times with consistent results (trends).
2.10 Real-time quantitative
polymerasechain reaction

Total RNA was isolated from frozen tumor tissues using TRIzol

reagent (Invitrogen, CA, USA). Based on the RNA’s concentration

and integrity, complementary DNA (cDNA) was synthesized using

the PrimeScript™ RT Master Mix (#RR036A, Takara, Beijing,

China). Quantitative real-time PCR (qPCR) was carried out on

the 7500 Real-Time PCR System (Applied Biosystems, CA, USA)

employing TB Green® Premix Ex Taq™ (#RR420B, Takara).

Primer sequences, designed and synthesized by Sangon Biotech

(Shanghai, China), are provided in Supplementary Table S16. The

relative expression levels of the genes were calculated utilizing the 2–

(DDCT) method, with GAPDH serving as the internal reference gene

for the PCR data.
2.11 In vivo animal studies

Five-week-old female C57BL/6 mice were purchased from

GemPharmatech (Chengdu, China) and maintained under

specific pathogen-free (SPF) conditions. After a 10-day

acclimatization period, an intraperitoneal injection of 5 × 106

lentivirus-transduced ID8 cells was performed. Mice were

randomly assigned to groups. For SUMOylation inhibition

experiments, mice received their first tail vein injection of

TAK981 (7.5 mg/kg, MedChemExpress) or saline three days prior

to tumor implantation, followed by weekly intravenous injections

until the endpoint (30 days). For chemotherapy resistance

experiments, a chemotherapy regimen of paclitaxel combined

with carboplatin (TC) was used, consistent with the clinical

cohorts. Starting from day 7 post-tumor implantation, mice

received intraperitoneal injections of carboplatin (30 mg/kg, once

weekly) and paclitaxel (8 mg/kg, twice weekly) or saline, continuing

until the study endpoint. Tumor burden was monitored using the

PerkinElmer IVIS Lumina III system.
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2.12 Patients and clinical samples

The patient screening process is detailed in Supplementary

Figures S6A, B. All patients were treated at West China Second

University Hospital of Sichuan University, and the study was

approved by the ethics committee (Approval No. 2024(085)),

with informed consent obtained from each patient. The study

does not involve clinical trials and did not impose any additional

harm or burden on the patients. Formalin-fixed, paraffin-embedded

(FFPE) tissue sections for immunohistochemistry were obtained

from 60 ovarian cancer patients who underwent surgery between

December 2017 and June 2019. Additionally, FFPE samples from

153 patients who underwent surgery between January 2014 and

January 2017 were used to construct tissue microarrays and

perform immunofluorescence staining. Primary ovarian cancer

cells were extracted from fresh tumor samples of chemotherapy-

naive patients who underwent surgery between February 2024 and

May 2024.
2.13 Immunohistochemistry and
Immunofluorescence

Tissue sections were deparaffinized with xylene and rehydrated

through ethanol gradients. Antigen retrieval was performed in citrate

buffer (pH 9.0) using a pressure cooker, followed by blocking with 5%

BSA. The sections were incubated overnight at 4°C in a humidified

chamber with primary antibody solution with dilution according to

the manufacturer’s instructions. For IHC, the following day, sections

were stained using DAB staining kit (Absin, Cat# abs9210) after

washing. For IF, sections were incubated with a pre-prepared mixture

of fluorescent secondary antibodies, then stained with DAPI. Prior to

mounting, the sections were incubated with a tissue autofluorescence

quenching agent (Servicebio, Cat# G1221). Primary antibodies: PI3

(Abcam, 1:800, ab81681), AUP1 (Osenses, 1:100, OSU00005G),

CD200 (Abcam, 1:1000, ab254193), CCDC80 (Abcam, 1:100,

ab224050), GNAS (Abcam, 1:1000, ab204996). Secondary

antibodies: Goat Anti-Rabbit IgG H&L (HRP) (Abcam, 1:1000,

ab6721), Goat Anti-Mouse IgG H&L (HRP) (Abcam, 1:3000,

ab205719), Donkey Anti-Goat IgG H&L (HRP) (Abcam, 1:1500,

ab6885). Panoramic images were obtained using the Pannoramic

MIDI digital slide scanner system. Images were captured at 40×

magnification using SlideViewer software and analyzed with ImageJ

(version 1.8.0). The process was conducted under the guidance of two

experienced pathologists.
2.14 Statistical analysis

All data processing, statistical analysis and plotting were

conducted in R software (version 4.2.2). Correlations were

assessed via Pearson’s correlation coefficients. The chi-square test

was applied to compare categorical variables and continuous

variables were compared through the Wilcoxon rank-sum test.

Cox regression and Kaplan–Meier analyses were performed via
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the survminer package. The time-dependent area under the ROC

curve (AUC) for survival variables was determined via the timeROC

package (version 0.4.0). All the statistical tests were two-sided. The

threshold for statistical significance was set at p <0.05. *, ** and ***

indicate p <0.05, p <0.01 and p <0.001, respectively.
3 Results

3.1 Unique characteristics of SUMOylation
in ovarian cancer

To explore the role of SUMOylation in ovarian cancer, we first

obtained the gene set of SUMOylation regulators from MSigDB

(Supplementary Table S1). Gene set variation analysis (GSVA) (18)

was conducted to assess the expression levels of SUMOylation

regulators in ovarian cancer and normal ovarian samples via the

TCGA and GTEx databases (Figure 1A), revealing that the expression

scores of SUMOylation regulators were relatively lower in ovarian

cancer compared to normal ovarian tissues. Since the activity of

SUMOylation regulators is closely associated with global

SUMOylation levels, we performed IHC for SUMO1 and SUMO2/

3 on FFPE tissue sections from ovarian cancer patients at different

stages. The results revealed that the global level of SUMOylation was

relatively lower in advanced ovarian cancer (Figure 1B).

We then employed the widely used ID8 mouse model to

evaluate the efficacy of SUMO inhibitors for ovarian cancer

(Figure 1C), in which a total of 5×106 ID8-luc cells were injected

intraperitoneally into immunocompetent C57BL/6 mice. The mice

were treated with the SUMOylation inhibitor TAK-981 (7.5 mg/kg)

or saline (negative control, NC) starting prior to tumor

implantation and continued twice weekly until the study

endpoint, as TAK-981 has also been reported to effectively inhibit

tumor growth in other cancers (19, 20). However, we found no

significant differences at the endpoint and the tumor burden in the

SUMOylation inhibition group showed an increasing trend

compared to the NC group (Figures 1D, E).

To further explore the unique characteristics of SUMOylation

in ovarian cancer, we analyzed scRNA-seq data from PRJCA005422

(21), comprising 45,146 cells from primary tumor samples of ten

patients with advanced ovarian cancer (Figure 1F, Supplementary

Figure S1). Five distinct cell clusters were identified and annotated

according to the expression of classical marker genes (21), the cell

types included epithelial cells, myeloid cells, lymphocytes, stromal

cells and endothelial cells. We reclustered epithelial cells and

distinguished malignant from normal cells based on copy number

variations (CNVs) using the CopyKAT algorithm (Figure 1G).

SUMOylation regulators’ expression was quantified via AUCell.

Differential analysis revealed that malignant ovarian cancer cells

presented relatively low SUMOylation regulators AUCell scores,

which is consistent with our previous findings (Figures 1H, A).

We then performed differential expression analysis on epithelial

cell groups with high and low expression of SUMOylation

regulators and identified 2,538 SUMOylation-related genes

(SRGs) (Supplementary Table S2). Gene Ontology (GO)
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FIGURE 1

SUMOylation characteristic in ovarian cancer. (A) Boxplot comparing the GSVA scores of SUMOylation regulators between ovarian cancer and
normal ovarian tissues. (B) Immunohistochemical staining of SUMO1 and SUMO2/3 in early and advanced stage ovarian cancer. (C) Design of the in
vivo experiments. (D) Bioluminescence images showing the tumor burden of C57BL/6 mice following inoculation with luciferase tagged ID8 cells
and subsequent treatment with TAK981 or saline. (E) The tumor burden was evaluated by quantification of total flux with Living Image software. (F)
UMAP plot of 45146 cells from ovarian cancer (primary tumors) grouped into 5 clusters according to cell type. The bar chart on the right displays the
relative abundance of each cell type. (G) Epithelial cells are reclustered and presented in UMAP plots. The CopyKAT algorithm was utilized to identify
aneuploid (malignant) and diploid (benign) cells in ovarian cancer. (H) Violin plots representing the differences in the expression of SUMOylation
regulators between malignant and benign epithelial cells. (I) GO analysis of the SRGs in epithelial cells. (J) Monocle trajectory analysis of epithelial
cells. The arrow indicates the pseudotime trajectory of epithelial cells from a benign state to a malignant state. (K) The density plot reveals changes
in the relative abundance of malignant and benign cells across pseudotime. ***, P < 0.001.
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enrichment analysis revealed that the SRGs were significantly

enriched in pathways involved in protein synthesis and ubiquitin

ligase activity regulation, underscoring the broad regulatory effect of

SUMOylation on cellular metabolism and functions of ovarian

cancer (Figure 1I). We analyzed the changes in epithelial cell

features during cancer progression by inferring their state

trajectories via Monocle, with SRGs used as temporal markers of

differential expression. Two primary trajectories from benign to

malignant cells were identified across pseudotime (Figures 1J, K),

underscoring the close association of SRGs with the malignancy of

ovarian epithelial cells.

Overall, although numerous studies have revealed the

oncogenic effects of elevated SUMOylation in various hematologic

(22, 23) and solid tumors (19, 24), SUMOylation inhibition therapy

may not achieved the expected outcomes in ovarian cancer.

Considering the close association between SRGs and the

malignancy of ovarian epithelial cells, identifying potential

therapeutic targets and prognostic biomarkers from SRGs may be

a promising direction.
3.2 Integrated machine learning identified
22 prognostic SRGs

To identify key SRGs, particularly those with consistent roles

across diverse cohorts of ovarian cancer patients, we analyzed five

datasets comprising patients from different ethnic backgrounds.

Genes with absolute z-scores greater than 0.01 across all datasets

were intersected with SRGs, resulting in a total of 1,722 genes

(Supplementary Figure S2A, Supplementary Table S3). Using

survival data from TCGA-OV, we performed univariate Cox

proportional hazards analysis and identified 124 SRGs potentially

associated with ovarian cancer patient survival for further

investigation (Supplementary Figure S2B, Supplementary Table S4).

We employed 80 combinations of ten machine learning

algorithms (RSF, Enet, Lasso, Ridge, stepwise Cox, CoxBoost,

plsRcox, SuperPC, GBMand survival-SVM) to assess the TCGA-

OV cohort as the training set. Validation was conducted on the

independent datasets GSE13876, GSE17260, GSE19829 and

GSE26712 (Figure 2A, Supplementary Table S5). On the basis of

the average C-index ranking, we identified the algorithmic pattern

(Enet [a=0.2] and StepCOX [both]) with the highest average C-

index (0.654). For Enet [a=0.2], the optimal l was determined via

the leave-one-out cross-validation (LOOCV) framework when the

partial likelihood deviance reached its minimum. Thirty-eight genes

with coefficients greater than 0.01 were subjected to stepwise Cox

proportional hazards regression, which identified a final set of 22

SRGs. This model, the SUMOylation-related gene model (SRGM),

was used to compute SRGM scores for each patient according to the

expression of these 22 SRGs (ten risk genes: PI3, SOGA1, AUP1,

CCDC80, FBLN1, TSC22D1, RPS12, LAMC1, RAB34 and MRPS12;

12 protective genes: HSP90AB1, LUC7L2, KLF5, CD44, SPON1,

DAP, COA4, LAMC2, GNAS, MAGED2, MMP9 and CD200) and

their weighted Cox model coefficients (Figure 2B, Supplementary

Table S6). Risk factor association plots revealed that the high-
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SRGM score group had a shorter survival time and a higher

mortality rate (Figure 2C).

Additionally, Kaplan-Meier (KM) curves across the training

and validation sets consistently demonstrated that patients with

high SRGM score exhibited poorer survival, indicating the strong

prognostic value and broad applicability of these 22 SRGs

(Figures 2D-H). We stratified patients from the TCGA-OV

cohort into various subgroups on the basis of their clinical

information. We found that patients with high SRGM scores

presented poorer prognoses across patients grouped by age,

postoperative residual tumor status, tumor division, tumor stage

and tumor grade (Supplementary Figure S3A). Univariate and

multivariate Cox regression analyses were conducted to assess the

predictive value of the SRGM score and clinical factors (Figure 2I).

SRGM scores emerged as the sole significant predictor of ovarian

cancer outcomes in both Cox regression models.

With the rapid advancement of big data technologies, including

high-throughput sequencing and machine learning, an increasing

number of prognostic features have been identified to facilitate

precise medical management of cancer patients (25). To

comprehensively compare the performance of the SRGM with

other models to predict survival among ovarian cancer patients,

we compiled information on 50 published prognostic gene

signatures and computed their respective C-index values

(Supplementary Figure S3B, Supplementary Table S7). The SRGM

consistently exhibited superior performance across all five

independent datasets, underscoring its superior predictive

accuracy and broad applicability (Supplementary Table S8). These

findings also suggest that among all the SRGs, 22 SRGs comprising

the SRGM have the most significant impact on ovarian

cancer prognosis.
3.3 SUMOylation inhibition regulates the
expression of key SRGs

We first performed a differential analysis of the GSVA scores of

SUMOylation regulators between patients with high and low SRGM

scores in the TCGA-OV cohort (Figure 3A). The results indicated

that patients with high SRGM scores exhibited significantly lower

GSVA scores of SUMOylation regulators and SRGM scores were

negatively correlated with these GSVA scores (Figure 3B).

Additionally, SRGM scores showed a significant negative

correlation with the expression of various key SUMOylation

regulators (Figure 3C).

To further explore the potential link between the expression of

the 22 SRGs comprising the SRGM and SUMOylation levels at the

single-cell level, we conducted expression profiling across five

distinct cell clusters and normalized the data based on Z-scores

(Figure 3D). Our analysis revealed that epithelial cells presented

relatively higher expression levels of these 22 SRGs than other cell

clusters did. Next, we employed AUCell to assess the expression of

risk genes and protective genes in both benign and malignant

epithelial cells (Figure 3E). Compared to benign cells, malignant

cells presented higher risk gene scores and lower protective gene
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FIGURE 2

Construction and validation of a machine learning model to identify survival-associated SUMOylation-related genes. (A) A total of 80 kinds of
prediction models were constructed via the LOOCV framework, and the C-index of each model across all the validation datasets was further
calculated. (B) Coefficients of 22 SRGs ultimately obtained via Enet (a=0.2) and stepwise Cox regression (both). (C) Risk factor plot displaying the
association between the SRGM score and survival. (D–H) Kaplan–Meier curves of overall survival according to the SRGM scores in the TCGA-OV
(n=306, log-rank test: P < 0.0001) (D), GSE13876 (n=415, log-rank test: P = 0.0040) (E), GSE17260 (n=110, log-rank test: P = 0.0098) (F), GSE19829
(n=29, log-rank test: P = 0.071) (G), and GSE26712 (n=195, log-rank test: P = 0.0058) (H) cohorts. (I) Univariate and multivariate Cox regression
analyses were performed to explore the prognostic value of the SRGs and clinicopathological features.
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FIGURE 3

SUMOylation inhibition regulates the expression of key SRGs. (A) Boxplot comparing the GSVA scores of SUMOylation regulators between patients
with high and low SRGM scores. (B) Scatterplots illustrating the correlation between GSVA scores of SUMOylation regulators and SRGM scores. (C)
Circular bar plot showing Spearman correlation coefficients between the SRGM score and SUMOylation regulators expression, highlighting positive
(red) and negative (blue) correlations. (D) Heatmap showing the distribution of the expression of 22 SRGs across five cell clusters. (E) Violin plots
representing the differences in the expression of risk genes and protective genes between malignant and benign epithelial cells. (F) Ring heatmap
showing Spearman correlations between SUMOylation regulators and key genes. Red indicates risk genes, and blue indicates protective genes. (G,
H) Radar plot depicting the Spearman’s rank correlation coefficient between seven SUMOylation regulators and two risk genes (PI3 and AUP1) (G)
and two protective genes (CD200 and GNAS) (H). (I-K) Western blot showing the changes in SUMO1 (I), SUMO2/3 (J), PI3, AUP1, CD200, and GNAS
(K) expression in primary ovarian cancer cells after treatment with DMSO or TAK981. Each experiment was independently repeated three times. ***,
P < 0.001.
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scores, which is consistent with the notion that risk genes promote

cancer progression, whereas protective genes inhibit it.

SUMOylation can impact downstream gene expression through

various mechanisms, such as altering the activity and localization of

transcription factors, influencing chromatin structure and

regulating signaling pathways. Therefore, we sought to further

investigate whether SUMOylation inhibition in ovarian cancer

could significantly influence, or more specifically regulate the

expression levels of certain key SRGs. Correlation analysis further

revealed potential associations between 68 SUMOylation regulators

and 22 SRGs (Figure 3F). We found that four key SRGs—two risk

genes PI3 and AUP1 and two protective genes CD200 and GNAS—

are most significantly correlated with SUMOylation regulators. The

expression of risk genes PI3 and AUP1 was negatively correlated

with the expression of key SUMOylation regulators, particularly the

genes encoding critical enzymes involved in the SUMOylation

process such as SAE1 and UBE2I, whereas the expression of

protective genes CD200 and GNAS was positively correlated with

these regulators (Figures 3G, H, Supplementary Figure S4A). To

validate our findings, in situ tumor samples were collected during

surgery from ovarian cancer patients who had not undergone

chemotherapy and primary cells were promptly extracted. We

then inhibited overall SUMOylation in these primary cells via

TAK-981 (5 µM/ml, 12h). The WB results demonstrated that the

addition of TAK-981 led to decreased levels of SUMO1 and

SUMO2/3 in primary ovarian cancer cells, increased the protein

levels of PI3 and AUP1 and decreased the protein expression of

CD200 and GNAS. We also performed qPCR analysis using RNA

extracted from frozen tumor tissues of mice treated with TAK-981

or vehicle control. The results showed that the mRNA levels of PI3

and AUP1 were significantly upregulated in the TAK-981 group,

while the expression levels of CD200 and GNAS were notably

reduced, consistent with the results of the correlation analysis

(Figures 3I-K, Supplementary Figure S4B).

These findings suggest that the expression levels of key SRGs in

ovarian cancer, including PI3, AUP1, CD200 and GNAS, can be

regulated by global SUMOylation levels.
3.4 Association between key SRGs and
epithelial cell functional pathways and
chemoresistance

To investigate the role of key SRGs in ovarian cancer, we

performed a correlation analysis between the SRGM scores of

each patient and the GSVA scores of tumor-associated functional

pathways in TCGA-OV cohort (Figure 4A). The results revealed

that SRGM scores were positively correlated with the activity of

pathways such as epithelial-mesenchymal signaling and

extracellular matrix assembly, while negatively correlated with the

GSVA scores of various epigenetic processes, including histone

binding and protein-DNA complex organization. Correlation

analysis between the four key SRGs and these functional

pathways revealed that the expression of risk genes PI3 and AUP1

was negatively correlated with the activity of these epigenetic
Frontiers in Immunology 10
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contrast, the expression of protective genes CD200 and GNAS

showed an opposite trend (Figure 4B). These findings were

further validated in single-cell sequencing data (Figures 4C, D).

Epigenetic dysregulation is closely associated with the

proliferation, invasion and chemoresistance of ovarian epithelial

cells. Chemoresistance is one of the major factors contributing to

poor prognosis in ovarian cancer patients. Using Beyondcell, a

computational tool for predicting drug sensitivity in single-cell

RNA-seq data, we assessed the resistance scores of each epithelial

cell to commonly used chemotherapeutic agents in ovarian cancer

and analyzed their correlation with gene expression (Figure 4E). We

found that AUP1 expression was significantly positively correlated

with resistance scores of paclitaxel and carboplatin. Further, based

on AUP1 expression, we classified epithelial cells into two groups

and performed differential enrichment analysis (Figure 4F). The

results showed that epithelial cells with high AUP1 expression

exhibited enhanced activities in epithelial cell proliferation, while

exhibiting reduced activities in response to TNF.

Given the close association between AUP1 and epithelial cell

proliferation and chemoresistance, we established the peritoneal

ovarian cancer mouse model and conducted two groups of

experiments. ID8 cells transfected with negative control (NC,

overexpression or knockdown), AUP1 overexpression (AUP1 OE),

or AUP1 knockdown (shAUP1) plasmids were intraperitoneally

injected into mice (Figure 4G, Supplementary Figure S4C). The

mice were treated with either the carboplatin-paclitaxel (TC)

regimen or saline. We observed that mice injected with AUP1 OE

ID8 cells exhibited a significantly higher tumor burden than the NC

OE group. Although the NC OE group showed a marked reduction

in tumor burden following TC treatment, the same regimen did not

significantly reduce the tumor burden in AUP1 OE mice

(Figures 4H, I). These findings suggest that AUP1 overexpression

not only accelerates tumor progression but also promotes

chemotherapy resistance. Conversely, mice injected with shAUP1

ID8 cells exhibited a significantly lower tumor burden compared to

the shNC group, with further reduction after TC treatment

(Figures 4J, K).

Overall, these findings suggest that the expression of key SRGs,

including PI3, AUP1, CD200 and GNAS, is closely associated with

the epigenetic regulation of epithelial cells. Among them, AUP1

overexpression may serve as a risk factor for chemoresistance and

targeting AUP1 could potentially act as a therapeutic strategy to

improve chemotherapy outcomes.
3.5 CD8+ cytotoxic T cells with high
CCDC80 expression exhibits impaired
anti-tumor function

The tumor immune microenvironment (TIME) refers to a

complex network of tumor cells, immune cells, stromal

components and secreted factors that plays a pivotal role in

tumorigenesis, progression, immune evasion and therapeutic

response (26). Interactions between immune cells and epithelial
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FIGURE 4

Association between the expression of key SRGs and epithelial cell functional pathways. (A) Correlations between SRGMs and GSVA scores of
functional pathways in the TCGA-OV cohort. (B) Heatmap revealing the correlation between GSVA scores of functional pathways and the expression
of PI3, AUP1, CD200 and GNAS. (C, D) Scatterplot showing the expression of PI3, AUP1, CD200 and GNAS in relation to the AUCell scores of the
protein DNA complex organization pathway (C) and the epigenetic regulation of gene expression pathway (D) in epithelial cells. (E) Heatmap
revealing the correlation between drug resistance scores and the expression of PI3, AUP1, CD200 and GNAS in epithelial cell. (F) Horizontal bar
graphs representing the most differential pathways. Functional enrichment of genes with higher (up, red) and lower (down, blue) expression in high-
AUP1 expression epithelial cells than in low-AUP1 expression epithelial cells. (G) AUP1 overexpression (top) and AUP1 knockdown (bottom) was
confirmed by Western blotting. (H) Bioluminescence images showing the tumor burden of C57BL/6 mice following inoculation with AUP1
overexpression luciferase-tagged ID8 cells and subsequent treatment with TP. (I) The histogram showing the differences in tumor burden between
the AUP1 OE group and the negative control NC group following TP treatment. (J) Bioluminescence images showing the tumor burden of C57BL/6
mice following inoculation with shAUP1 luciferase-tagged ID8 cells and subsequent treatment with TP. (K) The histogram showing the differences in
tumor burden between the shAUP1 group and the negative control NC group following TP treatment. ns., not significant; *, P < 0.05; **, P < 0.01;
***, P < 0.001.
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cells are bidirectional, mediated through mechanisms such as signal

secretion and receptor activation, cell-cell contact and metabolic

crosstalk (27).

To delve deeper into the association between key SRGs and

TIME in ovarian cancer, we stratified patients from the TCGA-OV

cohort on the basis of the SRGM score and conducted differential

analysis, revealing 1,769 differentially expressed genes (Figure 5A).

GO enrichment analysis of these genes revealed that immune-

related pathways, such as lymphocyte-mediated immunity and

leukocyte-mediated cytotoxicity, were significantly enriched

among the downregulated genes (Figure 5B). Moreover, patients

with high SRGM scores exhibited reduced tumor mutation burden

(TMB) (Figure 5C). These findings suggest that patients with higher

SRGM scores may experience suppressed antitumor immune

function. Using the TIDE tool, we found that the high-SRGM

score group presented a greater proportion of patients in this group

demonstrated resistance to immunotherapy (Figure 5D).

We then performed single-sample gene set enrichment analysis

(ssGSEA) to calculate immune scores for 17 common immune cell

markers in each patient, which represented the abundance of these

immune cells (Figure 5E, Supplementary Table S9). We found that

lymphocyte populations, including T cells, CD8+ T cells and CD8+

cytotoxic T cells, were significantly lower in patients with high

SRGM scores.

Single-cell data from ovarian cancer patients was utilized to

perform a detailed analysis of the relationship between key genes

and lymphocyte function. Lymphoid cells were reclustered into four

main clusters: CD8+ T cells, CD4+ T cells, NK cells and B cells

(Supplementary Table S10). Additionally, CD4+ T cells were

subdivided into four clusters: CD4+ cytotoxic T cells, CD4+ naive

T cells, CD4+ regulatory T cells and CD4+ memory T cells

(Supplementary Table S11). Similarly, CD8+ T cells were divided

into four clusters: CD8+ cytotoxic T cells, CD8+ naive T cells, CD8+

exhausted T cells and CD8+ Trm cells (Figure 5F, Supplementary

Figure S5A, Supplementary Table S12) (17). We conducted

expression profiling across ten distinct cell clusters. We observed

that, compared with other subclusters of T cells, CD8+ cytotoxic T

cells and CD4+ cytotoxic T cells presented the highest relative

expression levels of 22 SRGs (Figure 5G). Additionally, CD8+

cytotoxic T cells constituted the largest proportion of all

lymphocytes (Supplementary Figure S5B).

Previous studies have demonstrated that cytotoxic CD8+ T cells

form the backbone of cancer immunotherapy and that their

dysfunction can lead to poor responses to immunotherapy in

solid tumors (28, 29). Therefore, we then focused on whether

SRGs could influence the function of cytotoxic CD8+ T cells. The

top five risk genes and five protective genes were selected and

correlation analysis was performed between their expression and

key functional and metabolic pathway AUCell scores in CD8+

cytotoxic T cells (Figure 5H, Supplementary Table S13).

Importantly, the expression of CCDC80 was negatively correlated

with activation and cytotoxicity but positively correlated with

exhaustion and coinhibition. Subsequently, using Nichenet, we

found that elevated expression of CCDC80 was found to reduce

the activity of three critical signaling pathways involved in CD8+ T
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cell cytotoxic function: the FASLG, TNF and IFN-g ligand–receptor
pathways, leading to alterations in the expression of CXCL8 and

MUC1 in epithelial cells (Figure 5I).

Overall, these results suggest that CD8+ cytotoxic T cells with

high CCDC80 expression exhibit inhibited cytotoxicity activities

against tumor cells, which may contribute to immune evasion and

promote an immunosuppressive TIME.
3.6 Therapeutic potential and prognostic
value of key SRGs in ovarian cancer
patients

After comprehensively analyzing the effects of key SRGs on

ovarian epithelial cells and the TIME, we aimed to validate the

prognostic effect of these five candidate SRGs AUP1, PI3, CD200,

GNAS and CCDC80. We collected FFPE samples from 60 patients

who underwent surgical treatment at West China Second

University Hospital between December 2017 and June 2019,

tracking their recurrence events over a five-year follow-up period

(Supplementary Figure S6A, Supplementary Table S14). We

performed IHC staining for these five SRGs (Supplementary

Figure S6A). The results revealed that the expression levels of PI3,

AUP1 and CCDC80 were markedly increased in patients with

recurrence than in those without recurrence, whereas the

expression levels of CD200 and GNAS were lower in patients with

recurrence (Figure 6A, Supplementary Figure S8A). Additionally,

the Kaplan–Meier analysis indicated that patients with high

expression levels of risk genes PI3, AUP1 and CCDC80 presented

poorer progression-free survival (PFS) within five years, whereas

those with high expression of protective genes CD200 and GNAS

presented better PFS outcomes (Figure 6B).

The established standard chemotherapy regimen currently

consists of a combination of carboplatin and paclitaxel. Among

the 60 patients included in the study, 50 received this carboplatin–

paclitaxel regimen. Among these 50 patients, three experienced

disease progression during chemotherapy, while eight patients

relapsed within six months after completing treatment. Both

scenarios are classified as indicative of a poor response to

chemotherapy (2). We found that patients with high AUP1

expression were more likely to experience a poor response to

chemotherapy (Figure 6C).

Subsequently, we aimed to explore the association between the

five key SRGs and overall survival (OS) in another clinical cohort.

This cohort consists of 153 ovarian cancer patients in total who

underwent surgical treatment without neoadjuvant therapy at West

China Second University Hospital between January 2014 and

January 2017, with a maximum follow-up period of 91 months

(Supplementary Figure S6B, Supplementary Table S15). FFPE

samples from these patients were used to construct tissue

microarrays and subjected to immunofluorescence staining

(Supplementary Figures S6B, C). The results showed that

compared to surviving patients, deceased patients presented

higher immunofluorescence staining intensity for risk genes PI3,

AUP1 and CCDC80 and lower staining intensity for protective
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FIGURE 5

CD8+ cytotoxic T cells with high CCDC80 expression exhibited reduced anti-tumor function activities. (A) Volcano plot comparing differentially
expressed genes between patients with high and low SRGM scores in the TCGA-OV cohort. (B) Horizontal bar graphs representing the most
differential pathways. Functional enrichment of genes with higher (up, red) and lower (down, blue) expression in high-SRGM score patients than in
low-SRGM score patients. (C) Comparison of TMB in the high- and low-SRGM score groups (n=306). (D) Predicted differences in the
immunotherapy response between the high- and low-SRGM score groups according to the TIDE algorithm. (E) Comparisons of the abundances of
17 immune cells in the high- and low-SRGM score groups are shown in boxplots. (F) Lymphoid cells are reclustered and presented in UMAP plots.
(G) Heatmap showing the distribution of the expression of 22 SRGs across the clusters. (H) Heatmap illustrating the Spearman correlation between
the expression of SRGs (top five risk genes and top five protective genes) and the AUCell scores of cell functions, pathways, and metabolism across
CD8+ cytotoxic T-cell clusters. (I) NicheNet was employed to analyze ligand and receptor expression, with the aim of elucidating how changes in
CCDC80 expression in CD8+ cytotoxic T cells regulate intercellular communication patterns between epithelial cells and CD8+ cytotoxic T cells.
ns., not significant; *, P < 0.05; **, P < 0.01.
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genes CD200 and GNAS, with statistically significant differences

(Figure 6D, Supplementary Figure S8B). Furthermore, patients with

high AUP1 expression were older and presented with more

advanced disease stages, highlighting the close association

between AUP1 and clinical risk factors in ovarian cancer patients

(Supplementary Figure S8C). Most importantly, we found that
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patients with high expression of the risk genes PI3, AUP1 and

CCDC80 had shorter survival times, whereas those with elevated

expression of the protective genes CD200 and GNAS demonstrated

better clinical prognosis (Figure 6E).

On the whole, our study identified five key SRGs, including the

risk genes AUP1, PI3 and CCDC80, as well as the protective genes
FIGURE 6

Clinical cohort validation of the prognostic value and therapeutic potential of five key SRGs. (A) Immunohistochemical staining of PI3, AUP1,
CCDC80, CD200 and GNAS in patients with and without recurrence. (B) Kaplan–Meier curves of PFS according to the expression levels of PI3, AUP1,
CCDC80, CD200 and GNAS (n=60). (C) The stacked bar chart illustrates the distribution differences in the chemotherapy response between the
high- and low-expression groups of five key SRGs (n=60). (D) Immunofluorescence staining revealed differences in the expression of PI3, AUP1,
CCDC80, CD200 and GNAS between deceased and surviving patients. (E) Kaplan–Meier curves of OS according to the expression levels of PI3,
AUP1, CCDC80, CD200 and GNAS (n=153).
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CD200 and GNAS and elucidated their prognostic potential in

ovarian cancer.
4 Discussion

Ovarian cancer is the third most common gynecologic

malignancy worldwide but has the highest mortality rate among

these cancers (30). Treatment primarily relies on debulking surgery

to achieve no residual disease and platinum-based chemotherapy.

While these treatments have led to a reduction in OC-related

mortality to some extent, patient outcomes remained unfavorable,

highlighting the urgent need to develop new develop new

prognostic signatures and molecular biomarkers (7).

SUMOylation, a posttranslational modification, has been

implicated in the initiation and progression of various cancers.

SUMOylation modulates gene expression through multiple

mechanisms, including the alteration of the activity, localization

and stability of transcription factors, coactivators and corepressors

(12, 31). In this study, we observed the unique characteristic of

global SUMOylation in ovarian cancer. Although several studies

have demonstrated the therapeutic potential of SUMOylation-

targeting drugs, such as TAK981 (20), ginkgolic acid (32) and

kerriamycin B (33), in cancers such as pancreatic and liver cancer,

our findings suggest that the therapeutic efficacy of SUMOylation

inhibition in ovarian cancer is suboptimal. Previous research has

demonstrated that SUMOylation is essential for maintaining adult

ovarian homeostasis and preserving normal function in conditional

knockout mouse models (34). In contrast, PIAS1 inhibition leads to

reduced SUMOylation, which, through activation of the TGFb
pathway, promotes EMT, increasing tumor cell survival and

metastasis (11). Additionally, low levels of SUMOylation have

been shown to increase HIF1-dependent VEGF expression,

thereby promoting tumor angiogenesis (35). Tumor angiogenesis

facilitates cancer metastasis by supplying oxygen, nutrients and

routes for dissemination (36). Stergios J. et al. reported that distant

metastatic lesions exhibit lower levels of SUMOylation, whereas

primary tumors tend to have higher expression (37). Therefore,

considering the unique characteristics of SUMOylation in various

cancers, intervening in SUMOylation levels in ovarian cancer

patients may not only disrupt the homeostasis of normal cells but

also drive cancer cells to adopt a more aggressive and metastatic

phenotype. Thus, targeting SUMOylation-regulated downstream

targets, SRGs, may represent a more effective strategy.

This study is unique in that it involves 80 combinations of ten

distinct algorithms to construct a prognostic model SRGM and

identify 22 SRGs closely associated with ovarian cancer survival and

regulated by SUMOylation. The SRGM model, composed of these

22 SRGs, demonstrated superior performance across all five

independent datasets compared to 50 published prognostic

models, further confirming the close association between these 22

SRGs and prognosis. Through single-cell analysis, we further

identified five potential prognostic biomarkers associated with the

ovarian cancer cell functional pathway and TIME: three risk genes
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PI3, AUP1 and CCDC80 and two protective genes CD200

and GNAS.

In epithelial cells, low SUMOylation levels drive the upregulation

of risk genes PI3 and AUP1 while downregulating protective genes

CD200 andGNAS. PI3, also known as Elafin, is a member of the whey

acidic protein four-disulfide core (WFDC) family (38). This protein

plays a crucial role in modulating inflammatory responses, protecting

against tissue damage, and inhibiting elastase-mediated proteolysis. It

is significantly involved in both the physiology and pathology of the

reproductive system. Emerging evidence suggests that PI3

concentration and subcellular localization may serve as potential

biomarkers for assessing cervical cancer progression (39). Notably,

in ovarian cancer, Lu et al. demonstrated that elevated PI3 expression

correlates with poorer overall survival, which is consistent with our

findings (40). CD200, also known as OX-2, is a single-pass type I

membrane glycoprotein belonging to the immunoglobulin

superfamily (IgSF) (41). Although numerous studies have

demonstrated that CD200 is upregulated in various types of cancer

and is associated with immunosuppression, there is also evidence

indicating that CD200 may exert anti-tumor effects (42, 43). These

effects are thought to arise from its ability to suppress tumor-

promoting inflammation, inhibit angiogenesis, and limit the

expansion of tumor-associated myeloid cells (TAMCs) (44, 45). In

a B16 melanoma model, inoculation with CD200-positive B16

melanoma cells inhibited tumor formation and growth in C57BL/6

mice and significantly reduced the formation of metastatic foci in the

lungs (46). GNAS (guanine nucleotide-binding protein, alpha-

stimulating) is an imprinted gene located on the q arm of

chromosome 20 with a complex genomic locus (47). Its major

product, Gsa, consists of a Ras-like domain with GTPase activity

and an a-helical domain. Gsa plays a vital role in transducing signals

from G protein-coupled receptors (GPCRs), thereby activating

downstream effectors involved in diverse cellular processes (48).

Proper functioning of Gsa is essential for maintaining normal

cellular responses to external stimuli, and dysregulation of Gsa
signaling has been implicated in various diseases, including

endocrine disorders and cancers (49, 50). Notably, loss or reduced

expression of GNAS has been associated with increased tumor

aggressiveness and poor survival in medulloblastoma (51). In the

present study, both univariate Cox regression analysis and integrated

machine learning approaches identified CD200 and GNAS as

protective biomarkers in ovarian cancer. However, the mechanisms

through which CD200 and GNAS influence ovarian cancer prognosis

remain unclear and require further investigation through in vitro and

in vivo experiments.

Correlation analysis shown that the expression level of PI3,

AUP1, CD200 and GNAS is closely associated with the activities of

epigenetic regulation processes, such as histone binding and the

organization of protein-DNA complexes. Epigenetic modifications

in ovarian cancer led to chromatin structural changes that enhance

the expression of genes involved in DNA repair, differentiation,

angiogenesis and metastasis, thereby promoting tumorigenesis (52).

Another study found that high levels of histone-modifying

enzymes, such as the H3K9 methyltransferase G9a, are associated
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with advanced, high-grade, serous ovarian cancer and shorter

survival in ovarian cancer patients (53). Shang et al. demonstrated

that small molecule epigenetic inhibitors modulate key cellular

signaling pathways, including NF-kB, TGFb and WNT signaling,

as well as major metabolic pathways, such as fatty acid metabolism

and the TCA cycle, ultimately reducing platinum resistance in

ovarian cancer cell lines (54). These findings suggest that reduced

SUMOylation levels may regulate the expression of PI3, AUP1,

CD200 and GNAS in ovarian cancer cells, thereby influencing

cancer cell survival, proliferation, metastasis and chemoresistance

by modulating cell functions and metabolism.

Postoperative chemotherapy is crucial for improving the overall

survival rate of ovarian cancer patients. The current consensus

standard for chemotherapy involves a combination of carboplatin

and paclitaxel. Our study revealed that overexpression of the

SUMOylation-related gene AUP1 is associated with the resistance of

ovarian cancer cells to paclitaxel and carboplatin chemotherapy

regimens. AUP1 (ancient ubiquitous protein 1) is an endoplasmic

reticulum (ER)-associated protein (55) and more recently, it has been

found to be abundantly expressed on the surface of lipid droplets (LDs)

(56). Elevated levels of AUP1 enhance the ability of cells to efficiently

degrade soluble terminally misfolded proteins, such as RI332-HA and

NHK, leading to further accumulation of lipid droplets within the cell

(57). Abnormal accumulation of lipid droplets (LDs) in tumor cells can

promote the phosphorylation and degradation of E-cadherin or alter

the palmitoylation levels of Wnt, thereby activating the Wnt/b-catenin
signaling pathway to induce EMT in tumor cells (58). EMT can

effectively induce ovarian cancer cell proliferation, invasion and drug

resistance (59). Therefore, AUP1 expression levels in cancer cells could

serve as biomarkers for predicting ovarian cancer sensitivity to

postoperative chemotherapy with paclitaxel and carboplatin.

Targeting AUP1 could potentially act as a novel therapeutic strategy

improve the patient outcomes.

CCDC80 (Coiled-Coil Domain Containing 80), also known as

DRO1 or SSG1, is located at 3q13.2 (60). Previous studies have

demonstrated that elevated CCDC80 expression is associated with

reduced immune infiltration, poor response to immunotherapy, and

worse prognosis in colorectal cancer and muscle-invasive bladder

cancer, suggesting a strong association between aberrantly high

CCDC80 expression and the formation of an immunosuppressive

tumor microenvironment (61, 62). To date, most research on

CCDC80 has focused on its expression and functional characteristics

in tumor cells. For example, deletion of CCDC80 impairs the growth-

inhibitory effect mediated by LATS1/2 (Hippo pathway kinases)

deficiency in MC38 cells, and silencing the immune-infiltration-

associated gene CCDC80 suppresses malignant progression and

tumorigenicity in gastric cancer (63, 64). However, the expression

pattern and functional role of CCDC80 in immune cells remain largely

unexplored. Our study revealed that the CD8+ cytotoxic T cells with

high SRG CCDC80 expression exhibit inhibited the antitumor immune

functions. CD8+ cytotoxic T cells play crucial roles in the adaptive

immune system, serve as the primary effectors in the antitumor

immune response and form the foundation of cancer

immunotherapy (29). Currently, progress in immunotherapy for

ovarian cancer remains slow. Randomized phase III studies
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evaluating the addition of ICI monotherapy to standard cytotoxic

chemotherapy in both first-line [e.g., JAVELIN 100 (65) and

IMagyn050 studies (66)] and relapsed disease settings [e.g., JAVELIN

200 (67) and ATALANTE/ov29 trials (68)] have shown no benefit,

failing to meet PFS and OS endpoints. The efficacy of ICI therapy can

be improved by reinvigorating tumor-specific CD8+ T cells, as

evidenced both in vitro and in murine models (69). Targeted

inhibition (such as gene therapy) to specifically reduce CCDC80

expression in CD8+ cytotoxic T cells, thereby reactivating their

antitumor immune activity, has the potential to enhance the

response of ovarian cancer patients to ICI treatment.

This study has several limitations. First, although we observed that

inhibition of SUMOylation alters SRG expression at both the

transcriptomic and proteomic levels, the direct mechanistic link

between SUMOylation and these genes remains unclear. Second,

although we identified SRGs involved in tumor progression and

immune evasion, the underlying molecular mechanisms by which

these genes modulate specific signaling pathways remain incompletely

understood and warrant further mechanistic investigation.

Additionally, the expression profiles and functional characteristics of

these genes in epithelial and immune cells still need to be validated

through further in vivo and in vitro experiments. Third, despite

validation using an ID8 murine model and clinical samples from 213

ovarian cancer patients, the overall sample size may still be inadequate

to fully capture the biological variability and rare genetic subtypes

present in diverse patient populations. Finally, the therapeutic potential

of AUP1 inhibition is promising, but further preclinical and clinical

trials are necessary to evaluate its safety, efficacy, and potential off-target

effects in humans. Addressing these limitations in future studies will be

critical to enhancing the robustness and translational applicability of

our findings.

Finally, we validated the aberrant expression of these five SRGs in

213 ovarian cancer patient samples fromWest China Second Hospital.

Survival analysis further established their prognostic potential.
5 Conclusion

Through integrated machine learning and single-cell analysis,

we identified five prognostic-associated SRGs (PI3, AUP1, CD200,

GNAS and CCDC80) regulated by global SUMOylation levels in

ovarian cancer. These SRGs are closely associated with ovarian

cancer’s function, metabolism and TIME and may serve as potential

biomarkers for predicting patient prognosis. Among them, we

identified AUP1, whose overexpression may be a risk factor for

postoperative chemoresistance. These findings have potential to

improve patient outcomes and contribute to the ongoing

advancement of precision medicine in oncology.
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