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Background: The COVID-19 pandemic remains a global health challenge. Severe

cases often respond poorly to standard treatments, highlighting the necessity for

novel therapeutic targets and early predictive biomarkers.

Methods: We utilized flow cytometry to analyze peripheral immune cells from

healthy, bacterial pneumonia patients, and COVID-19 patients. The expansion of

activated T cells (CD38+HLA-DR+), monocytes, and myeloid-derived suppressor

cells (MDSCs) were detected and correlated with clinical outcomes to evaluate

prognostic potential. The single-cell RNA sequencing (scRNA-seq) was applied

to characterize the critical cell subset associated with prognosis and elucidate its

phenotype in COVID-19.

Results: We revealed a significant increase in CD38+HLA-DR+ T cells in non-

survivor COVID-19 patients, establishing them as an independent risk factor for

28-day mortality. The scRNA-seq analysis identified the CD38+HLA-DR+ T cell as

a terminally differentiated, Treg-like subset exhibiting both activation and

exhaustion characteristics. This subset presented the highest IL-6 and IL-10

mRNA levels among all T-cell subsets. Further functional analysis demonstrated

its enhanced major histocompatibility complex class II (MHC-II) cross-signaling

and correspondingly enriched cytoskeletal rearrangement processes. In addition,

there was dysregulated NAD+ metabolism in CD38+HLA-DR+ T cells via scRNA-

seq, accompanied by elevated adenosine and decreased NAD+ levels in serums

from COVID-19 patients.
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Conclusions: We identified the selective expansion of CD38+HLA-DR+ T cells as

a novel prognostic indicator for COVID-19 outcomes. These cells’ unique

activated-exhausted phenotype, along with their impact on NAD+ metabolism,

provides new insights into COVID-19 immunopathogenesis.
KEYWORDS
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1 Introduction

The pandemic of coronavirus disease 2019 (COVID-19), caused

by the SARS-CoV-2 virus, has led to a significant strain on global

healthcare systems and has been associated with considerable

morbidity and mortality, with over 770 million confirmed cases

and more than 7 million deaths worldwide (1). The virus’s high

mortality rate and its propensity for mutation have made the

development of effective treatments an urgent priority (2). SARS-

CoV-2 infection triggers exaggerated inflammatory responses and

immune dysregulation, manifesting as systemic inflammatory

response syndrome (SIRS), cytokine release storms, multi-organ

dysfunction, acute respiratory distress syndrome, etc. (3). The

current clinical management of COVID-19 includes a range of

interventions, such as oxygen therapy, anti-inflammatory agents,

antivirals, and immunotherapy (4, 5). Despite these interventions,

severe cases often show poor response to standard treatment

regimens, highlighting the need for novel therapeutic targets and

early biomarkers for disease prediction in severe COVID-

19 patients.

COVID-19 is characterized by immune dysregulation, with

various immune cells playing critical roles in disease severity and

adverse outcomes (6). For example, T cells expressing activation

markers such as CD38 and HLA-DR have been observed in

COVID-19 patients, suggesting functional impairment and

immune dysregulation associated with disease severity (7, 8).

Monocytes, particularly the CD14+CD16+ subset, are linked to

severe COVID-19 due to their production of pro-inflammatory

cytokines like IL-6 and TNF-a, which can contribute to cytokine

storm and tissue damage (9). MDSCs, which can accumulate in

severe COVID-19, may inhibit T cell proliferation and recruit Tregs

by secre t ing IL-10 and TGF-b , cont r ibut ing to an

immunosuppressive state (10, 11). Given immune cells’ high

heterogeneity and plasticity, scRNA-seq technology has emerged

as a valuable tool for unbiased detection and functional exploration

of immune cell subpopulations in infectious diseases (12).

Here, we utilized flow cytometry and scRNA-seq on peripheral

blood mononuclear cell (PBMC) samples from COVID-19 patients

to investigate the potential of immune cells as prognostic

biomarkers and to explore their mechanisms in pathogenesis. Our

results showed that the expansion of CD38+HLA-DR+ T cells in
02
peripheral was an informative indicator that correlated with the 28-

day mortality. We further identified CD38+HLA-DR+ T cells as a

fully differentiated Treg-like T-cell subset exhibiting both activation

and exhaustion characteristics. These findings providing an early

warning signal for severe cases and potential therapeutic targets for

COVID-19’s immunoregulation.
2 Methods

2.1 Participants recruitment and sample
collection

The prospective study was conducted at Xiang’an Hospital of

Xiamen University and Peking University People’s Hospital from

December 20, 2022 to March 25, 2024 (ChiCTR2100054156,

registered 12 October 2021). A total of 58 subjects were enrolled,

including 34 COVID-19 patients, 14 bacterial pneumonia patients

as disease control, and 10 volunteers as healthy control

(Supplementary Table S1). Mortality was assessed for all patients

included in the study. For COVID-19 patients who died during the

observation period, survival time was calculated from hospital

admission to the time of death. For patients who survived,

survival time was assessed at 28 days after hospital admission.

This approach ensured a consistent and standardized evaluation of

mortality across all study participants.The diagnosis of COVID-19

was confirmed via positive SARS-CoV-2 nucleic acid tests, and the

diagnosis of bacterial pneumonia was confirmed by positive culture

results of lower respiratory tract samples. Disease severity of

COVID-19 was assessed according to the Diagnosis and

Treatment of COVID-19 (Trial Version 10) (13). Peripheral

blood samples were collected within three days of admission.

PBMCs were isolated from the whole blood by Ficoll-Paque

density gradient centrifugation as previously described (14) for

flow cytometry and scRNA-seq analysis.
2.2 PBMCs isolation

PBMCs were isolated from the whole blood by Ficoll-Paque

density (1.077 g/mL) gradient centrifugation as previously
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1577803
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Long et al. 10.3389/fimmu.2025.1577803
described (14). Briefly, blood samples were centrifuged at 2500 rpm

for 10 minutes at 20°C to remove plasma. The remaining leucocyte

was diluted with an equal volume of phosphate-buffered saline

(PBS) and gently layered onto an equal volume of Lymphoprep

medium (Cat #18061, STEMCELL) in a 15 mL centrifuge tube,

ensuring distinct phase separation. Followed by a centrifugation at

400 g for 20 minutes at 20°C with no brake. The mononuclear cell

layer was carefully collected, washed with 5 mL of PBS. After

centrifugation, the pellet was resuspended in cryopreservation

medium, aliquoted into cryovials, and stored at -80°C until analysis.
2.3 Flow cytometry analysis

The cryopreserved PBMCs were thawed at 37°C, diluted in a

pre-warmed complete medium (RPMI-1640 + 10% inactivated

FBS), and incubated overnight at 37°C in 5% CO2 before the flow

cytometry analysis. We used the Fc Receptor Blocking Solution

(422302, BioLegend) to prevent non-specific antibody binding.

Then, cells were gently washed with PBS and evenly divided into

two aliquots for distinct staining protocols. Activated T cell and its

subsets were assessed using the following fluorochrome-conjugated

monoclonal antibodies: anti-CD3: BV421, anti-CD4: Percp/cy5.5,

anti-CD8: APC, anti-CD38: PE, and HLA-DR: APC-H7. After

excluding the lymphocyte linage (lin+) population, monocytes

were identified by the CD15-CD88+ gate, and MDSCs were

identified by the HLA-DR-CD11b+CD33+ gate.

In panel one, we evaluated the activation of CD4+ and CD8+ T

cells using CD38 and HLA-DR as activation markers (15). In panel

two, we first recognized monocytes using the lin-CD88+CD15- gate

and classified them into classical (cM), non-classical (ncM), and

intermediate (iM) monocytes according to CD14 and CD16

markers. Next, we identified myeloid-derived suppressor cells

(MDSC) by the lin-HLA-DRlowCD11b+CD33+ gate, and

distinguished two subclusters: monocytic MDSC (M-MDSC) and

polymorphonuclear MDSC (PMN-MDSC) based on CD14 and

CD15 expression, respectively. Supplementary Table S2 included

the antibodies, fluorochrome conjugates, and clones used for this

analysis. After excluding debris, doublets, and dead cells, 10,000

events were sampled for each sample. Representative plots and

statistics were generated using FlowJo 10.8.1 software.
2.4 Single-cell RNA-seq sequencing and
data preprocessing

Single-cell suspensions and libraries were prepared following

the manufacturer’s protocols (10 × Genomics). Single-cell

sequencing was performed using the Chromium System, which

employs droplet sequencing technology to encapsulate individual

cells within Gel Beads in Emulsion (GEMs). Each GEM contained a

lysed cell, and its transcripts were barcoded with unique molecular

identifiers (UMIs). Reverse transcription was initiated in the

presence of enzymes, and full-length cDNA was synthesized using

free poly-dT as a primer, followed by amplification. The cDNA was
Frontiers in Immunology 03
then subjected to paired-end sequencing on the NovaSeq platform

(CapitalBio Technology). Raw data were processed using the Cell

Ranger 7.1.0 pipeline, with reads aligned to the human GRCh38

reference genome under default parameters. Quality control was

rigorously applied to the single-cell dataset based on gene detection

and mitochondrial content, filtering out cells with fewer than 200

detected genes or more than 90% of the maximum gene number or

with mitochondrial UMIs exceeding 25%. Genes detected in at least

three cells were retained. Data analysis was conducted using R

version 4.2.1.
2.5 Principal components analysis and
clustering

Gene expression data were scaled using the “ScaleData”

function in “Seurat” (16), with a scaling factor of 10,000. The

2,000 most variable genes were identified and subjected to

principal component analysis (PCA) using the “vst” method.

Then the “ElbowPlot” was used to determine the optimal

principal component. Clustering was performed using the

Louvain algorithm with a resolution parameter set to 0.6 for

general clustering and 1.0 for T cell-specific clustering. Clusters

were annotated based on cell-type-specific markers and visualized

in a two-dimensional UMAP space. Low-quality clusters were

removed based on criteria outlined in Supplementary Figures

S4A–E, resulting in a final Seurat object containing 45,669 cells

for further analysis.
2.6 Differential gene expression analysis

Differential expression analysis was conducted using the

“FindMarkers” function in “Seurat”, comparing gene expression

across various cell types, disease severity of patients, and survival

status. The Wilcoxon rank sum test was applied, and genes with

adjusted p-values (Padj) < 0.05 were considered significant when

setting logfc = 0.25 and min.pct = 0.25. Heatmaps of DEGs were

generated using the “plot_heatmap” function in the Scillus package.
2.7 Pseudotime trajectory analysis

The Monocle package (17) was used to infer the developmental

trajectories of T cells, utilizing highly variable genes for dimension

reduction and cell ordering.
2.8 Biological pathway enrichment and
signature scoring

Utilizing the Gene Ontology (GO) database, we employed the

“Scillus” package to conduct pathway and ontology analyses.

Specifically, DEGs with a log2 fold-change (log2FC) exceeding

0.25 in distinct T cell types were subjected to biological process
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enrichment analysis using the “plot_all_cluster_go” function.

Furthermore, signature scores were calculated to quantify the

expression activities of exhaustion, effector, cytokine,

inflammatory, and NAD metabolism among various cell types.

This was achieved using the “AUCell_calcAUC” function within

the “AUCell” package (18) based on the corresponding gene lists

provided in Supplementary Table S7.
2.9 Transcription factors motif enrichment

To enrich TF motifs among T cell types, we constructed a gene

regulatory network using the “SCENIC” package (19) in

conjunction with the RcisTarget database. This approach

facil itated the prediction of candidate upstream TFs.

Subsequently, the activity scores of these TFs were compared

across different T cell types and visualized in a heatmap format.
2.10 Ligand-receptor interaction analysis

To elucidate potential cell-cell communication pathways, we

utilized the CellChat algorithm (20) to identify interactions between

CD38+HLA-DR+ T cells and other PBMC subtypes, resulting in the

identification of 15 distinct PBMC cell subtypes. The CellChat

database encompasses a comprehensive collection of recognized

signaling molecules, including receptor-ligand interactions. The

strength of these interactions was estimated by analyzing the

average expression levels of immune-related ligands and receptors

within each cluster. This analysis was complemented by a

permutation test, with significance determined at p < 0.05.
2.11 Quantification of plasma NAD+ and
adenosine levels

NAD+ levels in plasma were determined using the NAD+

quantitation kit (BC0315, Solarbio). Briefly, 0.1 mL of plasma was

mixed with 0.5 mL of acidic extraction solution and boiled for 5

minutes. The mixture was cooled on ice, centrifuged at 10,000 g for

10 minutes at 4°C, and 200 mL of the supernatant was added to an

equal volume of alkaline extraction solution. After mixing

thoroughly, the sample was centrifuged again under the same

conditions, and the supernatant was collected for analysis. Optical

density (OD) at 570 nm was measured using a microplate reader

(Mutiskan SkyHigh, Thermo Fisher), and NAD+ levels were

calculated according to the manufacturer’s instructions.

Adenosine levels in plasma were measured using the adenosine

ELISA kit (CB12066-Hu, Coibo). Fifty microliters of standard

solutions or 5-fold diluted samples were added to respective wells,

followed by 50 mL of biotinylated antibody solution. After a 30-

minute incubation at 37°C, the wells were washed five times with

350 mL of wash buffer. Subsequently, 100 mL of antibody conjugated
with horseradish peroxidase (HRP) was added and incubated for

another 30 minutes at 37°C. After washing, 100 mL of color-
Frontiers in Immunology 04
developing solution was added and incubated for 15 minutes at

37°C in the dark. The reaction was stopped with 50 mL of stop

solution, and OD values were measured at 450 nm. Sample

concentrations were calculated based on the standard curve (R2

> 0.99).
2.12 Statistical analysis

Statistical analyses were performed to compare COVID-19 patients

with healthy controls and bacterial pneumonia patients, as well as to

evaluate differences within the COVID-19 cohort based on disease

severity (severe vs. non-severe) and clinical outcomes (survival vs. non-

survival). Continuous variables were categorized by distribution:

normally distributed variables are reported as mean ± SD, and non-

normally distributed as median (interquartile range, IQR). Analyses

were performed using GraphPad Prism 9.5.0 and SPSS 26.0.

Comparisons of normally distributed variables across groups were

made using Student’s t-test and one-way ANOVA, while Mann-

Whitney U and Kruskal-Wallis tests were utilized for non-normally

distributed variables. Categorical data were expressed as counts or

percentages and compared via c² or Fisher’s exact test as appropriate.
Correlations between continuous variables were evaluated with

Pearson’s test (normally distributed) and Spearman’s rho test (non-

normally distributed). Univariate and multivariable logistic

regression was applied to identify risk factors, with variable

selection via stepwise inclusion. Survival analysis was performed

using the Kaplan-Meier method, with survival curves compared

using log-rank tests. The diagnostic performance was assessed via

ROC analysis, determining the optimal cutoff using the Youden

index. Statistical significance was defined as p < 0.05.
3 Results

3.1 CD38+HLA-DR+ T cells expanded
specifically in critical COVID-19 patients

First, we analyzed the distribution of activated T cells, MDSCs, and

monocytes in PBMC via flow cytometry. Blood samples were collected

from 20 COVID-19 patients, including 16 severe and four non-severe

cases. Of these, eight out of severe cases deceased during hospitalization.

The gating strategies for activated T cells (defined as CD38+HLA-DR+)

and for MDSCs and monocytes, including their subtypes, were shown

in Figure 1A. No significant increase was observed in MDSCs and

monocytes or their subsets in severe or non-survival groups

(Supplementary Figures S1A–D). However, we found that the

CD38+HLA-DR+ T cell (6.26% vs. 21.80%, p = 0.01) and its CD8+

subset (2.74% vs. 9.53%, p = 0.01) were significantly increased in the

non-survival group compared to the survival group (Figures 1B, C).

To discern whether the expansion of CD38+HLA-DR+ T cells is

specific to COVID-19 or a general consequence of infection, we

extended our investigation to encompass a larger cohort. The final

cohort included 28 COVID-19 patients, 14 bacterial pneumonia

patients, and 10 healthy subjects. As delineated in Supplementary
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FIGURE 1

Flow cytometry analysis of peripheral immune cells in pneumonia patients and healthy subjects. (A) Representative gating strategy used to identify
CD38+HLA-DR+ T cells, MDSCs, and monocytes. After excluding debris, doublets, and dead cells, the red arrow indicated the gating procedures of
CD38+HLA-DR+ T cells and their subtypes (panel one), and the blue arrow indicated the gating procedures of MDSCs, monocytes, and their
subtypes (panel two). (B) Percentages of CD38+ HLA-DR+ T cells and their subclusters (CD4+ and CD8+) between survival (n = 12) and non-survival
patients (n = 8). (C) Percentages of CD38+ HLA-DR+ T cells and their subclusters (CD4+ and CD8+) between no-severe (n = 4) and severe patients
(n = 16). (D) Representative flow cytometry plots of CD38+HLA-DR+ T cells in healthy subjects (n = 10), bacterial pneumonia patients (n = 14), and
COVID-19 patients (n = 28). (E) Percentages of CD38+HLA-DR+ T cells in the three groups. (F) Percentages of CD4+CD38+HLA-DR+ T cells in the
three groups. (G) Percentages of CD8+CD38+HLA-DR+ T cells in the three groups. Data were represented as median with 95% CI. Statistical
significances were calculated via Mann-Whitney U tests or Kruskal-Wallis tests. *p < 0.05, **p < 0.01, ****p < 0.0001.
Frontiers in Immunology frontiersin.org05
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Table S1, no significant demographic differences were observed between

patients with bacterial pneumonia and those with COVID-19.

Compared to healthy controls and bacterial pneumonia patients, we

observed elevated percentages of CD38+HLA-DR+ T cells in COVID-19

cases (0.94%, 2.16% vs. 10.01%, respectively, p < 0.001) (Figures 1D, E).

Upon further stratification into CD4 and CD8 subsets, while differences

among the three groups persisted, direct comparisons between bacterial

pneumonia and COVID-19 revealed no significant distinctions

(Figures 1F, G). Taken together, we identified CD38+HLA-DR+ T

cells as the primary pathogenic cell subset for subsequent analysis.
3.2 CD38+HLA-DR+ T cell as an
independent risk factor for 28-day
mortality in COVID-19 patients

The relationships between the prevalence of CD38+HLA-DR+ T

cells and clinical indicators in COVID-19 patients were first

investigated. As shown in Figure 2A and Supplementary Table S3,

the percentages of CD38+HLA-DR+ T cells were negatively correlated

with four parameters: TC, PLT, LDL, and APOB (r = -0.462, r = -0.432,

r = -0.510, r = -0.489, respectively, all p < 0.05). While the CD4+ and

CD8+ subsets of CD38+HLA-DR+ T cells showed significant positive

correlations with TP (r = 0.441, p = 0.025, r = 0.422, p = 0.019,

respectively) (Supplementary Figures S2A, B). Serum levels of 12

inflammatory cytokines were analyzed in COVID-19 patients,

comparing the CD38+HLA-DR+ Thi and the CD38+HLA-DR+ Tlow

group, divided by median (10.01%). The CD38+HLA-DR+ Thi group

exhibited higher levels of most cytokines, particularly IL-5 and IFN-a
Frontiers in Immunology 06
(2.90 pg/ml vs. 4.83 pg/ml, p = 0.028, and 3.68 pg/ml vs. 7.73 pg/ml, p =

0.028, respectively), with positive correlations between CD38+HLA-

DR+ T cell percentages and IL-5/IFN-a levels (p = 0.006, r = 0.603; p =

0.003, r = 0.637, respectively) (Supplementary Figures S3A, B).

We then applied univariate and multivariable regression analyses

to elucidate the risk factors associated with 28-day mortality in

COVID-19 patients. Most COVID-19 patients were male (21/28,

75%) and elderly (aged over 60, 23/28, 82.14%). Demographic

characteristics were presented in Supplementary Table S4. No

significant differences were observed in age, gender, or past medical

histories between the non-survival and survival COVID-19 groups.

The univariate analysis identified CD38+HLA-DR+ T cells (OR:

1.12, 95% CI: 1.02-1.23, p = 0.016), TC (OR: 0.11, 95% CI: 0.02-0.60, p

= 0.010), LDL (OR: 0.06, 95%CI: 0.01-0.53, p = 0.012), and APOB (OR:

0.00, 95% CI: 0.00-0.08, p = 0.008) as being significantly associated with

28-day mortality in COVID-19 patients (Table 1). A multivariable

regression analysis was further conducted. The results demonstrated

that the percentage of CD38+HLA-DR+ T cells (OR: 1.13, 95%CI: 1.01-

1.26, p = 0.039) was an independent risk factor for death in COVID-19

Patients. Kaplan-Meier survival analysis further verified that the 28-day

survival rate was higher in the CD38+HLA-DR+ Thi group than in the

CD38+HLA-DR+ Tlow group, as divided by the median of CD38+HLA-

DR+ T cell counts (p < 0.05) (Figure 2B).

To assess the predictive ability of the percentage of CD38+HLA-

DR+ T cells for patient survival outcomes, we performed a ROC

curve analysis. The area under the curve (AUC) was 0.845 (95% CI:

0.67-1.00), indicating a pronounced predictive ability of CD38

proportion in distinguishing between survival and non-survival

outcomes (Figure 2C). The optimal cutoff value, determined by
FIGURE 2

Correlation analysis of clinical parameters and analysis of the prognostic efficacy of CD38+HLA-DR+ T cell percentage in COVID-19 patients. (A)
The percentages of CD38+HLA-DR+ T cells were negatively correlated with TC, LDL, APOB, and PLT. (B) The Kaplan-Meier curve for 28-day overall
survival of COVID-19 patients in groups with high and low CD38+HLA-DR+ T cell proportions. (C) The ROC curve for the predictive accuracy of
CD38+HLA-DR+ T cells for 28-day mortality. Statistical significances of correlation analysis were calculated via Spearman method.
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the maximum Youden index of 0.614, was identified as 20.95. At

this threshold, the sensitivity was 0.667, and the specificity was

0.947. Overall, these results indicated the prognostic potential of the

CD38+HLA-DR+ T subset in COVID-19.
3.3 The CD38+HLA-DR+ T cell was an
exhausted, Treg-like subset with high IL-6
and IL-10 mRNA expression

We further applied scRNA-seq to clarify the pathological

function of CD38+HLA-DR+ T cells. Six COVID-19 patients were

enrolled, including four severe and two non-severe patients
Frontiers in Immunology 07
(Figure 3A, Supplementary Table S5). Three of them died during

hospitalization. After rigorous quality control to exclude the

doublets and low-quality transcripts (Supplementary Figures

S4A–D), a total of 45,669 PBMCs were retained for downstream

analysis. Unsupervised clustering analyses were conducted, the

uniform manifold approximation and projection (UMAP) yielded

23 clusters. Through manual annotation based on known marker

genes, the 23 clusters were incorporated into nine distinct cell types:

T cells (CD3D), B cells (CD79A and MS4A1), plasma cells (MZB1),

CD14 monocytes (CD14), NK cells (NKG7 and KLRD1),

CD14CD16 monocytes (CD14 and FCGR3A), CD16 monocytes

(FCGR3A), DC cells (CD1C and TCF4), and platelets (PPBP)

(Supplementary Figures S5A–D). We then depicted immune cell
TABLE 1 Analysis of risk factors for mortality of patients with COVID-19.

Parameters Univariate OR (95%CI) p-value Multivariate OR (95%CI) p-value

CD38+HLA-DR+T (%) 1.12 (1.02-1.23) 0.016× 1.13 (1.01-1.26) 0.039×

Age (years) 1.06 (0.99-1.15) 0.103

Gender – 0.994

TP (g/L) 1.04 (0.93-1.16) 0.530

ALB (g/L) 0.86 (0.72-1.04) 0.121

GLO (g/L) 1.11 (0.98-1.26) 0.104

TBIL (mmol/L) 1.10 (0.97-1.25) 0.124

DBIL (mmol/L) 1.17 (0.98-1.40) 0.080

ALT (U/L) 0.99 (0.96-1.02) 0.423

AST (U/L) 1.00 (0.98-1.02) 0.738

g-GT (U/L) 0.98 (0.96-1.01) 0.187

ALP (U/L) 1.00 (0.98-1.02) 0.796

TG (mmol/L) 0.55 (0.16-1.94) 0.352

TC (mmol/L) 0.11 (0.02-0.60) 0.010× 0.86 (0.01-51.62) 0.943

HDL (mmol/L) 0.11 (0.01-1.79) 0.120

LDL (mmol/L) 0.06 (0.01-0.53) 0.012× 0.76 (0.00-2072.28) 0.947

APOA (g/L) 0.17 (0.01-2.83) 0.217

APOB (g/L) 0.00 (0.00-0.08) 0.008× 0.00 (0.00-4764152.30) 0.492

CK (U/L) 1.00 (1.00-1.01) 0.141

LDH (U/L) 0.99 (0.99-1.00) 0.139

WBC (×109/L) 1.05 (0.83-1.31) 0.702

NEUT (×109/L) 1.06 (0.83-1.35) 0.662

LYM (×109/L) 0.68 (0.08-5.80) 0.721

MONO (×109/L) 0.71 (0.20-2.51) 0.593

HGB (×109/L) 1.00 (0.97-1.04) 0.837

PLT (×109/L) 1.00 (0.99-1.01) 0.622

IL-6 (pg/ml) 1.01 (1.00-1.01) 0.086

IL-10 (pg/ml) 1.05 (0.95-1.15) 0.364
OR, Odds ratio; CI, Confidence interval; –, Not applicable.
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FIGURE 3

Characterization of CD38+HLA-DR+ T Cells as an exhausted Treg-Like Subset via single-cell transcriptome. (A) Schematic flowchart of PBMC
sampling and single-cell RNA sequencing. (B) Two-dimensional UMAP plot depicting the re-clustering of 15,908 T cells into seven distinct subtypes,
including CD4 Naive, CD4 Effector, CD4 Memory, CD8 Naive, CD8 Effector, Treg, and CD38+HLA-DR+ T cells. (C) Dot plot showing marker genes
(bottom row) used to identify the seven T cell subsets (left column). (D) Bar graphs illustrating the relative proportions of CD38+HLA-DR+ T cells
between the severe and non-severe groups (left panel) and between non-survival and survival groups (right panel). (E) Heatmap showing
differentially expressed genes (DEGs) across each T cell subtype, with CD38+HLA-DR+ T cells exhibiting a transcriptomic landscape similar to Tregs.
Genes indicating activation and exhaustion were highly expressed in the CD38+HLA-DR+ T cells. (F) Heatmap illustrating the activity scores of
transcription factors (TFs) showing comparable profiles between CD38+HLA-DR+ T cells and Tregs. (G) The biological signature scores of T-cell
exhaustion, effector, and cytokine across seven T-cell subclusters. (H) Heatmap cytokine storm-associated genes in each T cell subset. (I) Heatmap
of T-cell activation marker genes across each T subcluster. (J) Differentiation trajectories of T cells, with color-coding to indicate the level of
differentiation (left) and T-cell subtypes (right).
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atlas with different disease severities and outcomes. Consistent with

previous reports (21) of lymphopenia in COVID-19, our results

showed that the percentage of T cells was lower in severe patients

(about 29%) than in non-severe patients (about 45%)

(Supplementary Figure S5E). A similar decrease was observed in

the group of non-survival patients (about 31%) compared to

survival patients (about 38%). NK cells decreased from 28% in

the non-severe to 13% in the severe and from 26% in the survival to

10% in the non-survival, also contributing to the lymphopenia. As

for monocytes, there were remarkable elevations in both the CD14

classical cluster and the CD14CD16 intermediate cluster, possibly

associated with a more severe inflammatory storm (22).

To explore the possible pathological mechanism of CD38+HLA-

DR+ T cells, we re-clustered 15,908 T cells and yielded seven

subclusters via UMAP: CD4 Naive (CD4 and CCR7), CD4 Effector

(CD4, IL7R, and GPR183), CD4 Memory (CD4, S100A4, and

GPR183), CD8 Naive (CD8A and IL7R), CD8 Effector (CD8A,

PRF1, and GZMA), Treg (CD4 and FOXP3), and CD38+HLA-DR+

(CD38 and HLA-DR) T cells (Figures 3B, C). We analyzed the

relative percentage of each T-cell subcluster in patients with different

disease severity and outcomes (Supplementary Figures S6A, B). In

line with our results from flow cytometry, an expansion in the mean

percentage of CD38+HLA-DR+ T cells occurred in severe patients

(8.3%) compared to non-severe patients (0.8%) and in the non-

survival group (7.3%) compared to the survival group (2.8%). While

there was no significant change in the percentage of Tregs.

(Figure 3D). Next, we compared differentially expressed genes

(DEGs) between CD38+HLA-DR+ T cells and other T-cell

subclusters. Molecules associated with T cell activation (CD38,

HLA-DR, LCK, IL2RG, etc.), exhaustion (PDCD1, CTLA4, TIGIT,

TOX, TOX2, etc.), and memory (SELL1 and CD27) were highly

expressed in CD38+HLA-DR+ T cells (23) (Figure 3E, Supplementary

Table S6), revealing the exhausted characteristic of this subset.

Intriguingly, the heatmap of DEGs showed that CD38+HLA-DR+ T

cells and Tregs possessed similar transcriptome profiles (Figure 3E)

and shared the most DEGs (Supplementary Figure S4C).

Transcription factor (TF) profiles also revealed similar expression

patterns between the CD38+HLA-DR+ T cell and Tregs, in both,

upregulated TF activities included FOXP3, ZEB1, ELF1, ETS1, and

FOXP1 were observed (Figure 3F). This potentially interpreted that

the CD38+HLA-DR+ T cell was a Treg-like subset. Besides, compared

all other T-cell subtypes, the CD38+HLA-DR+ T cells exhibited

higher expression levels of interferon regulatory factors (IRF1 and

IRF7) and T cell factor -7 (TCF7), indicating the host’s immune

response against viral infection (24, 25).

We further evaluated the biological functions by comparing the

scores of exhaustion, activation (effector), cytokine production

among T-cell subtypes. The signature gene sets (22, 26) used for

functional analysis were listed in Supplementary Table S7. There

were highest scores of exhaustion and activation, as well as a

relatively low score of cytokine production in CD38+HLA-DR+ T

cells (Figure 3G), once indicating its exhaustion and dysfunction. In

addition, subsequent analysis revealed the highest expression of IL-

6 and IL-10 in the CD38+HLA-DR+ T subset (Figure 3H). And both

CD38+HLA-DR+ T cells and Tregs were mainly characterized by
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the late-stage activation marker gene (FAS, also known as CD95)

rather than the early (CD69) (Figure 3I). This was in line with

pseudo-time results, in which they were at the terminal

differentiation stage, specifically the CD38+HLA-DR+ T subset

(Figure 3J). Collectively, the above results indicated that the

CD38+HLA-DR+ T cell was an exhausted Treg-like subset with

high IL-6 and IL-10 expression.
3.4 CD38+HLA-DR+ T cells were involved
in MHC-II cross-talk and cytoskeletal
rearrangements

We then applied Cellchat to analyze cell-cell communications

between CD38+HLA-DR+ T cells and other PBMC cell types.

Among overall incoming signaling patterns, there was close MHC-II

cross-talk in the CD38+HLA-DR+ T subset (Figure 4A). Regarding

MHC-II signaling, which involves necessary molecules for exogenous

antigen presentation during T cell activation processes (27), the

CD38+HLA-DR+ T subset exhibited the strongest incoming signaling

with antigen presenting cells (APCs) among all T-cell subtypes

regardless of disease severity and outcomes (Figures 4B, C), followed

by Tregs, preliminarily suggesting they experienced overwhelmingly

activated stimulation. Next, DEGs between CD38+HLA-DR+ T cells

and other T cell subtypes were applied to pathway analysis based on the

GO database. As shown in Figure 4D, the CD38+HLA-DR+ T subset

was predominantly involved in cytoskeletal motility pathways such as

actin filament polymerization and supramolecular organization, which

was closely related to immune synapse formation during T-cell

activation process (28). Taken together, the response of T cell

receptors to excessive MHC-II stimulation might cause drastic

cytoskeleton alterations cytoskeleton and subsequent overactivation

in CD38+HLA-DR+ T cells.
3.5 Dysregulated NAD+ metabolism in
COVID-19 patients

The CD38 is a major NAD+ glycolytic enzyme (NADase) in

mammals (29). The active CD38 enzyme activity, which translated

the NAD+ into adenosine (Figure 5A), was associated with T cell

exhaustion through adenosine receptor signaling (30). Thus, we

assessed the NAD+ metabolism activities in T-cell subtypes based

on relevant gene dataset. The CD38+HLA-DR+ T cell had the

highest scores of NAD+ metabolism among all T cell subclusters

(Figure 5B). Detailed expressions of NAD+ metabolism-related

genes were shown in Figure 5C. To verify the dysregulated NAD+

metabolism in COVID-19 cases, we subsequently examined NAD+

and adenosine levels in clinical plasma samples (Figures 5D–F). The

NAD+ level was markedly lower in severe COVID-19 patients

compared to non-severe patients (0.591 vs. 0.337 nmol/mL, p <

0.05), although no significant difference was observed between

COVID-19 patients and healthy subjects. As expected, the

adenosine level was significantly elevated in COVID-19 patients

compared to healthy controls (76.93 pmol/mL vs. 52.32 pmol/mL,
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p < 0.05), while no significant differences were observed in disease

severity or outcome groups.
4 Discussion

In present study, we identified a unique T cell subset, the

CD38+HLA-DR+ T cells, that could serve as an independent risk

factor of 28-day mortality in COVID-19 patients. This targeted subset

was presented characteristics of activation and exhaustion and a similar

transcriptome profile with Treg, with high levels of IL-6 and IL-10

transcripts. Corresponding to the strong incoming MHC-II signaling,

cytoskeletal rearrangement processes relevant to T-cell activation were

enriched in this overactivated subset. Furthermore, CD38may act as an

NADase and contribute to the generation of pathological CD38+HLA-

DR+ T cells in the context of COVID-19. Our findings highlight the

critical role of the CD38+HLA-DR+ T cell subset in predicting the early

prognosis of COVID-19 patients. The highly-activated but exhausted T

cell subset may be a novel therapeutic target to improve

patients’ outcomes.

Our study reveals a significant increase in CD38+HLA-DR+ T cells

in severe COVID-19 patients. This aligns with the observations in virus
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infections and autoimmune diseases (31, 32). CD38, a multifaceted

glycoprotein with roles in cell adhesion, signal transduction, and

calcium signaling, is prominently expressed on immune cells such as

CD4+, CD8+ T cells, B lymphocytes, and natural killer cells (33, 34). Its

co-expression with HLA-DR, an MHC-II receptor pivotal for antigen

presentation to T cells (35), indicates an activated state of immune

response modulation. Studies have noted increased CD38+HLA-

DR+CD8+ T cells in H7N9 influenza and COVID-19, particularly in

critically ill cases, suggesting their prognostic value and involvement in

severe immune dysregulation (36). Additionally, the accumulation of

this subset with disease progression is believed to exert cytotoxic effects,

potentially contributing to tissue damage. In systemic lupus

erythematosus, the upregulation of CD38 and HLA-DR on CD4+

and CD8+ T cells signifies a state of chronic immune activation (37).

These collective findings underscore the integral role of CD38+HLA-

DR+ T cells in immune activation and disease pathogenesis.

Through single-cell transcriptome analysis, we revealed the

simultaneous state of activation and exhaustion in CD38+HLA-

DR+ T cells in COVID-19. The persistent activation status is

consistent with previous reports, potentially driven by the

ongoing antigen presentation and immune system overactivation

observed in COVID-19 (8). The high expression of tyrosine kinases
FIGURE 4

Enhanced MHC-II signaling and enriched cytoskeletal rearrangement process in CD38+HLA-DR+ T cells. (A) Heatmap depicting overall incoming
signalings of 15 cell types in PBMCs. B-C. Bubble plots showing that the CD38+HLA-DR+ T cells received the most vital stimulus of MHC-II signal
regardless of (B) disease severity and (C) clinical outcomes. (D) Bar plot showing significantly enriched GO terms associated with biological functions
in CD38+HLA-DR+ T cells.
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LCK (38) and ZAP70 (39) are crucial for mediating T cell activation

and signal transduction, further emphasizing the cells’ initial robust

response to the viral antigen. However, this hyperactivation may

precipitate a cascade of inflammatory responses, potentially

culminating in immunopathology and a more severe disease

course (40). In chronic viral infections like HIV (41) and hepatitis

C (31), the immune exhaustion exhibited by CD38+HLA-DR+ T

cells has been observed, and is manifested by diminished
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proliferation and effector function. The onset of exhaustion in

CD38+HLA-DR+ T cells appears to be a common mechanism

among various viral infections, where sustained antigenic stress

leads to T cell dysfunction, leading to a compromised antiviral

response and may contribute to disease progression (42). This T cell

subset may become common therapeutic targets that could be

exploited to restore T cell function and modulate the immune

response in a range of viral diseases.
FIGURE 5

Dysregulated NAD+ metabolism in CD38+HLA-DR+ T cells and COVID-19 patients. (A) Dysregulates NAD+ metabolism in CD38+HLA-DR+ T cells
identified through scRNA data. The red color indicated upregulated NAD+ metabolism-associated enzymes. (B) The enriched scores of the NAD+

metabolism process across seven T subclusters. (C) Heatmap of genes involved in NAD+ metabolism across each T subcluster. (D) The serum NAD+

and adenosine levels between healthy (n =10) and COVID-19 (n = 28) groups. (E) The serum NAD+ and adenosine levels between survival (n =19)
and non-survival (n =9) COVID-19 patients. (F) The serum NAD+ and adenosine levels between non-severe (n =11) and severe (n =17) COVID-19
patients. *p < 0.05, **p < 0.01. Data were represented as median with 95% CI. Statistical significances were calculated via Mann-Whitney U tests.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1577803
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Long et al. 10.3389/fimmu.2025.1577803
Furthermore, we revealed that the CD38+HLA-DR+ T cells

exhibit high levels of transcripts encoding IL-6 and IL-10. IL-6,

primarily secreted by monocytes and macrophages, is recognized as

a vital driver of the cytokine storm in COVID-19 patients,

exacerbating disease progression and leading to more severe

symptoms and higher mortality (43, 44). IL-6 antagonists are

widely accepted as therapeutic regimens for severe COVID-19,

significantly mitigating the cytokine storm (45). Conversely, IL-10,

typically known for its anti-inflammatory properties, is also highly

expressed in CD38+HLA-DR+ T cells in our research. The elevated

IL-10 could initially be protective by mitigating the excessive

inflammatory damage. While persistently high IL-10 levels could

also tip the balance towards immunosuppression, potentially

impairing the host’s ability to clear pathogens effectively (46).

Understanding this intricate balance in CD38+HLA-DR+ T cells is

crucial for developing immunomodulatory strategies in COVID-19.

To translate these findings into clinical practice, it is proposed that

CD38+HLA-DR+ T cell levels could be routinely measured using flow

cytometry upon hospital admission. This approach would enable the

early identification of high-risk patients, facilitating timely

interventions such as immunomodulatory therapies. By integrating

CD38+HLA-DR+ T cell monitoring into clinical workflows, risk

stratification can be enhanced, personalized treatment decisions can

be guided, and patient prognosis may ultimately be improved.

Of note, at single-cell resolution, we found that CD38+HLA-

DR+ T cells were Treg-like regarding transcription factors and

transcriptional profiles. Both T-cell subsets were marked by late-

stage rather than early activation genes and by terminal

differentiation stages. The most significant DEGs between Tregs

and CD38+HLA-DR+ T cells, including PCLAF, CD38, PLAC8,

IGFBP4, and STMN1, offer insights into their molecular signatures

and potential roles in immune regulation. The high similarity and

intricate interplay between CD38+HLA-DR+ T cells and Tregs in

COVID-19 highlights the complexity of immune dysregulation.

Future immunological research is warranted to dissect their

functional overlap and divergence in COVID-19.

CD38, which is also recognized as a pivotal NAD+ hydrolase,

may play a significant role in the immunosuppressive environment

characteristic of COVID-19 through its enzymatic conversion of

NAD+ to adenosine (30). Our research has revealed disruptions in

NAD+ metabolism in COVID-19 patients, as evidenced by

transcriptome analysis highlighting an enrichment of the NAD+

metabolic pathway and by metabolite alterations in peripheral

blood. NAD+ is crucial for cellular energy metabolism (47) and

immune cell functions, including macrophage activation and T cell

subset survival and polarization (48). This underscores the

importance of NAD+ in maintaining the equilibrium of immune

responses. Consistent with our findings, previous studies have

reported NAD+ depletion in viral infections included HIV-1,

HSV-1, and COVID-19 (49–51). Studies have tentatively proved

the therapeutic benefits of NAD+ supplements. In preclinical

models, supplementing NAD+ precursor nicotinamide riboside

(NR) or nicotinamide mononucleotide (NMN) could restore the

NAD+ level and improve recovery from SARS-CoV-2 infection

(52). A clinical trial also shows that supplementation with a
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combined metabolic activator consisting of NAD+ precursors

accelerates disease recovery in COVID-19 (53). Taken together,

CD38 may induce distinct downstream effects in CD38+HLA-DR+

T cells, thus inducing their immunopathological profile. The

functional effects and molecular mechanisms mediated by CD38-

NAD+ metabolic axis in CD38+HLA-DR+ T cells warrant

further investigation.

There are some limitations in the research. First, our data’s

relatively small sample size and cross-sectional nature may limit the

findings’ generalizability to broader populations. Future studies

should aim to include larger and longitudinal cohorts to validate

our findings and ensure they are representative of the wider

population. Second, the phenotypic analysis of CD38+ HLA-DR+

T cells in this study was primarily based on transcriptomic data.

Future functional assays should employ in vitro and in vivo models

dissect the nature of this subset. Lastly, the therapeutic implications

of targeting CD38+HLA-DR+ T cells or the CD38-NAD+ axis

require further investigation in preclinical and clinical trials to

assess safety, efficacy, and optimal dosing strategies.

In conclusion, the activation and exhaustion of CD38+HLA-

DR+ T cells in COVID-19 represent a complex equilibrium central

to the disease’s pathogenesis. Understanding the mechanisms that

drive this balance is vital for developing therapeutic strategies to

restore T-cell function and modulate the immune response to

improve patient outcomes.
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