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Immune intrinsic escape
signature stratifies prognosis,
characterizes the tumor
immune microenvironment,
and identifies tumorigenic
PPP1R8 in glioblastoma
multiforme patients
Ran Du1†, Lijun Jing1† and Denggang Fu2*

1Department of Neurology Intensive Care Unit, The First Affiliated Hospital of Zhengzhou University,
Zhengzhou, China, 2College of Medicine, Medical University of South Carolina, Charleston,
SC, United States
Background: Glioblastoma (GBM) is a highly aggressive brain tumor with poor

prognosis and limited response to immunotherapy. Immune escape-related

genes (IERGs) are increasingly recognized as critical regulators of tumor

progression and immune evasion. However, their prognostic value in GBM

remains unclear. This study aims to evaluate the clinical relevance of IERGs

and develop a predictive gene signature to guide prognosis and characterize the

tumor immune microenvironment (TIME).

Methods: We performed a comprehensive analysis of IERGs using the TCGA

GBM dataset. Prognostic IERGs were identified through univariate Cox

regression, and a multivariate Cox model was used to develop a prognostic

signature. Risk scores (IEScore) were calculated to classify patients into high- and

low-risk groups. The signature was validated in two independent GBM cohorts.

Its prognostic independence was assessed after adjusting for clinicopathological

features. Receiver operating characteristic (ROC) analysis confirmed the

signature ’s reliability. TIME analysis was carried out using multiple

deconvolution algorithms. Additionally, functional assays including CCK8, cell

cycle, and apoptosis assays were conducted on PPP1R8-silenced U251 cells

using CRISPR/Cas9 technology

Results: Thirty-six IERGs were associated with GBM outcomes, with 20 linked to

poor survival and 16 to better outcomes. Key genes, including STAT2, IFNGR2,

and PPP1R8, formed a robust prognostic signature. High-risk patients had

significantly poorer overall survival (OS) compared to low-risk patients. The

signature showed strong predictive power with AUC values of 0.68, 0.73, and

0.76 for 2-, 3-, and 5-year survival, respectively. Validation in two independent

cohorts confirmed its robustness. Immune cell infiltration analysis revealed

distinct patterns in high- and low-risk groups, with the high-risk group

showing a more aggressive and immunosuppressive tumor microenvironment.

The signature also effectively stratified low-grade glioma patients across four

independent datasets. Knockout of PPP1R8 in GBM cells using CRISPR/Cas9

inhibited cell proliferation and increased apoptosis.
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Conclusion: The IERGs-based signature offers reliable prognostication for GBM,

validated across multiple datasets. It can guide patient stratification and inform

therapeutic decisions for GBM and potentially low-grade gliomas (LGG).

Furthermore, we identify PPP1R8 as a key regulator of GBM cell proliferation

and growth, providing insights into the immune microenvironment’s role in

GBM progression.
KEYWORDS

glioblastoma multiforme, immune escape related genes, outcome, immune
microenvironment, PPP1R8
1 Introduction

Glioblastoma multiforme (GBM) is recognized as one of the

most aggressive and treatment-resistant brain tumors, with a

median survival of approximately 15 months despite maximal

surgical resection, radiotherapy, and chemotherapy (1, 2). This

dire prognosis highlights an urgent need for innovative

therapeutic strategies and biomarkers that can enhance patient

outcomes. Central to the challenge of effective treatment is the

tumor’s remarkable ability to evade immune surveillance, a

phenomenon that has gained significant attention in

cancer research.

Immune evasion refers to the mechanisms by which tumor cells

avoid detection and destruction by the host immune system (3, 4).

Dunn et al. first articulated the concept of immunoediting, which

includes the selection of less immunogenic tumor variants and the

alteration of the tumor microenvironment to favor immune

tolerance (5). Tumor cells utilize multiple mechanisms to evade

immune responses, including the downregulation of major

histocompatibility complex (MHC) molecules, the secretion of

immunosuppressive cytokines, and the expression of immune

checkpoint proteins (6, 7). For example, the interaction between

programmed cell death protein 1 (PD-1) on T cells and its ligand

PD-L1 on tumor cells plays a critical role in inhibiting T cell

activation and promoting tumor growth (8). In GBM, increased

PD-L1 expression has been associated with poorer patient

outcomes, underscoring its role in immune evasion (9–12). The

tumor immune microenvironment significantly influences immune

responses and facilitates immune evasion in GBM (13, 14). TME is

characterized by a complex interplay of immune cells, stromal cells,

and extracellular matrix components, contributing to an
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immunosuppressive milieu. Tumor-associated macrophages

(TAMs), regulatory T cells (Tregs), and myeloid-derived

suppressor cells (MDSCs) are prevalent in GBM and secrete

cytokines and chemokines that inhibit effective anti-tumor

immunity (15–17). For instance, TAMs produce TGF-b and IL-

10, which further suppress T cell activity and promote tumor

growth (18). The presence of these immunosuppressive cells has

been correlated with reduced patient survival and treatment

resistance (19, 20).

Research efforts have increasingly focused on elucidating

specific immune evasion-related gene signatures associated with

prognosis in GBM and other malignancies. We and various studies

have employed genomic and transcriptomic approaches to identify

immune-related genes that correlate with patient outcomes (21–23).

A robust immune-related gene signature that significantly

associated with overall survival (OS) in GBM patients was

proposed, highlighting the potential of these genes as prognostic

biomarkers (24). Similarly, we and other groups have established

several signatures that highlight the significance of immune-related

gene sets in predicting treatment responses and clinical outcomes

across different cancers (25–28). Additional studies emphasized the

importance of characterizing the immune landscape in tumors to

identify relevant immune signatures for prognostication (29–31).

In recent years, the development of immune therapies,

including immune checkpoint inhibitors and CAR T-cell

therapies, has opened new avenues for treating GBM (32).

Clinical trials have demonstrated that checkpoint inhibitors, such

as nivolumab and pembrolizumab, can restore anti-tumor immune

responses, though their effectiveness in GBM has been variable (33,

34). Additionally, CAR T-cell therapies targeting specific antigens

expressed on GBM cells have shown promise in early-phase trials,

offering hope for more effective treatments (35, 36). However, the

complex immunosuppressive TME poses significant challenges to

the efficacy of these therapies, underscoring the need for better

predictive models and combinatory approaches.

Despite these advancements, there remains a critical need to

establish comprehensive immune evasion signatures that can more

accurately predict prognosis and treatment responses in GBM.

Current signatures often focus on a limited set of genes and may
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not fully capture the complexity of the immune landscape within

tumors. By developing a more robust immune evasion-related gene

signature, researchers can better elucidate the mechanisms driving

immune suppression in GBM and identify novel therapeutic targets.

Such signatures could facilitate the stratification of patients for

immunotherapy, ensuring that those most likely to benefit receive

appropriate treatment (37, 38). Moreover, integrating genomic data

with insights into the tumor microenvironment will enhance our

understanding of the dynamic interactions between tumor cells and

immune components (39, 40). This approach may reveal new

biomarkers and therapeutic avenues that could improve patient

outcomes. As immunotherapy continues to evolve, one of the

persistent challenges in GBM treatment is the tumor’s capacity to

evade immune surveillance. In this context, our study aimed to

construct and validate a robust immune evasion-related gene

signature (IEScore) through integrative bioinformatic analyses of

transcriptomic data from The Cancer Genome Atlas (TCGA) and

other public datasets. Unlike prior studies that focused on limited

gene panels or single datasets, we employed a multi-layered

strategy that combined multivariate survival modeling across

multiple cohorts, tumor immune microenvironment (TIME)

characterization, single-cell transcriptomic resolution, and

functional in vitro validation. Specifically, we (1) established a

prognostic gene signature associated with immune escape in

GBM, (2) validated its prognostic significance across independent

GBM and LGG cohorts, (3) linked the signature to immune cell

infiltration patterns using deconvolution algorithms, (4) resolved

the cellular expression of signature genes using single-cell RNA

sequencing, and (5) experimentally confirmed the tumor-

promoting role of PPP1R8 using CRISPR/Cas9 knockout in GBM

cells. These efforts collectively provide a translational framework

that not only advances our understanding of GBM immune evasion

but also supports clinical risk stratification and therapeutic target

development. A schematic overview of the study design is presented

in Supplementary Figure S1.
2 Methods and materials

2.1 Data acquisition and pre-processing

Gene expression data and clinical information for glioma

patients were obtained from TCGA via the GlioVis GBM

platform (http://gliovis.bioinfo.cnio.es/) (21). RNA-seq data were

processed using normalized read counts and log2 transformation.

Additional datasets, including those from the Gene Expression

Omnibus (GEO), were also obtained from the GlioVis and

utilized for analysis. Clinical and RNA-seq data from GEO and

TCGA were collected, addressing missing values and standardizing

data for consistency.

For the training dataset, 525 TCGA samples were used (41),

while external validation cohorts included the CGGA (n=237) (42)

and LeeY (n=191) (43) GBM datasets. The demographic and

clinical characteristics of these cohorts are summarized in
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Supplementary Table S1. This study adhered to the guidelines of

the Declaration of Helsinki (2013 update).
2.2 Identification of overall survival -
related immune escape-related genes

Immune escape-related genes were extracted from the TCGA-

GBM dataset (Supplementary Table S2) (44). Clinical features were

integrated with gene expression data to form a unified dataset.

Univariate Cox regression analysis was performed to identify

IERGs significantly associated with OS in GBM, using a threshold

of p < 0.05.
2.3 Pathway enrichment analysis

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) pathway analyses were conducted using the

clusterProfiler R package (45). These analyses identified key

biological processes and pathways associated with OS-related

IERGs in GBM.
2.4 Model construction and validation

We developed a prognostic model based on IERGs using

survival data and gene expression profiles from the TCGA GBM

cohort . The analys is was conducted in R using the

“survival” package.

First, univariate Cox proportional hazards regression was

performed to identify IERGs significantly associated with OS. To

prevent overfitting and improve model interpretability, we applied

the least absolute shrinkage and selection operator (LASSO)

regression to select the most relevant prognostic genes and

construct the final multigene signature.

For each patient, a risk score was calculated as a linear

combination of the expression levels of the selected genes,

weighted by their corresponding LASSO coefficients. We then

determined the median risk score across all patients in the

training cohort (TCGA), and used this median value as a cutoff

to divide patients into high-risk and low-risk groups:

High-risk group: Patients with risk scores above the median,

typically associated with shorter survival. Low-risk group: Patients

with risk scores below the median, generally showing

longer survival.

To evaluate the prognostic significance of the model, we used

Kaplan-Meier survival analysis and compared the OS between the

two risk groups using the log-rank test.

To assess the model’s predictive accuracy, we conducted

receiver operating characteristic (ROC) curve analysis using the

“pROC” R package. The area under the curve (AUC) was calculated

to quantify the model’s ability to discriminate between high- and

low-risk patients.
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For external validation, we applied the same risk score formula

and median cutoff to two independent GBM datasets: CGGA

(n=237) and LeeY (n=191). The performance of the model in

these cohorts was assessed using the same methods described

above to confirm its robustness and generalizability.
2.5 Time-dependent predictive
performance comparison with established
models

We evaluated the prognostic accuracy of our proposed IEScore

in comparison to two published interferon-related signatures in

GBM: IFNG_sig (46) and IFNGrGS (47). Cox proportional hazards

models were fitted for each signature using the same training

dataset, with OS and event status as outcomes.

Time-dependent AUCs were calculated at 0.5-year intervals

from 0.5 to 5 years using the Score() function from the

riskRegression R package. For each model, AUCs and

corresponding 95% confidence intervals were estimated via

nonparametric bootstrapping (B = 1000), allowing assessment of

discriminative performance over time.

To compare predictive accuracy across models, pairwise

comparisons of time-dependent AUCs were conducted.

Differences in AUCs (DAUC), along with 95% confidence

intervals and p-values, were calculated using 1,000 bootstrap

iterations to evaluate statistical significance at each time point.
2.6 Predictive utility of the signature for
low-grade glioma

To evaluate the prognostic potential of the IERGs signature in

LGG, survival data were obtained from TCGA-LGG (n=509) (48),

Gravendeel_set (n=116) (49), Kamoun_set (n=136) (50), and

Rembrandt_set (n=161) (51). Patients were stratified into high-

and low-risk groups based on the median risk score. Survival

differences between the two groups were assessed using the log-

rank test, and the predictive performance was further evaluated

using ROC curve analysis as described above.
2.7 Analysis of low-grade and high-grade
gliomas

To further explore the relationship between IERGs and glioma

malignancy, we extended our analysis to include both LGG and

GBM samples from TCGA databases. Gene expression and

corresponding clinical data, including OS, were obtained from the

TCGA-LGG and TCGA-GBM datasets. We applied the established

IERG-based prognostic model to the combined LGG and GBM

dataset. Risk scores were calculated for each patient based on the

expression of the signature genes and their associated model

coefficients. Patients were stratified into high- and low-risk

groups using the median risk score as the cutoff. Kaplan–Meier
Frontiers in Immunology 04
survival curves were generated to compare OS between the two

groups, and statistical significance was assessed using the log-

rank test.

To examine the distribution of glioma grades within each risk

group, we compared the frequencies of LGG and GBM across the

high-risk and low-risk populations. The association between tumor

grade and risk group classification was evaluated using the Chi-

squared test.
2.8 Analysis of immune infiltration and
clinical correlations

Immune cell infiltration within the tumor immune

microenvironment was assessed using multiple computational

deconvolution algorithms across high- and low-risk patient

groups. The xCell algorithm (52) was employed to generate a

comprehensive profile of immune and stromal cell populations.

To achieve a more detailed quantification of specific immune cell

subsets, CIBERSORT (53) analysis was performed. Additionally,

immune infiltration estimations were further validated using

TIMER (54) and EPIC (55) deconvolution methods, providing

complementary perspectives on the immune landscape in both

risk groups.
2.9 Signature gene expression in the TME
using single-cell RNA sequencing

To further investigate the expression of signature genes in the

TME of GBM patients, we obtained the processed single-cell RNA

sequencing dataset (GSE131928) (56). Cell populations were

identified using the Seurat R package, following previously

established methods (57). The expression patterns of the

signature genes (STAT2, IFNGR2, PPP1R8) were analyzed in

different cell populations and visualized using Uniform Manifold

Approximation and Projection (UMAP).
2.10 Cell culture and reagents

U251 cells were cultured in EMEMmedium supplemented with

2mM glutamine, 1% non-essential amino acids, 1mM aodium

pyruvate, 10% fetal bovine serum, at 37°C in a humidified

atmosphere containing 5% CO2.
2.11 CRISPR/Cas9-mediated knockout of
PPP1R8 in U251 cells

PPP1R8 knockout in U251 cells was achieved using CRISPR/

Cas9 technology. The CRISPR-Cas9/gRNA ribonucleoprotein

(CRISPR-RNP) complex was delivered via electroporation using

the Neon NxT Electroporation System (Thermo Fisher).

Electroporation parameters were set to a pulse voltage of 1400 V,
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a pulse width of 20 ms, and three pulses at a cell density of 1 x 106

cells/mL. The sgRNA sequence targeting exon 3 of the human

PPP1R8 g en e wa s GGACCCGAGAGCAAGACUGG

AUGGUAAAGUCACACAAAUC, with a specific cleavage site

spanning positions 27,838,750 to 27,838,776.

Knockout efficiency was validated using RT-qPCR. Briefly, total

mRNA was extracted from U251 cells using Trizol reagent. Reverse

transcription was performed using the HiScript II Q RT SuperMix Kit

(Vazyme, Cat: R223-01), and RT-qPCR was conducted with the Taq

Pro Universal SYBR qPCR Master Mix kit (Vazyme, Cat: Q712-02).

The primer pairs: PPP1R8, forward: CTTCAGCGGAGGACTCTACG;

reverse:GGGGCAAGGTTTGGGTATGG, and reference control

GAPDH primer pairs were previously described (27). Gene

expression was quantified using 2–DDCt method.

In addition, western blot was used to assess PPP1R8 knockout

efficiency. Cells were lysed in RIPA buffer (Thermo Fisher, cat:

89900) supplemented with protease and phosphatase inhibitors

(CST, cat: #5872). Equal amounts of protein (20-30 μg) were

separated by SDS-PAGE and transferred to PVDF membranes

(Millipore, cat:IPVH00010). Membranes were blocked with 5%

non-fat milk in TBST and incubated overnight at 4°C with rabbit

polyclonal anti-PPP1R8 antibody (1:1000; Abcam, A96784). After

washing, membranes were probed with HRP-conjugated secondary

antibody (1:5000; CST) for 1 hour at room temperature. Signals

were detected using ECL substrate (Bio-Rad) and imaged with a

ChemiDoc system (Bio-Rad).
2.12 Cell proliferation assay

The effect of PPP1R8 knockout on U251 cell proliferation was

evaluated using the Cell Counting Kit-8 (CCK-8) assay. Forty-eight

hours after gene knockout, U251 cells were seeded into 96-well

plates at a density of 2 x 105 cells per well and incubated for 24

hours at 37°C with 5% CO2 to allow cell attachment. Following

incubation, 10 μL of CCK-8 reagent was added to each well, and the

cells were further incubated for 4 hours under the same conditions.

Absorbance was measured at 450 nm using a microplate reader to

determine cell viability.
2.13 Cell cycle and apoptosis assays

For cell cycle analysis, U251 cells were cultured in EMEM

medium supplemented with 2 mM glutamine, 1% non-essential

amino acids, 1 mM sodium pyruvate, and 10% fetal bovine serum at

37°C in a humidified atmosphere containing 5% CO2 for 48 hours.

After incubation, cells were harvested, fixed, and stained with Ki-67

and DAPI. Approximately 10,000 cells per sample were analyzed

using flow cytometry to determine the distribution across different

phases of the cell cycle, following the manufacturer’s protocol

(FITC and 7-AAD kit).

For apoptosis analysis, wild-type and PPP1R8-knockdown

U251 cells were seeded into 6-well plates at a density of 5 x 105
Frontiers in Immunology 05
cells per well and cultured for 24 hours. Cells were then dissociated

with pancreatin, washed with 1 x PBS, and stained using an

Annexin V-FITC/PI apoptosis detection kit (Cat#: C1062M,

Beyotime Biotechnology, China) according to the manufacturer’s

instructions. Flow cytometry (FongCyte, China) was used to assess

apoptotic cell distribution.
2.14 Statistical analysis

Several R software packages were employed for statistical

analysis and data visualization. The “survival” package was used

for Cox regression analysis and Kaplan-Meier survival curve

generation. The differences in survival between groups were

assessed with the “survfit” function. The “pROC” package was

used to create ROC curves and compute AUC values. A p-value <

0.05 was considered indicative of statistical significance.
3 Results

3.1 Prognostic relevance of immune
escape related genes in adult GBM patients

To evaluate the clinical relevance of immune escape-related

genes (IERGs) in GBM patients, we performed univariate Cox

regression analysis using the TCGA-GBM dataset. This analysis

identified 36 IERGs significantly associated with patient prognosis

(Figure 1A). Among them, elevated expression of 20

genes including ACTB, B2M, EMC3, IFNAR1, IFNGR2, and

STAT2 were associated with poorer OS. In contrast, higher

expression of the remaining 16 IERGs correlated with improved

patient outcomes.

To further explore the biological functions of the prognostic

IERGs, we conducted functional enrichment analysis, which

revealed that these genes were primarily involved in interferon-

mediated signaling pathways and cellular responses to type II

interferon, interferon-beta, and extrinsic apoptotic signaling

(Supplementary Figure S2A). Subsequent pathway analysis

confirmed that the IL-6/JAK/STAT3 pathway, interferon

response, apoptosis, and inflammatory response were among the

most significantly enriched pathways (Supplementary Figure S2B,

Supplementary Table S3).
3.2 Construction of the prognostic
signature based on OS-related IERGs

The 36 prognostic IERGs were further analyzed using stepwise

multivariate Cox proportional hazards regression to identify the

minimal gene set that provides the strongest predictive power for

patient outcomes. This analysis resulted in a three-gene prognostic

signature comprising STAT2, IFNGR2, and PPP1R8 (Figure 1B).

The risk score was calculated using the following formula:
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Immune Escape related − Signature Score IEScoreð Þ
= Expression level of STAT2* 0:3423ð Þ½ �
+ Expression level of IFNGR2* 0:3436ð Þ½ �
+ Expression level of PPP1R8* −0:3015ð Þ½ �

Each patient’s IEScore was determined using the three-gene

signature, and patients were divided into high- and low-risk groups

based on the median IEScore. Kaplan-Meier survival analysis

showed that high-risk patients had significantly shorter OS

compared to low-risk patients (Figure 1C, p<0.001). Principal

component analysis (PCA) demonstrated a clear separation

between the two groups (Figure 1D). Expression analysis revealed

that IFNGR2 and PPP1R8 were upregulated in GBM tissues relative

to adjacent normal tissues, while STAT2 expression was

comparable between the two (Supplementary Figure S3A). In the

high-risk group, IFNGR2 and STAT2 were elevated, whereas
Frontiers in Immunology 06
PPP1R8 was more highly expressed in the low-risk group

(Supplementary Figure S3B).

The predictive accuracy of the signature was supported by time-

dependent ROC analysis, with AUC values of 0.68, 0.73, and 0.76

for 2-, 3-, and 5-year survival, respectively (Figure 1E), indicating

good prognostic performance.
3.3 Validation of the prognostic signature
in independent GBM datasets

To assess the robustness and reproducibility of the prognostic

signature in GBM, we applied the IEScore formula to two

independent publicly available GBM cohorts-CGGA-GBM

(n=237) and the LeeY dataset (n=191)—comprising a total of 428

GBM patients. Patients were stratified into low- and high-risk

groups based on the median IEScore. In both cohorts, low-risk
FIGURE 1

Development of immune escape related genes associated prognostic signature. (A) Forest plot showing immune escape-related genes associated
with OS in GBM patients. (B) The signature consists of three key immune escape-related genes: IFNGR2, STAT2, and PPP1R8. (C) Kaplan–Meier
survival curves for high- and low-risk patients in the training cohort, stratified by IEScore. (D) Principal component analysis (PCA) of patients in the
low- and high-risk groups based on the IEScore. (E) Area under the curve (AUC) values of the signature for 2-, 3-, and 5-year OS prediction.
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patients exhibited significantly longer OS than high-risk patients

(Figures 2A, B).

In the CGGA cohort, the time-dependent ROC analysis

demonstrated good predictive performance, with AUC values for

2-, 3-, and 5-year survival all exceeding 0.6 (Figure 2C). PCA

confirmed clear separation between high- and low-risk groups

(Figure 2E). Similar patterns of risk stratification, PCA clustering,

and AUC values were observed in the LeeY dataset (Figures 2D, F),

further supporting the model’s reliability.

Consistent with the training dataset, STAT2 and IFNGR2

expression levels were elevated in the high-risk group across both

validation cohorts. In contrast, PPP1R8 expression was higher in

the low-risk group, matching the expression pattern observed in the

training set (Supplementary Figures S3C, D). These findings

confirm that the three-gene prognostic signature enables effective

and reproducible risk stratification of GBM patients across

independent microarray-based datasets.
3.4 Time-dependent discriminatory ability
of the models

To assess the prognostic discrimination of our proposed

immune evasion score (IEScore) in comparison with two

interferon-related signatures (IFNG_sig and IFNGrGS) in

glioblastoma (GBM), we computed time-dependent area under

the curve (AUC) values at 0.5-year intervals from 0.5 to 5 years

post-diagnosis. As shown in Supplementary Table S4_sheet A and

Supplementary Figure S4, the IEScore demonstrated a steadily

increasing predictive performance over time, with the AUC rising

from 53.3% (95% CI: 47.2–59.5%) at 0.5 years to 73.4% (62.1–

84.8%) at 5 years. In contrast, the IFNG_sig maintained a moderate

but relatively stable performance throughout the time course, with

AUC values ranging from 52.3% to 59.5%. The IFNGrGS signature

showed the lowest discriminatory ability, with AUCs declining to as

low as 46.4% (34.4–58.4%) at 4 years and only reaching 54.1%

(39.4–68.8%) at 5 years.

To further quantify the differences in predictive accuracy

between models, we conducted pairwise time-dependent AUC

comparisons using the riskRegression package (Supplementary

Table S4_sheet B). The IEScore consistently outperformed the

IFNGrGS signature across all time points from 1.5 to 5 years,

with statistically significant differences (e.g., DAUC = −21.9% at 3.5

years, p < 0.001). Compared to the IFNG_sig, the IEScore also

showed superior performance at multiple later time points,

particularly between 2.5 and 3.5 years (DAUC = −9.9% and

−14.8%, p = 0.037 and 0.010, respectively). However, the

magnitude of this difference decreased slightly at the later

time points.

Collectively, these findings suggest that the IEScore

demonstrates sustained prognostic value in GBM patients,

particularly beyond the 2-year mark, when compared to existing

interferon-related signatures. Its consistent performance over time,
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as evidenced by both absolute AUC values and pairwise

comparisons, highlights its potential as a clinically meaningful

tool for long-term prognosis. These results also reflect the

inherent heterogeneity of GBM across different patient cohorts,

warranting further investigation to validate and strengthen the

comparative observations.
3.5 Association of the prognostic signature
with patients’ clinical features

Clinicopathological features such as O6-methylguanine (O6-

MeG)-DNA methyltransferase (MGMT) promoter methylation

status (58) and oncogenic mutations (59) are known to influence

GBM progression and patient’s prognosis. To evaluate the

prognostic independence of the IEScore, We conducted univariate

Cox regression analysis using the TCGA GBM dataset. The results

showed that high IEScore, CIMP status, MGMT status, and older

age correlated with reduced OS, while patients with primary GBM

subtype and IDH1 mutations exhibited favorable survival

(Figure 3A). Multivariate Cox regression analysis further

demonstrated that the IEScore remained a significant

independent prognostic factor after adjusting for other clinical

variables, including treatment (Figure 3B). Similar trends were

observed in the CGGA and LeeY validation cohorts (Figures 3C,

E). However, in multivariate analyses of these validation sets,

IEScore did not reach statistical significance for OS prediction,

likely due to the limited number of surviving patients, given the

aggressive nature of GBM (Figures 3D, F). In addition, clinical and

molecular features varied notably across the training (TCGA) and

validation cohorts (CGGA and LeeY), as summarized in

Supplementary Table S1. For instance, the CGGA cohort includes

a higher proportion of recurrent GBM cases and more IDH1-

mutant and G-CIMP-positive tumors compared to TCGA, while

treatment information (radiotherapy and chemotherapy) is only

available in CGGA. The LeeY cohort lacks recurrence and

treatment data but differs in subtype composition. These inter-

cohort differences may contribute to the reduced multivariate

significance of IEScore observed in external validation datasets.

Furthermore, older age was consistently associated with worse

prognosis, aligning with previous studies that link aging with

immunosuppression and reduced efficacy of immunotherapies in

glioblastoma (60–62).

To continue to compare IEScores among patients with different

clinical features, we found that IEScores did not show difference

among patients with various disease status, age, and gender

(Supplementary Figures S5A–C). Mesenchymal subtypes have the

highest IEScore than classical and proneural subtypes

(Supplementary Figure S5D). Patients with non-CIMP status have

higher IEScore than those in CIMP status (Supplementary Figure

S5E), which was in line with previous studies indicated that

glioblastomas with CIMP-positive status often show widespread

methylation across these CpG islands, which can lead to silencing of
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tumor suppressor genes and is associated with better prognosis (63).

In addition, patients with wild IDH1 or non-MGMT have higher

IEScore (Supplementary Figures S5F, G), which also confirmed

previous reports (58, 59). This was also validated in CGGA GBM

dataset (Supplementary Figures S6A–G), and in addition, patients

without or receiving chemotherapy or radiotherapy showed no

difference risk score (Supplementary Figures S6H, I). In LeeY

validation set, IEScores distribution in partial clinical features

were confirmed due to limited available clinical features

(Supplementary Figures S7A–D).
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3.6 Predictive potential of the signature for
low-grade glioma

To extend the applicability of the prognostic signature to LGG,

which are more frequently diagnosed in younger patients, we

evaluated its performance in four independent LGG cohorts with

available OS data: TCGA-LGG, Gravendeel, Kamoun, and

Rembrandt datasets. These datasets represent diverse populations,

providing a solid foundation to assess the robustness and

generalizability of the prognostic signature.
FIGURE 2

Validation of the immune escape-related gene (IERG) signature in two independent GBM cohorts. (A) Kaplan–Meier survival curves comparing OS
between high- and low-risk groups in the CGGA-GBM cohort, stratified by IEScore. (B) Kaplan–Meier survival curves for high- and low-risk patients
in the LeeY-GBM cohort. (C) Principal component analysis (PCA) illustrating the distribution of patients in high- and low-risk groups in the CGGA-
GBM cohort. (D) PCA showing the separation of risk groups in the LeeY-GBM cohort. (E) Time-dependent ROC curves showing the predictive
performance of the signature for 2-, 3-, and 5-year OS in the CGGA-GBM cohort. (F) ROC curves displaying the AUC values of the signature for 2-,
3-, and 5-year survival prediction in the LeeY-GBM cohort.
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When applied to the TCGA-LGG dataset, the signature

effectively stratified patients into high- and low-risk groups.

Patients in the low-risk group showed a significantly better OS

compared to those in the high-risk group (Figure 4A). The

signature’s predictive accuracy was further supported by an AUC

value of 0.74 for 2- and 3-year survival (Figure 4B), indicating

strong prognostic power.

Consistent findings were observed in the three additional

validation cohorts. In the Gravendeel (Figure 4C), Kamoun

(Figure 4E), and Rembrandt (Figure 4G) datasets, the signature

effectively stratified patients by survival outcomes. The AUC values

for 2-, 3-, and 5-year survival were all above 0.6 (Figures 4D, F, H),

further supporting the reliability and reproducibility of the IERGs

signature across multiple LGG cohorts.
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Collectively, these results suggest that the IERGs signature holds

strong potential as a prognostic tool for monitoring OS in LGG

patients. Its integration into clinical practice could facilitate more

accurate risk stratification, enabling personalized treatment strategies

and improved decision-making in the management of LGG.
3.7 Association of the prognostic signature
with the malignancies

To explore the potential association between the immune

escape-related prognostic signature and glioma malignancy, we

integrated transcriptomic data from both LGG and glioblastoma

GBM patients in the TCGA cohort, following batch effect
FIGURE 3

Univariate and multivariate Cox regression analyses evaluating the prognostic value of the IERG-based signature across GBM cohorts. (A) Univariate
Cox regression analysis of the IERG signature and clinical features in the TCGA-GBM cohort. (B) Multivariate Cox regression analysis in the TCGA-
GBM cohort, demonstrating the independent prognostic value of the signature. (C) Univariate Cox regression analysis in the CGGA-GBM cohort. (D)
Multivariate Cox regression analysis in the CGGA-GBM cohort. (E) Univariate Cox regression analysis in the LeeY-GBM cohort. (F) Multivariate Cox
regression analysis in the LeeY-GBM cohort.
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FIGURE 4

Prognostic performance of the IERG-based signature in low-grade glioma (LGG) cohorts. (A) Kaplan–Meier survival curves comparing OS between
high- and low-risk patients in the TCGA-LGG cohort. (B) Time-dependent ROC curves showing 2-, 3-, and 5-year AUC values for the signature in
the TCGA-LGG cohort. (C) Kaplan–Meier survival analysis in the Gravendeel-LGG cohort stratified by IEScore. (D) ROC curves showing the predictive
accuracy of the signature at 2, 3, and 5 years in the Gravendeel-LGG cohort. (E) Kaplan–Meier survival curves for risk groups in the Kamoun-LGG
cohort. (F) ROC analysis illustrating the prognostic performance of the signature in the Kamoun-LGG cohort. (G) Kaplan–Meier survival curves in the
Rembrandt-LGG cohort comparing high- and low-risk patients. (H) Time-dependent AUC values for 2-, 3-, and 5-year OS prediction in the
Rembrandt-LGG cohort.
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correction. IEScores were calculated for each patient using the

established signature, and individuals were stratified into high-

and low-risk groups based on the median IEScore. Kaplan–Meier

survival analysis revealed that high-risk patients had significantly

shorter OS compared to low-risk patients (Supplementary Figure

S8A), confirming the prognostic value of the signature across

glioma grades. However, the distribution of LGG and GBM cases

between high- and low-risk groups did not show a significant

difference (Supplementary Figure S8B), suggesting that the

signature may not directly reflect tumor grade or malignancy.

Furthermore, differential expression analysis of the IERGs

between LGG and GBM revealed no significant differences (data

not shown). This lack of distinction may indicate that the immune

escape-related gene signature captures immune-related prognostic

features that are independent of histological grade. It is also possible

that certain immune evasion mechanisms are shared across glioma

subtypes, contributing similarly to patient outcomes regardless of

tumor grade.
3.8 Tumor immune microenvironment
analysis

The recognition of the dual role of the tumor immune

microenvironment (TIME) in anti-tumor immunity has led to

significant advancements in tumor immunotherapy (64). To

better understand the TIME landscape in different risk groups, we

analyzed the immune cell infiltration profiles using multiple

deconvolution algorithms, including xCell and CIBERSORT. The

xCell analysis revealed that, in the low-risk group, immune cell

subsets such as CD4+ effector memory T cells, CD8+ T cells, CD8+

effector memory T cells, NK cells, and B cells were notably elevated.

In contrast, the high-risk group exhibited higher levels of the naive

CD8+ T cells, NKT cells, and plasma cells (Figure 5A). For

infiltrating myeloid cells, the high-risk group showed significantly

higher levels of macrophages, M1/M2 macrophages, various

dendritic cell (DC) subsets, neutrophils, and mast cells compared

to the low-risk group (Figure 5B). These results suggest a distinct

immune microenvironment that could be associated with the more

aggressive tumor phenotype observed in the high-risk group.

Additionally, when analyzing infiltrating stromal cells, we

observed that the high-risk group had significantly higher

proportions of mesenchymal stem cells and preadipocytes, along

with lower frequencies of fibroblasts, adipocytes, smooth muscle

cells, myocytes, osteoblasts, and skeletal muscle cells, compared to

the low-risk group (Figure 5C). These findings were further

validated in independent datasets, including the CGGA GBM

validation set (Supplementary Figures S9A–C) and the LeeY

GBM validation set (Supplementary Figures S10A–C).

Furthermore, CIBERSORT deconvolution analysis further

supported these observations, confirming the differential immune

cell infiltrates in the TCGA, CGGA, and LeeY GBM datasets

(Supplementary Figure S11).

To further validate the immune landscape associated with the

IEScore, we applied two additional immune deconvolution
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algorithms, EPIC and TIMER, to estimate immune cell

proportions across TCGA_GBM, CGGA_GBM, and LeeY_GBM

cohorts. In all three datasets, we observed consistent and significant

differences in several immune subsets between high- and low-risk

patients. Specifically, TIMER analysis revealed higher proportions

of CD4+ T cells, and macrophages, neutrophils and myeloid

dendritic cells in the high-IEScore group as compared to those

patients in the low-IEScore group (Supplementary Figure S12A).

EPIC analysis showed a similar trend, with high-IEScore patients

enriched in CD4+ T cells, macrophages, cancer-associated

fibroblasts and endothelial cells were more abundant in high-

IEScore patients (Supplementary Figure S12B). These consistent

trend across multiple algorithms and independent cohorts support

the immune-suppressive nature of high-IEScore tumors and further

corroborate the robustness of our immune stratification model.

To further investigate the expression of these three signature

genes in the tumor microenvironment at the single-cell level, we

first identified nine major cell clusters using the Seurat R package:

AC-like malignant cells, CD8-exhausted T cells, M1 macrophages,

malignant cells, MES-like malignant cells, monocytes, NPC-like

malignant cells, oligodendrocytes, and OPC-like malignant cells

(Figure 6A). We then assessed the distribution of these genes across

these cell populations and observed distinct expression patterns.

IFNGR2 was predominantly expressed in monocytes, M1

macrophages, and MES-like malignant cells (Figure 6B), aligning

with previous findings that IFNGR2 is preferentially expressed by

monocyte/macrophage populations within the gl ioma

microenvironment (65). STAT2 exhibited the highest expression

in oligodendrocytes, followed by OPC-like malignant cells

(Figure 6C). This observation is consistent with previous studies

highlighting the involvement of the JAK-STAT pathway in

oligodendrocyte maturation, a process crucial for the function of

these myelinating cells in the central nervous system (66). The role

of PPP1R8 in GBM remains unclear. Our analysis revealed its

predominant expression in malignant cell populations, including

AC-like, MES-like, OPC-like, and NPC-like malignant cells

(Figure 6D). This finding suggests a potential oncogenic role for

PPP1R8 in GBM, warranting further investigation.
3.9 PPP1R8 deficiency inhibits proliferation
of GBM cells

The roles of key signature genes, including STAT2 and IFNGR2

(65, 67–71) in the tumorigenesis of GBM have been well

established, with some emerging as potential therapeutic targets.

STAT2 plays a critical role in the host STAT2/type I interferon axis,

which controls tumor growth. Moreover, a novel risk signature of

interferon response genes has been identified as a prognostic

indicator and is correlated with immune infiltration in

glioblastoma. Similarly, IFNGR2 has been implicated in glioma

prognosis and responsiveness to immune checkpoint blockade.

Studies have shown that upregulation of the canonical interferon-

gamma signaling pathway is associated with glioblastoma

progression, and its expression in the tumor microenvironment
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significantly impacts overall survival in pediatric diffuse midline

glioma (DMG) patients (47, 70–73). While the role of PPP1R8 has

been investigated in LGG (74), where its deficiency has been shown

to decrease cell proliferation and the proportion of cells in the G2/M

and S phases while increasing the G0/G1 population, its role in

GBM, a highly aggressive glioma, remains unexplored. To assess
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PPP1R8 expression, we examined its mRNA levels across the NCI-

60 cancer cell line panel, including GBM cell lines. Our analysis

revealed that PPP1R8 expression was elevated in GBM cell lines,

particularly U251 (Supplementary Figure S13A). To further explore

its functional role, we utilized CRISPR/Cas9 technology to knock

down PPP1R8 in U251 cells, and its deficiency was validated using
FIGURE 5

Analysis of the tumor immune microenvironment. (A) Comparison of infiltrated immune cell subsets between low- and high-risk groups, analyzed
using xCell in the training GBM dataset. (B) Comparison of infiltrated myeloid cell subsets between low- and high-risk groups, analyzed using xCell
in the training GBM dataset. (C) Comparison of infiltrated stromal cell subsets between low- and high-risk groups, analyzed using xCell in the
training GBM dataset.
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RT-qPCR (Figure 6E) and western blot (Supplementary Figure

S13B). The impact of PPP1R8 knockdown (KD) on cell

proliferation was assessed using the CCK-8 assay, which

demonstrated a significant reduction in cell number following

PPP1R8 depletion (Figure 6F). Furthermore, cell cycle analysis

revealed that PPP1R8 KD decreased the G2/S/M population and

increased the proportion of cells in the G0/G1 phase, suggesting an
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impairment in cell cycle progression (Figure 6G). These findings

align with previous studies demonstrating that PPP1R8 is correlated

with survival and cell proliferation in LGG (74). Notably, a similar

effect has been observed in PPP1R8-deficient low-grade glioma

cells, where reduced proliferation was linked to cell cycle arrest.

Additionally, PPP1R8 deficiency resulted in an increase in cell

apoptosis compared to the control group (Figure 6H). Taken
FIGURE 6

Single-cell RNA sequencing reveals signature gene expression in the GBM tumor microenvironment, and PPP1R8 deficiency suppresses proliferation
while promoting apoptosis. (A) Identification of nine distinct cell populations using the Seurat R package. (B) UMAP visualization of IFNGR2
expression across the nine cell populations. (C) UMAP visualization of STAT2 expression across the nine cell populations. (D) UMAP visualization of
PPP1R8 expression across the nine cell populations. (E) Validation of PPP1R8 knockdown in CRISPR/Cas9-edited U251 cells compared to control
cells. (F) Cell proliferation assay (CCK8) comparing PPP1R8 knockdown and control U251 cells. (G) Cell cycle analysis of PPP1R8 knockdown and
control U251 cells. (H) Apoptosis analysis of PPP1R8 knockdown and control U251 cells.
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together, our findings indicate that PPP1R8 plays a crucial role in

promoting GBM cell proliferation, highlighting its potential as a

therapeutic target in aggressive gliomas.
4 Discussion

GBM remains one of the most aggressive and challenging

malignancies, with a highly complex TME that plays a central

role in its progression and resistance to treatment (75, 76). A key

feature of GBM is its ability to evade immune surveillance (77, 78),

which contributes to its aggressive nature and poor prognosis. In

this study, we identified IERGs as potential prognostic biomarkers

in GBM and developed a predictive gene signature to assess patient

survival. Leveraging CRISPR/Cas9 technology, we knocked out

PPP1R8 in GBM cells and demonstrated that its loss significantly

inhibited cell proliferation and promoted apoptosis. These findings

highlight the pivotal role of IERGs in both immune evasion and

GBM progression, suggesting their potential as prognostic

indicators and therapeutic targets.

What sets this study apart is its integrative andmulti-dimensional

design. We combined large-scale public transcriptomic datasets,

advanced statistical modeling, immune profiling, single-cell RNA

sequencing analysis, and in vitro functional assays. Notably, we not

only constructed and validated a robust immune escape-related gene

signature across seven independent GBM cohorts, but also linked this

signature to immunological characteristics, putative cellular origins,

and experimentally confirmed phenotypes. This comprehensive

approach spanning from population-level prognostic modeling to

mechanistic cellular validation reinforces both the clinical relevance

and biological plausibility of our findings, and underscores the

translational potential of this work.

Through an in-depth analysis of the TCGA GBM dataset, we

identified 36 IERGs linked to patient prognosis. Among them, 20

genes—including STAT2, IFNGR2, IFNAR1, and B2M—were

associated with poorer survival, while 16 correlated with better

outcomes. These findings suggest that the expression patterns of

IERGs significantly influence GBM prognosis, as many of these genes

are implicated in tumorigenesis. STAT2 is a key regulator of the

STAT2/type I interferon axis, which governs tumor progression (67).

Additionally, we identified a novel prognostic risk signature based on

interferon response genes, which is closely associated with immune

infiltration in glioblastoma (68, 69). Similarly, IFNGR2 has been

linked to glioma prognosis and response to immune checkpoint

blockade (65). The upregulation of canonical interferon-gamma

signaling has been correlated with GBM progression, and its

expression within the tumor microenvironment plays a crucial role

in overall survival, particularly in pediatric diffuse midline glioma

(DMG) patients (70, 71). Furthermore, glioma patients with lower

B2M expression exhibited significantly longer survival than those

with higher levels. Meta-analysis further established B2M as an

independent prognostic marker in glioma, with moderate

sensitivity in predicting the mesenchymal molecular subtype (79).

In addition, B2M signaling in glioblastoma cells activates the PI3K/

AKT/MYC/TGFb1 axis, which sustains cancer stem cell properties
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and promotes M2-like macrophage polarization (80). These findings

underscore the potential of IERGs as prognostic indicators and

provide insights into their role in glioma pathophysiology.

We further developed a prognostic signature based on three key

IERGs—STAT2, IFNGR2, and PPP1R8—using a multivariate Cox

regression model. This signature, represented by the IEScore, was

capable of stratifying GBM patients into high- and low-risk groups.

Kaplan-Meier analysis confirmed that patients with higher IEScores

had a substantially lower median OS compared to those in the low-

risk group, validating the prognostic power of the signature. The

predictive accuracy of the IEScore was further supported by AUC

values. These results suggest that the IERGs-based signature offers

strong predictive value and could complement existing clinical

biomarkers, such as MGMT promoter methylation status, in

guiding treatment decisions for GBM patients. Moreover, PCA

demonstrated clear separation between the high- and low-risk

groups, further confirming the reliability and robustness of the

signature. In addition to its prognostic capabilities, the IEScore was

shown to be independent of other clinicopathological features, such

as MGMT status, IDH1 mutation, and age, which are known to

influence GBM outcomes (81–83). Multivariate Cox regression

analysis confirmed that the IEScore independently predicted

survival outcomes, suggesting its potential as a standalone

biomarker. However, although the prognostic value of the IEScore

was validated in the TCGA cohort, it did not achieve statistical

significance in multivariate analyses of the external validation

cohorts (CGGA and LeeY). While the IEScore demonstrated

prognostic relevance across multiple independent datasets, its

multivariate significance was inconsistent, likely reflecting the

aggressive nature of GBM, cohort-specific clinical features, and

the limited number of long-term survivors typical of these datasets.

The reduced multivariate significance in external cohorts may be

largely explained by substantial clinical and molecular

heterogeneity. As detailed in Supplementary Table S1, the CGGA

and LeeY cohorts differ from the TCGA training set with respect to

recurrence status, treatment exposure, IDH1 mutation frequency,

G-CIMP status, and molecular subtype distribution. These variables

critically influence tumor biology, the immune microenvironment,

and patient outcomes, which can modulate the prognostic

performance of immune-related signatures. Furthermore,

incomplete clinical data, such as the absence of treatment

information in the LeeY cohort, may hinder comprehensive

adjustment for confounders in multivariate models. Collectively,

these observations highlight the importance of accounting for

cohort-specific characteristics when evaluating and interpreting

prognostic models across independent GBM populations.

A key aspect of this study was the analysis of the TIME to

understand how IERGs might influence immune cell infiltration in

GBM. Our analysis revealed distinct immune cell profiles between the

high- and low-risk groups. In the low-risk group, we observed higher

levels of CD4+ effector memory T cells, CD8+ T cells, and natural

killer (NK) cells, all of which are typically associated with anti-tumor

immunity (84–86). In contrast, the high-risk group exhibited an

increase in immunosuppressive cell types, such as macrophages,

myeloid-derived suppressor cells (MDSCs), and mast cells, which
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have been linked to immune evasion and tumor progression in GBM

(87–89). The similar trend of immunological differences observed

between high- and low-risk groups across multiple cohorts and

deconvolution platforms highlight the biological significance of

IEScore as a marker of immune escape. Similarly to CIBERSORT

and xCell, EPIC and TIMER analyses both demonstrated that high-

risk tumors harbor higher levels of CD4+ T cells, cancer-associated

fibroblasts, neutrophils, dendritic cells, and macrophages, indicative

of a more immune-suppressive microenvironment and tumor-

promoting contexture. The convergence of findings from

CIBERSORT, xCell, EPIC, and TIMER strengthens the validity of

our observations and underscores the relevance of IEScore in shaping

the tumor immune microenvironment. These findings may have

implications for predicting immunotherapy responses and

developing combinatorial strategies for glioblastoma treatment (15,

90, 91).

Furthermore, the IEScore demonstrated utility beyond GBM by

being applied to LGG, which are more commonly observed in

younger patients. In the TCGA-LGG dataset and other

independent LGG cohorts, the signature effectively stratified

patients into high- and low-risk groups, with significant differences

in OS observed between the two groups. The AUC values for survival

prediction were consistently high across multiple LGG datasets,

indicating the broader applicability of the IERGs signature in

glioma prognosis. These findings are in line with prior research

suggesting that immune escape mechanisms are not limited to GBM

but also contribute to the progression of LGG (92, 93). This suggests

that the IERGs signature could potentially serve as a valuable tool for

the prognosis of a wide range of gliomas, helping clinicians make

more informed decisions regarding treatment and patient

management. In addition, our study revealed that while the

prognostic signature effectively stratifies glioma patients by survival,

it does not correlate with tumor grade, as evidenced by the similar

distribution of LGG and GBM cases across risk groups and the lack of

differential expression of IERGs between the two. This suggests that

the signature reflects immune-related prognostic factors rather than

histological malignancy. These findings highlight that immune

evasion mechanisms may operate across glioma grades and

contribute to poor outcomes independently of tumor aggressiveness.

PPP1R8 (also known as NIPP1) is a regulatory subunit of

protein phosphatase 1 (PP1) and plays a multifaceted role in

cellular processes, including gene expression, RNA processing,

and cell cycle regulation (94). Previous studies have demonstrated

that PPP1R8 modulates PP1 activity and influences chromatin

structure and DNA repair mechanisms, particularly through its

interaction with histone-modifying enzymes and splicing factors

(95–97). Additionally, PPP1R8 has been implicated in

tumorigenesis through its role in cell proliferation and survival in

several cancers, such as Kidney Renal Clear Cell Carcinoma and

breast cancer (98–100). However, its specific function in GBM

remains largely unexplored. It exerts its regulatory effects by

binding to PP1 and inhibiting its phosphatase activity within the

nucleus. Emerging evidence suggests that PP1/PPP1R8 functions as

a molecular regulator of directed cell migration by upregulating

Cdc42 signaling, potentially enhancing the migratory properties of
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cancer cells (101). Additionally, the PP1 complex plays a crucial role

in mitotic regulation, as its inhibition leads to mitotic arrest,

activation of the spindle assembly checkpoint, and impaired

checkpoint silencing, ultimately resulting in apoptosis or

binucleation. This effect is likely mediated by PPP1R8, which

sequesters PP1 from its mitotic interactors, potentially

suppressing tumor growth (102). Furthermore, hypoxia-induced

activation of PPP1R8 has been linked to enhanced metastatic

potential and poor prognosis in hepatocellular carcinoma,

suggesting a role for PPP1R8 in cancer progression (103).

Additionally, PPP1R8 may contribute to carcinogenesis by

enhancing DNA repair capacity and promoting resistance to

genotoxic stress (104).

To further investigate the role of PPP1R8 in GBM, we used

CRISPR/Cas9 to delete PPP1R8 in U251 GBM cells. Our findings

revealed that PPP1R8 deficiency significantly reduced cell

proliferation, as demonstrated by CCK-8 assay. Furthermore, cell

cycle analysis indicated that PPP1R8 knockdown induced G2/S/M

phase arrest, aligning with previous studies showing that protein

phosphatase inhibitors can trigger apoptosis (105). Consistently, we

observed that PPP1R8 deficiency increased apoptosis in GBM cells

compared to wild-type controls. Together, these findings suggest

that PPP1R8 promotes GBM cell proliferation and survival,

potentially through its role in regulating DNA repair and

intracellular signaling pathways. Further in-depth in vitro and in

vivo studies are warranted to delineate the molecular mechanisms

by which PPP1R8 contributes to glioblastoma progression.
5 Study limitations

Despite its promising findings, this study has several

limitations. First, while the IERG-based prognostic signature was

validated in independent datasets, the sample sizes were relatively

not large, which may limit the generalizability of the results.

Additionally, the validation cohorts did not fully replicate the

multivariate analysis results observed in the TCGA dataset, likely

due to the aggressive nature of GBM and the limited number of

long-term survivors in these cohorts. Furthermore, while we

identified significant differences in the TME between high- and

low-risk groups, the mechanistic basis for these differences remains

unclear, warranting further functional studies to elucidate the role

of specific immune cell subsets. Although we analyzed the

association of IEScore with chemotherapy and radiotherapy in the

CGGA cohort and observed no significant differences, the influence

of immunotherapy could not be assessed due to lack of relevant

data. As treatment strategies for GBM evolve, future studies

incorporating detailed therapeutic information, including

immunotherapeutic interventions, are needed to refine the

predictive utility of the IEScore. Finally, our functional

experiments identified PPP1R8 as a potential tumorigenic driver

in GBM, However, the underlying molecular mechanisms by which

PPP1R8 and other signature genes contribute to immune evasion

remain incompletely understood. Future studies such as rescue

experiments, validation in a second patient-derived GBM model,
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and integrative transcriptomic and proteomic analyses to dissect

interactions with immune cell populations and regulatory networks

within the TME, will be essential to further strengthen and expand

upon our findings.
6 Conclusion

This study demonstrates that IERGs are closely associated with

GBM prognosis. We developed the IEScore, a prognostic signature

based on the expression of STAT2, IFNGR2, and PPP1R8, which

proved to be a reliable and robust predictor of patient outcomes

across multiple datasets. The IEScore shows promise for clinical

application in patient stratification and decision-making, including

potential use in clinical trials. Our findings also offer new insights

into the immune landscape of GBM, emphasizing the critical role of

the TME in disease progression and identifying novel targets for

immunotherapy. We observed that PPP1R8 deficiency impairs

GBM cell proliferation and promotes apoptosis, warranting

further mechanistic exploration. Future studies should aim to

validate the IEScore in larger and more diverse patient

populations and investigate its utility in guiding personalized

immunotherapeutic approaches for GBM.
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Study workflow.
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Gene functional enrichment analysis of OS related immune escape related

genes. (A) GO term analysis. (B) KEGG pathway analysis.

SUPPLEMENTARY FIGURE 3

Expression of signature genes in normal and tumor patients, as well as in low-

and high-risk groups. (A) STAT2/IFNGR2/PPP1R8 expression in normal and
GBM patients from TCGA database. STAT2/IFNGR2/PPP1R8 expression in

low- and high-risk groups in (B) TCGA-GBM dataset, (C) CGGA-GBM dataset,

(D) LeeY-GBM dataset.

SUPPLEMENTARY FIGURE 4

Predictive performance changes over time of IEScore and two published

Interferon-related gene signatures using time-dependent AUC analysis.

SUPPLEMENTARY FIGURE 5

Association of the signature with clinical features from TCGA-GBM dataset.
(A) Recurrence. (B) age. (C) Gender. (D) Subtype. (E) CIMP status. (F) IDH1

status. (G) MGMT status.

SUPPLEMENTARY FIGURE 6

Association of the signature with clinical features from CGGA-GBM dataset.

(A) Recurrence. (B) age. (C) Gender. (D) Subtype. (E) IDH1 status. (F) CIMP

status. (G) MGMT status. (H) Chemotherapy history. (I) Radiotherapy history.

SUPPLEMENTARY FIGURE 7

Association of the signature with clinical features from LeeY-GBM dataset. (A)
Gender. (B) age. (C) MGMT status. (D) CIMP status.
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SUPPLEMENTARY FIGURE 8

Association of the signature with tumor malignancy. (A) Kaplan-Meier curve
of high- and low-risk patients in TCGA GBM and LGG combined cohorts.

(B) Distribution of TCGA GBM and LGG patients across IERG-based
risk groups.

SUPPLEMENTARY FIGURE 9

Tumor immune microenvironment analysis in CGGA-GBM dataset. (A)
Infiltrated immune cell subsets in patients between low- and high-risk
groups analyzed by xCell. (B). Infiltrated myeloid cell subsets in patients

between low- and high-risk groups analyzed by xCell. (C). Infiltrated
stromal cell subsets in patients between low- and high-risk groups

analyzed by xCell.

SUPPLEMENTARY FIGURE 10

Tumor immune microenvironment analysis in LeeY-GBM dataset. (A).
Infiltrated immune cell subsets in patients between low- and high-risk

groups analyzed by xCell. (B). Infiltrated myeloid cell subsets in patients
between low- and high-risk groups analyzed by xCell. (C). Infiltrated

stromal cell subsets in patients between low- and high-risk groups

analyzed by xCell.

SUPPLEMENTARY FIGURE 11

Tumor immune microenvironment analysis by CIBERSORT. (A). Infiltrated
immune cell subsets in patients between low- and high-risk groups in
TCGA-GBM dataset. (B). Infiltrated immune cell subsets in patients between

low- and high-risk groups in CGGA-GBM dataset. (C). Infiltrated immune

cell subsets in patients between low- and high-risk groups in LeeY-
GBM dataset.
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SUPPLEMENTARY FIGURE 12

Immune cell composition differences between high- and low-risk groups across
independent deconvolution algorithms by TIMER and EPIC. (A) Immune cell

fractions estimated by TIMER in TCGA_GBM, CGGA_GBM, and LeeY_GBM
cohorts. (B) Immune cell fractions estimated by EPIC in the same cohorts. Violin

plots show thedistributionof immunecell types betweenhigh- and low-risk groups.

Statistical differences were assessed using Wilcoxon rank-sum test. c(0, 0.001, 0.01,
0.05, 1)p-values are shown as “***” p<0.001, “**” p<0.01, “*” p<0.05, “ “ p>0.05).

SUPPLEMENTARY FIGURE 13

Expression of signature genes in NCI-60 tumor cell lines and validation of
PPP1R8 knockout. (A) Expression profiles of the signature genes across NCI-

60 tumor cell lines. (B) Western blot analysis confirming PPP1R8 knockout in

U251 cells using CRISPR/Cas9-mediated gene editing.
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Interferon-related gene signatures using time-dependent AUC analysis.
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