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Metabolic reprogramming is an important player within the immune response to

viral infections, allowing immune cells to fine-tune their energy production and

biosynthetic requirements while it is actively working to restrict pathogen access

to essential nutrients. Particularly, glucose metabolism, which appears to be one

of the important regulators of immune function, affects immune cell activation,

cytokine secretion, and pathogen restriction. This review explores the

mechanisms of metabolic reprogramming during viral infections, with a

specific emphasis on glucose metabolism. We discussed the key cytokines

involved in orchestrating this metabolic process and the influence of pre-

existing metabolic disorders on immune efficiency. Furthermore, we

introduced emerging therapeutic strategies that target glucose metabolism to

enhance antiviral immunity and improve disease outcomes. A deeper

understanding of the interaction between metabolism and immunity could be

promising for the development of novel immunometabolic targets against

viral infections.
KEYWORDS

glucose metabolism, viral infections, immunometabolism, cytokines, diabetes,
pathogen clearance, immune activation
1 Introduction: metabolic reprogramming in viral
infections

Metabolic changes mounted by immune cells upon viral infections represent a dynamic

mechanism against viral replication (1). This adaptive mechanism enables immune cells to

meet amplified bioenergetic and biosynthetic demands required for clonal expansion,

cytokine secretion, and pathogen clearance. Key shifts in glucose, lipid, and amino acid

metabolism (such as upregulation of glycolysis, oxidative phosphorylation, or glutaminolysis)

provide the ATP and molecular precursors necessary to sustain effector functions. Such
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metabolic plasticity ensures immune cells can rapidly respond to viral

threats while maintaining functional specificity (2). Dysregulation of

these pathways is involved in impaired antiviral immunity, focusing

on their essential role in host defense mechanisms (Figure 1) (3). This

review aims to provide an overview of glucose metabolism in the

context of viral infections, exploring its dual role in immune

activation and pathogen restriction (4). We will also discuss

cytokine-mediated regulation, metabolic adaptations across viral

subtypes, and the outcomes of metabolic disorders such as diabetes

in the context of viral immunity. Finally, we will highlight emerging

therapeutic strategies targeting metabolic pathways to improve

antiviral outcomes.
2 The role of glucose metabolism in
immune responses

2.1 Glucose as a driver of immune
activation

Upon activation, exposure to pathogen-associated molecular

patterns (PAMPs) such as small proteins and molecules associated

with bacteria, viruses, and parasitic infections or damage-associated

molecular pattern molecules (DAMPs), immune cells undergo an

extreme metabolic switch from oxidative phosphorylation into

aerobic glycolysis, known as the Warburg effect (5). This

transition, even in the presence of oxygen, allows cells to generate

ATP more rapidly while providing essential biosynthetic

intermediates for proliferation and effector function. The

metabolic reprogramming observed in activated immune cells is

crucial for sustaining the energetic and anabolic demands of the

immune response (6).

Naïve T cells primarily rely on oxidative phosphorylation,

energy-efficiently generating ATP through the mitochondrial

electron transport chain (7). Upon activation via T cell receptor

engagement and co-stimulatory signals such as CD28 and ICOS, T

cells rapidly upregulate glucose transporter 1 (GLUT1) to enhance

glucose uptake (8). Simultaneously, they increase the expression of

key glycolytic enzymes such as hexokinase 2 (HK2),

phosphofructokinase (PFK), and pyruvate kinase M2 (PKM2).

The shift to glycolysis supports rapid cell division and effector

cytokine production (8).

Effector T cells, including CD4+ helper T cells and CD8+

cytotoxic T lymphocytes, undergo metabolic reprogramming to

favor glycolysis over oxidative phosphorylation. This shift allows

them to sustain the production of pro-inflammatory cytokines such

as interferon-gamma (IFNg), tumor necrosis factor (TNF), and

interleukin-2 (IL-2), which drive immune responses against viral

infections (9). T helper 1 (Th1) cells, responsible for antiviral

immunity, rely on glycolysis to sustain IFNg production, while

cytotoxic T lymphocytes depend on glycolysis to support their

expansion and cytotoxic activity (10). In contrast, regulatory T

(Treg) cells maintain immune tolerance and prevent excessive

inflammation by preferentially utilizing oxidative phosphorylation

and fatty acid oxidation rather than glycolysis. Treg cells exhibit
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lower GLUT1 expression and instead rely on lipid uptake through

the receptor responsible for fatty acid/lipid uptake into cells, CD36

(also known as fatty acid translocase, FAT), (11)and also carnitine

palmitoyltransferase 1A (CPT1A), a key enzyme in fatty acid

oxidation (12).

Macrophages (MFs) also undergo metabolic reprogramming

upon activation. Pro-inflammatory M1MFs, activated by IFNg and
toll-like receptor (TLR) engagement, shift toward glycolysis to

rapidly generate ATP and biosynthetic precursors. This glycolytic

program supports the production of inflammatory mediators such

as interleukin-6 (IL-6), interleukin-1 beta (IL1-b), and TNF (13).

Moreover, M1 MFs accumulate citrate and succinate, which drive

inflammatory signaling through the stabilization of hypoxia-

inducible factor 1-alpha (HIF-1a), enhancing the production of

IL1-b (14). On the other hand, anti-inflammatory M2 MFs

associated with tissue repair and immune resolution utilize

oxidative phosphorylation and fatty acid oxidation, relying on

mitochondrial metabolism rather than glycolysis (15).

Dendritic cells (DCs), upon pathogen recognition through

pattern recognition receptors (PRRs) such as TLRs, rapidly switch

to glycolysis. This metabolic adaptation fuels their antigen

processing, maturation, and migration to lymph nodes, where

they prime T cells (16). Increased glycolysis in DCs enhances

their ability to secrete pro-inflammatory cytokines such as IL-12,

which promotes Th1 differentiation and enhances antiviral

immunity (17).

Oxygen supply in lymph nodes is relatively low due to limited

vascularization, high cellular density, and increased metabolic

demand during immune activation, creating a hypoxic

environment. This hypoxia stabilizes HIF-1a, promoting

glycolysis over oxidative phosphorylation in immune cells such as

T and dendritic cells. As a result, lymph node metabolism adapts to

low oxygen levels, influencing immune responses by regulating T-

cell differentiation, cytokine production, and antigen presentation.

(1). Interestingly, T-cells were found to create acidic areas around

itself in the Lymph nodes, which help regulate immune activity.

This acidity slows T-cell glycolysis by blocking key transporters but

does not interfere with their initial activation (18).

The metabolic switch from oxidative phosphorylation to

glycolysis in activated immune cells is controlled by several

molecular regulators. The mechanistic target of rapamycin

(mTOR) is a central metabolic sensor that drives glycolysis in

immune cells. Upon activation by phosphoinositide 3-kinase

(PI3K) and protein kinase B (PKB) signaling, mTORC1

upregulates GLUT1 and glycolytic enzymes, resulting in increased

glucose uptake and metabolism (19, 20). In T cells, mTORC1

activation enhances the differentiation of effector T cells, while its

inhibition promotes regulatory T cell expansion (21). HIF-1a is

another key regulator that enhances glycolysis under both hypoxic

and normoxic conditions. In T cells and M1 MFs, HIF-1a
upregulates key glycolytic enzymes and promotes the

transcription of IL1-b, amplifying inflammatory responses (22).

The AMP-activated protein kinase (AMPK) pathway plays an

opposing role to mTOR by counteracting glycolysis and promoting

oxidative phosphorylation. This pathway is essential for regulatory
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T cell function, that enhances fatty acid oxidation and

mitochondrial metabolism (23). Another important regulator, the

proto-oncogene c-Myc, induces the expression of glycolytic

enzymes, coordinating metabolic shifts in effector T cells, and

antigen-presenting cells (APCs) to sustain immune activation (24).

Natural killer cells (NK cells) rely on glucose for energy,

utilizing glycolysis and oxidative phosphorylation (OXPHOS). At

rest, NK cells primarily use OXPHOS, but activating cytokines like

IL-2 and IL-12 boost glycolysis and OXPHOS, aiding functions like

IFN-g secretion. Transcription factors, including SREBP and MYC,
Frontiers in Immunology 03
regulate these metabolic pathways to support NK cell activity. High

lactic acid levels can hinder NK cell function (Cimpean and

Cooper, 2023).

Many viral infections cause immune cells to enhance glycolysis

to supply antiviral responses with the required energy. However,

viruses can also manipulate host metabolism for their benefit.

Influenza virus and human immunodeficiency virus (HIV)

enhance host glycolysis to induce viral replication while

simultaneously impairing effector T-cell function (10). Hepatitis C

virus (HCV) and cytomegalovirus (CMV) modulate glucose
FIGURE 1

Overview of metabolic reprogramming of glucose metabolism during viral infection. This figure illustrates how viral infection reprograms host
glucose metabolism by modulating key metabolic regulators and pathways. Viral infection (red) triggers metabolic shifts by activating mTOR (orange)
and HIF-1a (blue) while suppressing AMPK (green), leading to enhanced glycolysis, pentose phosphate pathway (PPP) activity, and reduced fatty acid
oxidation (FAO). Increased glycolysis and PPP provide essential metabolic intermediates for viral replication and immune cell activation. Additionally,
viral infection promotes inflammatory cytokine release (TNF, IL-6, IFN-b), further fueling metabolic shifts. Macrophage polarization is influenced by
these metabolic changes, with M1 macrophages favoring glycolysis and M2 macrophages relying on FAO. T cell dysfunction arises due to metabolic
stress and chronic mTOR activation.
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metabolism in hepatocytes and immune cells, creating a nutrient-

rich environment that supports viral persistence (Pallett et al.,

2019). Severe acute respiratory syndrome coronavirus 2 (SARS-

CoV-2) has been shown to induce metabolic dysregulation in

immune cells, leading to hyperinflammatory states, such as

cytokine storm, which can result in severe immunopathology

(Gurshaney et al., 2023) (Figure 2A).

Insulin resistance can benefit some viruses by creating a

hyperglycemic (high-glucose) environment that fuels viral replication

(e.g., SARS-CoV-2 thrives in glucose-rich lung cells). However, it often

harms immune cells like T cells and macrophages, which rely on

insulin-sensitive glucose uptake to power antiviral responses.

Conversely, insulin production supports immune cell function but

may inadvertently aid viruses that exploit glucose metabolism.

Understanding these metabolic changes may provide novel

therapeutic opportunities for modulating immune responses

during viral infections. Glycolysis inhibitors such as 2-deoxy-D-

glucose (2-DG) have been studied to alleviate hyperinflammatory

responses while preserving immune function (25). Enhancing fatty

acid oxidation through AMPK activation is another potential

strategy for reprogramming immune cell metabolism to balance

immune activation and resolution (26).
2.2 Glucose restriction as an antiviral
strategy

Glucose metabolism plays a dual beneficial role: it supports

immune activation while also enhancing defense by restricting the
Frontiers in Immunology 04
nutrients viruses need for replication. Many viruses depend on host

glucose metabolism to sustain their life cycles, using the host’s

metabolic machinery to produce viral proteins and generate the

energy needed for replication (27). As a countermeasure, the

immune system employs metabolic restriction strategies that limit

glucose availability in infected tissues, effectively starving the virus

and preventing its expansion (4).

One of the primary ways the immune system enforces glucose

restriction is through the action of pro-inflammatory cytokines

such as IFNg and IL-1b. Pro-inflammatory cytokines play a

complex role in regulating glucose uptake in non-immune cells. It

shows stimulatory and inhibitory effects depending on the cell type

and context (28). On the one hand, cytokines such as TNF enhance

glucose uptake and glycolysis in endothelial cells, potentially

augmenting cytokine-induced NF-kB activation (29). Also, TNF

induces a glycolytic shift in fibroblast-like synoviocytes by

upregulating GLUT1 expression, leading to increased glucose

consumption. These findings highlight how inflammation can

reprogram glucose metabolism in non-immune cells to support

inflammatory responses (30).

Conversely, pro-inflammatory cytokines can also reduce

glucose uptake, particularly in metabolically active tissues like

adipose tissue and skeletal muscle. TNF, and interleukin-6 (IL-6)

have been shown to disrupt insulin signaling, reducing glucose

uptake and contributing to insulin resistance (31). TNF for instance,

inhibits insulin receptor signaling in adipocytes and muscle cells,

while IL-6 reduces insulin-stimulated glucose disposal into skeletal

muscle by interfering with key metabolic pathways (28). These

inhibitory effects are particularly relevant in metabolic disorders,
FIGURE 2

Dual Role of Glucose in Immune Activation and Pathogen Restriction. This figure illustrates the contrasting roles of glucose metabolism in immune
responses and viral restriction. The section (A) depicts how glucose uptake supports immune cell activation, proliferation, and cytokine production,
enhancing antiviral defense. The section (B) demonstrates how glucose restriction, mediated by cytokines such as IFNg and IL-1b, limits viral
replication by depriving infected cells of essential nutrients.
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where chronic inflammation contributes to glucose dysregulation.

IL-1b complements the actions of IFNg by enhancing glycolysis in

immune cells and increasing the metabolic activity of infected

tissues (32). The elevated glycolytic state in immune cells

supports their ability to secrete antiviral cytokines and initiate an

effective inflammatory response. However, the localized metabolic

shift also contributes to the establishment of an unfavorable

environment for viral propagation, as infected cells are forced to

operate under energy-restricted conditions (33, 34). Together, these

cytokine-mediated metabolic restrictions create a hostile landscape

that limits viral survival and replication efficiency.

However, the role of metabolism in viral infections is more

complex than it may initially appear. Some studies have shown that

the RIG-I-like receptor (RLR) family detects viral RNA in the

cytosol and activates the mitochondrial antiviral signaling

protein (MAVS) through CARD-CARD interactions. This

activation leads to the formation of supramolecular organizing

centers (SMOCs), which amplify type I interferon (IFN)

responses for antiviral defense.

(35) discovered that glycolysis-derived lactate suppresses RLR-

driven IFN signaling by binding to MAVS and inhibiting its function.

Additionally, RLR activation disrupts the interaction between MAVS

and hexokinase-2 (HK-2), leading to reduced glycolysis.

Pharmacological inhibition of lactate production enhances IFN

responses, whereas lactate supplementation reverses this effect. This

study highlights lactate as a key regulator of innate immunity.

However, the role of lactate in immune cells is not as simple but

somewhat contradictory. in earlier theories it was considered as a

metabolic waste product, but with today understanding it is believed

to be a signaling molecule with significant immunomodulatory

effects. In some data, lactate works as immunosuppressive

molecule, acidifying the microenvironment, hindering the activity

of crucial immune cells like T cells and NK cells, and promoting

immunosuppressive macrophage phenotypes (36–39). On the other

hand, research also shows that lactate can, under certain conditions,

stimulate immune responses, even enhancing T cell antitumor

activity (40, 41).

This controversy stems from several factors. Lactate’s effects

depend highly on its concentration, the specific microenvironment,

the type and activation state of the immune cells involved, and the

particular disease context (42). The intricate metabolic crosstalk

within immune cells further complicates the picture. Therefore,

understanding lactate’s precise role requires careful consideration of

these variables, and continued research is needed to clarify its

multifaceted impact on immune regulation fully.

Overshooting glycolysis, or excessive glycolytic flux, can lead to

lactate accumulation (aerobic glycolysis or the Warburg effect),

metabolic stress, and disruption of redox balance. In immune cells,

heightened glycolysis supports inflammatory responses, while in

viral infections, it can either enhance viral replication or contribute

to immune defense, depending on the context (43).

Many viruses have developed strategies to counteract these

metabolic restrictions. CMV and HCV have evolved mechanisms

to hijack host glucose metabolism, ensuring a continuous supply of

nutrients for viral replication. CMV infection leads to increased
Frontiers in Immunology 05
glucose uptake and glycolytic activity in infected cells, managed by

viral manipulation of host metabolic signaling pathways (44).

Moreover, HCV modulates hepatic glucose metabolism by

altering insulin signaling and enhancing glycolysis in liver cells,

creating a metabolic environment that favors viral persistence (45).

Certain viruses target key metabolic regulators to override host-

imposed glucose restrictions. Some viruses manipulate the

mTORC1 pathway to enhance host glycolysis, enabling them to

maintain replication even under conditions of metabolic stress as in

case of HCV, HIV, Herpesviruses, and Influenza A Virus (46, 47)

(48). Others interfere with AMPK, by inhibiting AMPK, to prevent

the host from shifting away from glycolysis, ensuring continued

glucose availability as in HCV, and SARS-CoV-2 (49, 50). viruses

have evolved sophisticated metabolic adaptations, but the ability of

to the host cells to restrict glucose remains a powerful antiviral

strategy. Understanding these metabolic interactions could be

beneficial for the development of antiviral therapies that exploit

viral dependence on host glucose metabolism. Glutamine is mainly

involved in rapidly proliferating cells infected by viruses. When

glucose availability is restricted, either by host defense mechanisms

or through therapeutic intervention, viruses can potentially adapt

by increasing their reliance on glutamine. This glutamine

compensation enables them to maintain biosynthetic processes

and energy production, sustaining replication (51) (Figure 2B).
3 Cytokine-mediated regulation of
glucose metabolism

3.1 IFNg and its metabolic impact

Inter feron-gamma (IFNg ) i s one of the pr imary

immunometabolic regulator that is crucial in shaping host

metabolism during infections. As a pleiotropic cytokine produced

by activated T cells and NK cells, IFNg regulates various immune

functions, including macrophage activation, antigen presentation,

and direct antiviral defense. Beyond its immunological effects, IFNg
exerts several metabolic influences, modulating glucose metabolism

at both the systemic and cellular levels to ensure optimal immune

responses while restricting viral replication (52).

Systemically, IFNg alters glucose homeostasis by affecting

hepatic glucose production, pancreatic b-cell function, and insulin

sensitivity (53). One of its key effects is the induction of hepatic

gluconeogenesis, the process by which glucose is synthesized de

novo in the liver (54). IFNg activates signaling cascades that

enhance the expression of gluconeogenic enzymes such as

phosphoenolpyruvate carboxykinase (PEPCK) and glucose-6-

phosphatase (G6P), leading to increased glucose production and

release into circulation (55). This systemic glucose redistribution

supplies the immune cells, particularly T cells and macrophages,

with adequate energy supplies during an active immune response.

However, the long-lasting elevation of gluconeogenesis can

contribute to hyperglycemia and insulin resistance, which are

observed during chronic infections and inflammatory diseases (56).
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In pancreatic b-cells, IFNg exerts regulatory effects that

modulate insulin secretion (57). IFNg signaling through the Janus

kinase-signal transducer and activator of transcription (JAK-STAT)

pathway leads to suppressing insulin production and release. This

effect is mediated by increased expression of suppressor of cytokine

signaling (SOCS) proteins, which inhibit insulin receptor signaling,

ultimately reducing glucose uptake in peripheral tissues. While this

insulin resistance may serve as an adaptive mechanism to prioritize

glucose availability for immune cells, prolonged IFNg-driven
metabolic alterations can impair glucose regulation and

contribute to metabolic dysregulation in conditions such as

diabetes and chronic inflammation (57, 58).

At the cellular level, IFNg drives metabolic reprogramming in

MFs, shifting their metabolism toward a pro-inflammatory

phenotype characterized by increased glycolysis and reduced

oxidative phosphorylation (59). This shift is facilitated by

enhanced expression of glucose transporters, such as GLUT1 and

upregulation of glycolytic enzymes such as HK2 and pyruvate

kinase M2 (PKM2), supporting rapid ATP production and

biosynthetic intermediates essential for cytokine production,

phagocytosis, and antimicrobial activity (60). IFNg also stabilizes

HIF-1a, amplifying glycolytic gene expression and pro-

inflammatory mediators such as TNF, and IL-1b (61).

Furthermore, IFNg-driven glycolysis leads to the accumulation of

metabolic intermediates such as succinate, which acts as both an

inflammatory signal and a regulator of mitochondrial function,

enhancing the immune response (62).

IFNg also impacts glucose metabolism in DCs and T cells (63).

In DCs, IFNg promotes metabolic reprogramming where Glycolysis

is increased, whereas OXPHOS is decreased which enhances

antigen presentation and T cell priming (64). Increased glycolysis

in dendritic cells supports the upregulation of costimulatory

molecules and the secretion of IL-12, which is essential for

driving T helper 1 differentiation (65). In T cells, IFNg influences
metabolic fate decisions by promoting aerobic glycolysis in effector

T cells while maintaining oxidative phosphorylation in regulatory T

cells (66). By modulating glucose metabolism, IFNg also helps to

deprive viruses of essential energy sources, creating a hostile

metabolic environment that limits viral replication (67).

Modulating IFNg signaling or its metabolic effects is being

explored to balance immune responses and prevent metabolic

dysregulation. Enhancing IFNg activity could improve antiviral

immunity, and inhibiting its metabolic impact may help in

conditions programmed by excessive inflammation and metabolic

dysfunction. For instance, IFNg induce nitric oxide synthase 2

(NOS2), leading to increased nitric oxide (NO) production, which

can have cytotoxic effects. In order to compromise this side effect, one

approach is to selectively target downstreammetabolic pathways. For

instance, inhibiting NOS2 activity can reduce excessive NO

production, potentially reducing tissue damage without affecting

the overall antiviral state induced by IFNg (52). Maybe also

combination with glucocorticoids which have been shown to

downregulate signal transducer and activator of transcription 1

(STAT1) expression, a key mediator of IFNg signaling, thereby

attenuating certain metabolic effects while preserving antiviral
Frontiers in Immunology 06
responses (68). Inhibiting the metabolic impact of IFNg can help in

metabolic dysfunction by preventing excessive immune activation

and metabolic stress that contribute to chronic inflammation and

tissue damage. IFNg inducedmetabolic pathways, such as nitric oxide

(NO) production and tryptophan catabolism, which can interfere

with mitochondrial function, insulin sensitivity, and lipid

metabolism, exacerbating conditions like insulin resistance, obesity-

related inflammation, and autoimmunity. By selectively modulating

IFNg signaling, it may be possible to reduce these metabolic

disturbances while preserving immune function, thereby improving

outcomes in metabolic disorders (69).
3.2 IL-1b and the promotion of glycolysis

Interleukin-1 beta (IL-1b) is a pro-inflammatory cytokine critical

for immune activation and metabolic reprogramming (70). Produced

by macrophages, monocytes, and dendritic cells in response to

pathogen- or damage-associated molecular patterns (PAMPs/

DAMPs), IL-1b is regulated via nuclear factor kappa beta (NF-kB)
signaling and inflammasome-mediated caspase-1 cleavage. Upon

binding to its receptor, IL-1R1, IL-1b activates MAPK and PI3K/

Akt pathways, promoting glycolysis in immune cells. This involves

upregulation of GLUT1 and glycolytic enzymes (HK2, PFK, and

PKM2), driving the Warburg effect (71). IL-1b synergizes IFNg to

sustain glycolytic flux, prolonging immune activation and enhancing

pathogen clearance. However, excessive IL-1b activity can lead to

chronic inflammation, as seen in rheumatoid arthritis (RA),

inflammatory bowel disease (IBD), and atherosclerosis (72, 73).

IL-1b also plays a key role in trained immunity, enhancing

innate immune cell responsiveness through epigenetic and

metabolic changes (74). By stabilizing HIF-1a and accumulating

succinate and fumarate, IL-1b reinforces glycolytic gene expression,

enhancing secondary immune responses (75). Therapeutic

strategies, such as IL-1 receptor antagonists (such as anakinra),

aim to control IL-1b-driven inflammation while preserving

immune function, showing its dual role in both protective and

pathological immune responses (76) (Table 1).
3.3 TNF and systemic glucose
dysregulation

TNF, a key inflammatory cytokine produced by macrophages,

DCs, and T cells, exerts widespread effects on glucose metabolism

during viral infections (77). TNF promotes glycolysis in immune

cells to enhance their pro-inflammatory functions while

simultaneously impairing systemic glucose homeostasis (77).

Acute inflammation, often triggered by infection or injury, leads

to a transient increase in pro-inflammatory cytokines such as TNF,

and IL-6. In this context, these cytokines can enhance glycolysis in

non-immune cells, facilitating rapid energy production and

supporting immune and inflammatory responses (32, 78). This

metabolic shift aligns with the concept of the Warburg effect, where

cells prioritize glycolysis even in the presence of oxygen, ensuring
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sufficient energy and biosynthetic precursors to sustain

inflammatory processes.

However, in chronic inflammation, prolonged exposure to pro-

inflammatory cytokines disrupts normal metabolic homeostasis,

contributing to insulin resistance, impaired glucose uptake, and

metabolic disorders such as type 2 diabetes (32, 79). The persistent

activation of inflammatory signaling pathways, including NF-kB
and JNK, interferes with insulin receptor signaling in adipocytes

and skeletal muscle cells, reducing insulin sensitivity and promoting

hyperglycemia. Studies in mice show that TNF administration

induces insulin resistance, while its inhibition improves insulin

sensitivity. In humans, TNF levels are elevated in type 2 diabetes

(T2D), contributing to glucose intolerance and insulin resistance.

Some evidence suggests TNF inhibition may reduce T2D risk and

improve insulin sensitivity, but further studies are needed (80).
3.4 Interleukin-6 and the glycolytic-
inflammatory loop

Interleukin-6 (IL-6) is another pro-inflammatory cytokine with

significant effects on glucose metabolism (81). Secreted by

macrophages, DCs, and fibroblasts in response to viral infections,

IL-6 acts as both a metabolic regulator and an immune modulator

(82). One of its primary roles is to enhance hepatic gluconeogenesis,
Frontiers in Immunology 07
by activating the Janus kinase/signal transducer and activator of

transcription 3 (JAK-STAT3) pathway in hepatocytes, resulting in the

increased expression of gluconeogenic enzymes (G6P, and PEPCK)

(83), contributing to hyperglycemia, which is mostly observed in

severe viral infections and cytokine storm syndromes (84).

IL-6 supports metabolic reprogramming of immune cells by

enhancing glycolysis (60). It upregulates GLUT1 expression and

increases the activity of lactate dehydrogenase (LDH), promoting

the conversion of pyruvate to lactate (13). This metabolic adaptation

fuels immune cell activation and cytokine production but can also

lead to excessive inflammation, as seen in severe COVID-19 cases

where IL-6 levels correlate with disease severity (85, 86). Therapeutic

interventions targeting IL-6, such as IL-6 receptor antagonists

(tocilizumab), are being studied to control hyperinflammatory

responses while preserving metabolic balance (87).
3.5 Interleukin-10 and the suppression of
glycolysis

Interleukin-10 (IL-10) functions as an anti-inflammatory

mediator that suppresses excessive immune activation and

metabolic stress (86). Produced by regulatory T cells (Tregs),

macrophages, and dendritic cells, IL-10 inhibits glycolysis in

immune ce l l s , sh i f t ing metabol i sm toward oxidat ive
TABLE 1 Cytokines involved in glucose metabolism during viral infections.

Cytokine Primary
Source

Effect on
Glucose Metabolism

Mechanisms of Action Impact on Viral Infections

IFNg
(Interferon-
gamma)

Activated T cells
(CD4+ Th1, CD8+),

NK cells

Enhances glycolysis in
immune cells, reduces

systemic glucose availability

Upregulates GLUT1, increases glycolytic
enzyme expression, induces hepatic

gluconeogenesis, inhibits insulin signaling

Promotes macrophage activation, limits
viral replication by restricting glucose

availability to infected cells

IL-1b
(Interleukin-

1 beta)

Macrophages,
monocytes,

dendritic cells

Drives glycolysis and
metabolic reprogramming in

innate immune cells

Increases GLUT1 expression, enhances
glycolytic enzyme activity, stabilizes HIF-1a,

promotes trained immunity

Enhances immune response efficiency,
creates a metabolically hostile environment

for viral survival

TNF (Tumor
Necrosis

Factor-alpha)

Macrophages,
dendritic cells,

T cells

Promotes systemic insulin
resistance, alters glucose
uptake and metabolism

Induces serine phosphorylation of IRS-1,
downregulates GLUT4 in non-immune tissues,

enhances glycolysis in immune cells

Reduces viral replication by decreasing
glucose availability but can contribute

to hyperinflammation

IL-6
(Interleukin-6)

Macrophages,
dendritic cells,
fibroblasts,

endothelial cells

Enhances gluconeogenesis,
promotes glucose metabolism

in immune cells

Activates JAK-STAT3 and PI3K-AKT
pathways, upregulates hepatic glucose
production, increases insulin resistance

Supports immune function but contributes
to cytokine storm and metabolic
dysregulation in severe infections

IL-10
(Interleukin-10)

Regulatory T cells
(Tregs),

macrophages,
dendritic cells

Suppresses excessive glucose
metabolism in immune cells

Inhibits pro-inflammatory cytokines (IFNg,
IL-1b, TNF), reduces glycolysis, promotes

oxidative phosphorylation

Limits excessive immune activation,
prevents tissue damage in chronic

viral infections

IL-4
(Interleukin-4)

CD4+ Th2 cells,
mast

cells, eosinophils

Promotes oxidative
phosphorylation over

glycolysis in macrophages

Induces M2 macrophage polarization,
enhances fatty acid oxidation, suppresses

glycolytic enzyme expression

Reduces inflammation but may create a
permissive environment for chronic

viral infections

IL-12
(Interleukin-12)

Dendritic
cells, macrophages

Supports metabolic activation
of T cells and NK cells
through glycolysis

Enhances GLUT1 expression, promotes Th1
differentiation, increases IFNg production

Strengthens antiviral immunity by
boosting immune cell activation and

metabolic support

TGF-b
(Transforming

Growth
Factor-beta)

Regulatory T cells,
macrophages,
fibroblasts

Suppresses glycolysis,
promotes oxidative
metabolism and

immune regulation

Downregulates GLUT1, inhibits mTORC1,
enhances mitochondrial respiration

Limits immune activation, prevents
hyperinflammatory damage, can be

hijacked by viruses to evade
immune responses
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phosphorylation and fatty acid oxidation (88, 89). By

downregulating GLUT1 and glycolytic enzymes, IL-10 reduces the

energetic demands of immune cells, promoting immune tolerance

and preventing chronic inflammation (90). IL-10 also counteracts

the metabolic effects of TNF, and IL-6 by suppressing their signaling

pathways (91). It inhibits NF-kB activation, and reduces the

transcription of glycolysis-promoting genes. This metabolic shift

is essential for preventing immunopathology in chronic viral

infections, as excessive glycolysis can lead to prolonged

inflammation and tissue damage (92).
3.6 Interleukin-4 and metabolic
polarization of macrophages

Interleukin-4 (IL-4), produced by T helper 2 (Th2) cells,

eosinophils, and mast cells, is crucial in macrophage polarization

and metabolic regulation (93). While pro-inflammatory

macrophages (M1 macrophages) rely on glycolysis to govern their

functions, IL-4 promotes the differentiation of anti-inflammatory

macrophages (M2 macrophages), which utilize oxidative

phosphorylation and fatty acid oxidation (94). This metabolic

shift is mediated by the activation of peroxisome proliferator-

activated receptor gamma coactivator-1 beta (PGC-1b) and

AMPK, which enhance mitochondrial biogenesis and lipid

metabolism (95). By promoting oxidative metabolism, IL-4 is

involved in resolving inflammation and tissue repair (96).

However, in the context of viral infections, excessive IL-4 activity

may create a permissive environment for viral persistence, as it

dampens antiviral immune responses (97).
3.7 Interleukin-12 and the activation of T
cells and NK cells

Interleukin-12 (IL-12), produced by DCs and macrophages,

enhances metabolic activation in T cells and NK cells (98). IL-12

promotes the differentiation of Th1 cells, which rely on glycolysis to

produce IFNg (13). It also enhances the cytotoxic activity of NK

cells by upregulating glycolytic pathways, ensuring that these

immune cells have sufficient energy for rapid proliferation and

effector function (66).

The metabolic effects of IL-12 are crucial for antiviral immunity,

as they assist in the maintenance of long-term immune responses

against chronic viral infections (99). However, excessive IL-12

activity may contribute to inflammatory disorders and metabolic

dysregulation, which needs precise regulatory mechanisms to

balance immune activation and metabolic health (100).
3.8 Transforming growth factor-beta and
the regulation of immune metabolism

Trans forming growth fac tor -be ta (TGF-b ) i s an

immunosuppressive cytokine that modulates glucose metabolism
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to prevent excessive immune activation (101). It suppresses

glycolysis by downregulating GLUT1 and inhibiting the mTORC1

pathway (102). Instead, TGF-b promotes oxidative phosphorylation

and mitochondrial respiration, maintaining the function of Tregs

and tolerogenic macrophages (103). While TGF-b is essential for

immune homeostasis, some viruses exploit its immunosuppressive

effects to evade immune responses. Chronic infections with HBV

and human CMV are associated with increased TGF-b signaling,

which dampens immune activation and facilitates viral persistence

(104, 105).
4 Metabolic reprogramming across
viral subtypes

4.1 Respiratory viruses

Respiratory viruses, including influenza virus, respiratory

syncytial virus (RSV), and coronaviruses such as SARS-CoV-2,

are capable of inducing massive metabolic alterations within the

host (106, 107). A hallmark feature of respiratory viral infections is

the induction of glycolysis, particularly in alveolar macrophages,

epithelial cells, and infiltrating immune cells such as neutrophils

and monocytes, because Glycolysis provides ATP quickly, even in

low-oxygen conditions, and supplies intermediates for nucleotide,

lipid, and amino acid synthesis—critical for the expansion and

function of immune cells like macrophages and T cells (108).

Upon infection, respiratory viruses activate innate immune

pathways that drive metabolic reprogramming. The activation of

pattern recognition receptors (PRRs), such as Toll-like receptors

(TLRs) and retinoic acid-inducible gene I (RIG-I)-like receptors,

leads to the engagement of key signaling cascades, including NF-kB
and interferon regulatory factors (IRFs). These pathways induce the

transcription of antiviral cytokines such as type I interferons (IFN-

a/b) and upregulate glycolytic metabolism (109–111).

Alveolar macrophages, a key line of defense in the respiratory

tract, undergo metabolic reprogramming upon encountering

respiratory viruses. During influenza virus and RSV infections,

macrophages shift from oxidative phosphorylation to glycolysis,

leading to increased glucose uptake via the upregulation of GLUT1

(112). Like other tissue macrophages, this metabolic adaptation

fuels the production of pro-inflammatory cytokines such as IL-6,

TNF, and IL-1b (113). The glycolytic metabolite succinate plays a

crucial role in amplifying inflammation by stabilizing HIF-1a,
which drives IL-1b expression. This inflammatory response is

beneficial in the early stages of infection, as it enhances viral

clearance by recruiting and activating additional immune cells

(114). However, excessive glycolytic activation can lead to

immune overactivation and tissue damage, as seen in severe cases

of influenza and COVID-19 (115).

Respiratory epithelial cells also exhibit metabolic shifts in

response to viral infections. Influenza virus and RSV hijack host

metabolism by promoting glycolysis in ciliated epithelial cells, and

type II pneumocytes to meet viral replication’s high energy and

biosynthetic demands (116). Influenza virus infection is associated
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with increased activity of PKM2, which facilitates the synthesis of

viral proteins (117). Moreover, SARS-CoV-2 has been shown to

remodel host metabolism by enhancing both glycolysis and lipid

biosynthesis, creating an environment that supports viral

replication while suppressing antiviral immune responses (118)

The virus enhances glycolysis (Warburg effect) via HIF-1a
activation, increasing glucose uptake and lactate production to

generate ATP and nucleotide precursors, while suppressing

immune responses through lactate-mediated inhibition of

interferon signaling. Concurrently, it upregulates lipid

biosynthesis by activating SREBP transcription factors, driving

fatty acid and cholesterol synthesis to build viral membranes and

replication organelles (e.g., double-membrane vesicles). This

metabolic reprogramming diverts host resources toward viral

production and dampens antiviral immunity, balancing rapid

replication with host survival—key evolutionary adaptations for

efficient respiratory transmission (119). Viruses reprogram host cell

metabolism to support their replication, particularly by altering

lipid synthesis (27). They manipulate the TCA cycle and energy

sources to boost cholesterol and fatty acid production, essential for

viral membrane formation and replication. HCMV and VACV rely

on this for viral progeny, while HCV significantly alters lipid

metabolism genes and increases cholesterol biosynthesis (120,

121). These changes help sustain viral growth while maintaining

host cell homeostasis. Lipids are crucial for virus assembly, release,

and infectivity. Enveloped viruses acquire their membranes through

budding at different cellular sites, often modifying lipid composition

for efficient exit. HIV, for example, enriches its envelope with

cholesterol and sphingolipids from lipid rafts (122). HCMV and

VACV increase lipid biosynthesis to support viral membrane

formation, with VACV using phosphatidylserine (PS) to mimic

apoptotic bodies and enhance infection via macropinocytosis. This

apoptotic mimicry is a widespread strategy among viruses like

dengue, Ebola, and Lassa fever, making PS-targeting therapies a

potential antiviral approach (121).

Neutrophils and monocytes recruited to the site of infection

also rely on glycolysis to generate ATP rapidly, enabling the

production of reactive oxygen species (ROS) and antimicrobial

peptides necessary for pathogen clearance (123). Neutrophils, in

particular, undergo a hypermetabolic state characterized by

increased glucose uptake and lactate production. The

accumulation of lactate in inflamed tissues further drives immune

cell activation but can also contribute to an immunosuppressive

microenvironment if unchecked (124, 125).

The excessive metabolic activation observed in severe

respiratory viral infections can lead to hyperinflammatory states

like cytokine storms. This phenomenon has been extensively

documented in SARS-CoV-2 infections, where exacerbated

glycolysis in immune cells correlates with severe disease

outcomes. The excessive production of IL-6, TNF, and IL-1b in

glycolysis-driven immune cells results in widespread tissue damage,

endothelial dysfunction, and acute respiratory distress syndrome

(ARDS) (50, 115).

Respiratory viruses strongly upregulate glycolysis in infected

lung epithelial cells to fuel viral replication and virion assembly. At
Frontiers in Immunology 09
the same time, glycolysis supports the production of antiviral

interferons (IFNs) and pro-inflammatory cytokines such as IL-6

and TNF (119). However, these infections often lead to excessive

inflammation, which damages lung tissue and facilitates viral

spread. Inflammation-driven symptoms like coughing and

sneezing further enhance aerosolized transmission (126). These

factors highlight the evolutionary advantage of such viruses, as

they prioritize rapid replication and high transmissibility, even at

the cost of host harm, such as cytokine storms. Studies indicate that

glycolysis inhibitors such as (2-DG) can reduce hyperinflammatory

responses in viral infections (127, 128). 2-DG competes with

glucose for uptake and inhibits hexokinase, the first enzyme in

glycolysis, effectively reducing glycolytic flux (129). Preclinical

models of influenza and SARS-CoV-2 infections have

demonstrated that 2-DG treatment decreases pro-inflammatory

cytokine production while preserving antiviral immunity (114,

130). Other metabolic modulators, such as metformin and AMPK

activators, have also been investigated for their ability to shift

immune metabolism away from glycolysis, reducing excessive

inflammation and improving disease outcomes (131, 132).
4.2 Hepatotropic viruses

Hepatotropic viruses, including hepatitis B virus (HBV) and

hepatitis C virus (HCV), exert significant effects on host

metabolism, particularly within hepatocytes (133). The liver is a

central metabolic organ responsible for glucose homeostasis, lipid

metabolism, and detoxification. Infection with hepatotropic viruses

disrupts these functions, leading to metabolic reprogramming that

supports viral replication while simultaneously contributing to

disease progression. These metabolic alterations not only sustain

viral persistence but also increase the risk of metabolic disorders

such as insulin resistance, non-alcoholic fatty liver disease

(NAFLD), and hepatocellular carcinoma (HCC) (1, 134, 135).

HBV and HCV hijack host glucose metabolism to create an

intracellular environment that favors viral survival and replication

(135). Similar to respiratory viruses, the key metabolic shift

observed during hepatotropic viral infections is the enhancement

of glycolysis, even in the presence of oxygen. Both HBV and HCV

upregulate the expression of glucose transporters, particularly

GLUT1 and GLUT2, increasing glucose uptake by hepatocytes. In

parallel, these viruses enhance the activity of glycolytic enzymes

(HK2, and PKM2), driving glycolytic flux (45, 136).

HCV infection has been strongly linked to insulin resistance.

The virus disrupts insulin receptor signaling by activating

inflammatory pathways and direct interference with insulin

receptor substrates (IRS-1 and IRS-2) (137, 138). Chronic HCV

infection leads to the overproduction of pro-inflammatory

cytokines (TNF and IL-6), which activate serine kinases that

phosphorylate IRS proteins (IRS-1 and IRS-2), preventing proper

insulin signaling (138). As a result, hepatocytes become less

respons ive to insu l in , l ead ing to increased hepat i c

gluconeogenesis and systemic hyperglycemia. The combination of

enhanced glycolysis and insulin resistance creates a self-
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perpetuating cycle of metabolic dysfunction, contributing to disease

progression and increasing the risk of type 2 diabetes mellitus in

HCV-infected individuals (139).

Although HBV is less directly associated with insulin resistance

than HCV, it still induces metabolic changes that support viral

persistence by influencing the mTOR and AMPK pathways. (140–

142). Activation of mTOR signaling promotes glycolysis and

biosynthetic processes essential for viral replication (141).

Furthermore, HBV-mediated upregulation of the transcription

HIF-1a enhances glycolytic gene expression, supporting viral

replication (143). On the other hand, AMPK activation, which

typically acts as a metabolic stress sensor to suppress glycolysis and

promote oxidative metabolism, is often inhibited by HBV,

preventing the metabolic shifts that would otherwise hinder viral

survival (131, 144).

In addition to glucose metabolism, hepatotropic viruses affect

lipid metabolism. HCV disrupts lipid homeostasis by enhancing

lipid droplet formation, which serves as a platform for viral

assembly and release (145). The virus manipulates host

lipogenesis through the upregulation of sterol regulatory element-

binding proteins (SREBPs), increasing the synthesis of fatty acids

and cholesterol (146). The accumulation of lipids in hepatocytes not

only facilitates viral replication but also contributes to liver steatosis,

a condition commonly observed in chronic HCV infection (147).

Similarly, HBV infection is associated with alterations in lipid

metabolism that promote hepatocyte proliferation and viral

persistence, further increasing the risk of liver fibrosis and HCC

(148). Pharmacological agents modulating glucose metabolism

exhibit antiviral potential. Metformin activates AMPK,

modulating T cell function by altering glycolysis and reducing

pro-inflammatory cytokine production. It enhances immune cell

function partly by alleviating chronic hyperglycemia, which can

impair T cell function. Additionally, metformin directly affects

mitochondrial function and oxidative stress, contributing to its

immunomodulatory effects (149) (131, 140, 150). Glycolysis

inhibitors (2-DG, lonidamine) disrupt HBV/H (151)CV metabolic

pathways. IL-6/TNF inhibitors restore insulin sensitivity, attenuate

hepatic inflammation (152).
4.3 Neurotropic viruses

Neurotropic viruses (HSV, rabies, Zika, West Nile) exploit host

metabolism to invade, persist, and replicate in the central nervous

system (CNS) (153). These viruses use glucose metabolism to

support their replication cycles and immune evasion, disrupting

CNS energy supply, neuronal function, and neuroinflammation

(154). HSV and rabies, manipulate host glucose metabolism to

sustain replication and evade immune responses in the CNS. HSV

upregulates GLUT1 and glycolytic enzymes, including PKM2,

enhancing ATP production and viral biosynthesis (155). It also

suppresses oxidative phosphorylation, favoring aerobic glycolysis

for rapid energy supply. Rabies virus increases glycolysis in neurons

while inhibiting mitochondrial function, leading to lactate

accumulation, neuronal dysfunction, and fatal encephalitis (156).
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Microglia and astrocytes undergo metabolic reprogramming

during viral infection. Microglia shift from oxidative

phosphorylation to glycolysis, mediated by HIF-1a, enhancing
pro-inflammatory cytokine production (157, 158). While this

response controls viral spread, excessive activation can cause

neuroinflammation and neuronal damage (159). Astrocytes

increase glycolysis and glutamine metabolism to support immune

activation, disrupting neurotransmitter homeostasis and

contributing to excitotoxicity (2). The blood-brain barrier (BBB)

is also affected, as viruses such as West Nile and Zika alter

endothelial cell metabolism, increasing glycolysis and vascular

permeability (160). This vascular permeability change disrupts

tight junctions, facilitating viral entry and immune cell

infiltration, exacerbating inflammation and neuronal damage.

Targeted metabolic interventions are being explored to limit

viral replication and preserve neuronal function. Glycolysis

inhibitors (such as 2-DG) reduce excessive inflammation, while

HIF-1a modulation in microglia balances immune activation.

Metabolic modulators such as metformin and AMPK activators

shift immune metabolism toward oxidative phosphorylation,

showing promise in preclinical models. Ketogenic diets,

promoting ketone body use, also exhibit neuroprotective potential

in CNS viral infections (1, 161).
4.4 Systemic viral infections

Systemic viral infections, such as dengue virus (DENV) and

cytomegalovirus (CMV), may cause metabolic disruptions that

extend beyond localized immune responses, influencing multiple

organs and tissues (44, 162). These viral infections induce

widespread metabolic reprogramming that sustains viral

replication, immune activation, and pathogenesis, resulting in

elevated glycolysis, mitochondrial dysfunction, and lipid

metabolism shifts, leading to systemic inflammation and, in

severe cases, multi-organ failure (163).

DENV, a mosquito-borne flavivirus, manipulates glucose

metabolism in immune and endothelial cells, increasing glycolytic

flux via upregulation of GLUT1, HK2, and PKM2 (164). This

metabolic shift supports viral replication but also drives excessive

cytokine production, contributing to the cytokine storm seen in

severe dengue. Lactate accumulation from elevated glycolysis

stabilizes HIF-1a, amplifying inflammatory cytokines, and

causing endothelial dysfunction, vascular leakage, and

hemorrhagic manifestations (165). DENV also dysregulates lipid

metabolism by activating sterol regulatory element-binding

proteins (SREBPs), enhancing fatty acid and cholesterol synthesis

for viral assembly and immune evasion (166).

CMV, a beta-herpesvirus, induces long-term metabolic changes

during active infection, characterized by sustained glycolysis,

mitochondrial stress, and lipid accumulation (167). In

macrophages and DCs, CMV activates glycolytic pathways,

promoting pro-inflammatory cytokines (including IL-6 and

IFNg), contributing to chronic inflammation and complications

such as cardiovascular disease and metabolic syndrome (168). CMV
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hijacks lipid metabolism by increasing lipid droplet accumulation

and cholesterol biosynthesis via SREBPs, supporting viral

persistence and reactivation (169). Glycolysis inhibitors (2-DG)

and lipid-lowering agents such as statins have shown potential in

reducing CMV replication and inflammation (170).

HIV infection is marked by chronic immune activation,

persistent glycolysis in CD4+ T cells, and mitochondrial

dysfunction, leading to immune exhaustion and metabolic

syndrome (171). Ebola virus infection causes extensive metabolic

disruptions, resulting in endothelial damage, coagulation

abnormalities, and multi-organ failure (172) (Figure 3).
5 Challenges and opportunities for
individuals with metabolic disorders

Diabetes mellitus, characterized by impaired insulin function

and dysregulated glucose homeostasis, increases susceptibility to

severe viral infections due to immune dysfunction and metabolic

imbalances (173). Hyperglycemia and insulin resistance create a

pro-inflammatory state, exacerbating viral pathogenesis and raising

risks of prolonged infection, cytokine storms, and multi-organ

damage (56) (Table 2).
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Persistent hyperglycemia fuels systemic inflammation by

activating pro-inflammatory pathways, increasing cytokines like

IL-6, TNF, and IL-1b (174). These impair immune cell function

and promote viral replication, worsening outcomes in infections

such as influenza, dengue, and SARS-CoV-2. Insulin resistance

further weakens antiviral responses by limiting glucose availability

for immune cells, including T cells, macrophages, and NK cells,

which rely on glycolysis for activation and function (175).

T cell dysfunction is a hallmark of diabetes-related immune

impairment. CD8+ T cells, essential for viral clearance, exhibit

metabolic exhaustion due to reduced glucose uptake, while CD4+ T

cells show impaired differentiation into antiviral Th1 cells (173).

Macrophages in diabetic individuals are skewed toward a pro-

inflammatory M1 phenotype, with reduced phagocytosis and

antigen presentation, while anti-inflammatory M2 macrophages

are suppressed, prolonging inflammation and tissue damage (176).

Hyperglycemia disrupts non-immune tissues, such as the

vascular endothelium, exacerbating viral spread and complications

like ARDS or vascular leakage (177). Emerging evidence suggests that

improving glycemic control enhances immune function and reduces

disease severity. Insulin therapy, metformin, and sodium-glucose

cotransporter-2 (SGLT2) inhibitors have shown promise in

optimizing glucose metabolism and mitigating hyperinflammation
FIGURE 3

Comparative analysis of glucose metabolism across different viral subtypes. Respiratory viruses (Influenza, RSV, SARS-CoV-2) enhance glycolysis in
alveolar epithelial cells and immune cells, leading to cytokine storms and inflammation. Hepatotropic viruses (HBV, HCV) reprogram hepatocyte
metabolism by increasing glycolysis and disrupting insulin signaling. Neurotropic viruses (HSV, Rabies, Zika) manipulate glucose metabolism in
neurons and glial cells, contributing to neuroinflammation and viral persistence. Systemic viruses (DENV, CMV, HIV) alter metabolic pathways in
immune and endothelial cells, driving systemic inflammation and immune exhaustion.
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(178). Metformin, in particular, activates AMPK, reducing glycolysis

and pro-inflammatory cytokine production, while enhancing T cell

and macrophage function through relieving the chronic

hyperglycemia which impairs T cell function by inducing

mitochondrial oxidative stress. (179). The COVID-19 pandemic

highlighted the impact of diabetes on viral immunity, with diabetic

patients facing higher risks of severe disease and mortality (180).
6 Targeting glucose metabolism for
antiviral therapy

By targeting glucose metabolism, it is possible to inhibit viral

replication and modulate immune responses, reducing disease
Frontiers in Immunology 12
severity and improving outcomes. Key approaches include

glycolysis inhibitors , AMPK activators , and cytokine

modulation (144).

Viruses such as SARS-CoV-2, DENV, and HCV depend on

glycolysis for ATP and biosynthetic intermediates. Glycolysis

inhibitors exploit the dependency to reduce viral replication

without directly targeting the virus, thus reducing drug resistance

risks (181, 182). The glucose analog 2-DG inhibits glycolysis by

competing with glucose for uptake and phosphorylation (130).

Preclinical studies showed 2-DG suppressed replication in

influenza, SARS-CoV-2, and HSV (130, 183, 184). It also shifts

immune cell metabolism toward oxidative phosphorylation,

reducing excessive inflammation while sustaining immune

activation (185). LDH inhibitors, such as oxamate and gossypol,

disrupt lactate production, limiting the energy supply for viral

replication. These compounds have shown antiviral activity

against DENV and CMV (186, 187).

AMPK promotes energy balance by enhancing oxidative

metabolism and reducing inflammation. AMPK activation

counters the hyperglycolytic state induced by viral infections

while boosting antiviral immunity (131). Metformin, a widely

used antidiabetic drug, activates AMPK, improving insulin

sensitivity and reducing pro-inflammatory cytokine production

(132). Clinical studies suggest metformin use in diabetic patients

is associated with lower mortality in COVID-19 and influenza. It

suppresses excessive glycolysis while enhancing mitochondrial

function, supporting sustained immune responses without

hyperinflammation (132, 188).

AICAR, another AMPK activator, mimics adenosine

monophosphate (AMP), shifting cellular metabolism toward

oxidative phosphorylation. It reduces viral replication in HCV

and influenza models while enhancing T cell and macrophage

function. AMPK activation is particularly promising for

optimizing immune responses in patients with metabolic

disorders (189, 190).

Sodium-glucose co-transporter 2 (SGLT2) inhibitors, such as

dapagliflozin and empagliflozin, lower blood glucose and reduce

systemic inflammation, with preliminary evidence suggesting

protective effects in COVID-19 (191). Metformin, an AMPK

activator, has shown immunomodulatory benefits, including

reduced cytokine production and enhanced mitochondrial

metabolism, potentially improving outcomes in COVID-19 and

influenza (192).

Targeting inflammation-driven metabolic dysregulation is

another therapeutic avenue. Monoclonal antibodies against IL-6

(tocilizumab) and TNF (infliximab) have been evaluated in

COVID-19 to control hyperinflammation (193). However, their

impact on viral clearance and immune function requires careful

consideration to avoid immunosuppressive effects.

Viral infections often trigger hyperinflammatory responses,

characterized by excessive cytokine production, leading to severe

disease pathology. Targeting cytokine signaling while preserving

antiviral immunity is a key therapeutic goal. IL-6 inhibitors, such as

tocilizumab, have been studied in COVID-19, where IL-6 drives
TABLE 2 Comparison of infection outcomes in normoglycemic versus
hyperglycemic patients.

Outcome
Parameter

Normoglycemic
Patients

Hyperglycemic
Patients

Susceptibility to
Viral Infections

Lower susceptibility due
to balanced immune

responses and
controlled inflammation

Increased susceptibility due to
impaired immune cell function

and chronic low-
grade inflammation

Viral
Clearance
Efficiency

More efficient viral
clearance due to optimal

T cell and
macrophage activity

Delayed viral clearance due to
metabolic exhaustion and
impaired glucose uptake in

immune cells

Cytokine
Response

Controlled cytokine
production, reducing risk
of excessive inflammation

Exaggerated pro-inflammatory
cytokine response, leading to

hyperinflammation and
cytokine storm

T Cell Function Normal glucose uptake
supports T cell activation,

proliferation, and
memory formation

Insulin resistance reduces
glucose availability, leading to
impaired T cell function and

immune exhaustion

Macrophage
Activity

Effective phagocytosis,
antigen presentation, and

pathogen clearance

Impaired phagocytosis and
antigen presentation, increasing

risk of prolonged infection

Endothelial
Function

Maintains vascular
integrity, reducing risk

of complications

Endothelial dysfunction
contributes to vascular

permeability, increasing risk of
hemorrhage and tissue damage

Complication
Rates

Lower risk of severe
complications such as
ARDS and multi-
organ failure

Higher risk of complications
including ARDS, septic shock,
and multi-organ dysfunction

Hospitalization
Rates

Lower hospitalization
rates and shorter
duration of illness

Increased hospitalization rates,
longer recovery time, and

greater need for intensive care

Mortality Risk Lower mortality due to
better immune regulation
and metabolic balance

Increased mortality risk due to
immune dysregulation and
hyperglycemia-induced

organ dysfunction

Response
to Treatment

Better response to
antiviral therapies and

supportive care

Reduced treatment efficacy,
higher risk of secondary

infections and complications
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severe lung inflammation and multi-organ failure (194). TNF

inhibitors, such as infliximab and etanercept, mitigate

hyperinflammation in dengue and Ebola virus infections (195, 196).

Targeting glucose metabolism could be introduced as a

promising antiviral potential but consists of challenges. Balancing

viral inhibition with immune function is critical, as glycolysis is

essential for immune cell activation.

In the other hand, using metabolic modulators carries a lot of

side effects. For example, (2-DG) and AMPK activators, are

therapeutically promising for targeting metabolic vulnerabilities in

conditions like cancer or diabetes, but unfortunately carries

significant off-target effects due to their broad influence on

glycolysis and energy regulation. 2-DG, a glycolysis inhibitor,

disrupts energy production in highly glycolytic cells, causing

fatigue, neurocognitive effects (if crossing the blood-brain

barrier), cardiac arrhythmias, and immunosuppression by

impairing immune cell activation (e.g., reduced T-cell

proliferation, macrophage inflammation, and dendritic cell

function) (197, 198). Similarly, AMPK activators like metformin

or AICAR promote catabolism but risk gastrointestinal distress,

hypoglycemia, lactic acidosis, and immunosuppression by shifting

immune cell metabolism (e.g., suppressing pro-inflammatory

macrophage NLRP3 activity, impairing effector T-cell glycolysis,

and promoting regulatory T cells) (199). Both agents also
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differentially affect tissue-specific cells: 2-DG may harm neurons

and cardiomyocytes while targeting cancer cells. AMPK

activators improve hepatic glucose output in diabetes but may

inadvertently suppress anti-tumor immunity. A fine tuning adjust

between therapeutic benefits and risks, are needed in using these

systemic agents and necessitating strategies to enhance cell-specific

targeting to mitigate side effects on immune and vulnerable

tissue cells.

Host variability in metabolic responses necessitates

personalized approaches, incorporating metabolic biomarkers and

immune profiling (4). Viral adaptation to metabolic interventions is

another obstacle. Some viruses such as (HCV), HIV, and, DENV

exploit alternative pathways, such as lipid metabolism, when

glycolysis is suppressed. Combining glucose-targeting strategies

with broader metabolic interventions, such as lipid metabolism

inhibitors or mitochondrial enhancers, may prevent viral escape

mechanisms. Moreover, integrating metabolic profiling into

precision medicine could be a better approach to optimize

antiviral treatments by personalizing therapies based on

individual metabolic and immunological states (Figure 4). This

strategy employs metabolic biomarker discovery, single-cell

metabolomics, and CRISPR-based metabolic engineering to target

metabolic dysfunction at an individual level, enhancing antiviral

efficacy and minimizing inflammation (200, 201).
FIGURE 4

Roadmap for future research in immunometabolism and viral infections.
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7 Conclusion

Glucose metabolism plays a significant role in defining the fate of

immune responses against viral infections. Metabolic reprogramming

supports immune activation, enabling immune cells to impose

effective antiviral defenses while facilitating pathogen clearance.

However, viruses have evolved mechanisms to use host metabolism,

hijacking glucose-dependent pathways to continue replication, evade

immune responses, and establish persistence. The crosstalk between

immunometabolism and viral pathogenesis defines the need for

targeted therapeutic strategies that balance immune activation with

metabolic control. Future research should focus on refining these

therapeutic strategies by integrating multi-omics approaches to

identify metabolic vulnerabilities in different viral infections (Figure 4).
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J. F. I. P. Metabolic alterations in sars-cov-2 infection and its implication in kidney
dysfunction. Front Physiol. (2021) 12:624698. doi: 10.3389/fphys.2021.624698
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130. Pajak̨ B, Zieliński R, Manning JT, Matejin S, Paessler S, Fokt I, et al. The
antiviral effects of 2-deoxy-D-glucose (2-dg), A dual D-glucose and D-mannose
mimetic, against sars-cov-2 and other highly pathogenic viruses. Molecules. (2022)
27:5928. doi: 10.3390/molecules27185928

131. Bhutta MS, Gallo ES, Borenstein RJC. Multifaceted role of ampk in viral
infections. Cells. (2021) 10:1118. doi: 10.3390/cells10051118

132. Kamyshnyi O, Matskevych V, Lenchuk T, Strilbytska O, Storey K, Lushchak
OJB. Metformin to decrease covid-19 severity and mortality: molecular mechanisms
and therapeutic potential. Pharmacotherapy. (2021) 144:112230. doi: 10.1016/
j.biopha.2021.112230

133. Wang CC, Cheng PN, Kao J. H. J. A. P. Systematic review: chronic viral
hepatitis and metabolic derangement. Therapeutics. (2020) 51:216–30. doi: 10.1111/
apt.15575

134. Monnier L. Impact of Hepatitis C Virus Infection on Mitochondria. Université
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Glossary

2-DG 2-Deoxy-D-Glucose
AICAR 5-Aminoimidazole-4-Carboxamide Ribonucleotide
AMP Adenosine Monophosphate
AMPK AMP-activated Protein Kinase
APCs Antigen-Presenting Cells
ARDS Acute Respiratory Distress Syndrome
ATP Adenosine Triphosphate
BBB Blood-Brain Barrier
CD28 Cluster of Differentiation 28
CMV Cytomegalovirus
CPT1A Carnitine Palmitoyltransferase 1A
DAMPs Damage-Associated Molecular Patterns
DCs Dendritic Cells
DENV Dengue Virus
G6P Glucose-6-Phosphatase
GLUT1 Glucose Transporter 1
GLUT2 Glucose Transporter 2
GLUT4 Glucose Transporter 4
HBV Hepatitis B Virus
HCC Hepatocellular Carcinoma
HCV Hepatitis C Virus
HIF-1a Hypoxia-Inducible Factor 1-alpha
HIV Human Immunodeficiency Virus
HK2 Hexokinase 2
ICOS Inducible T-cell Co-Stimulator
IFNg Interferon-gamma
IL-1b Interleukin-1 beta
IL-4 Interleukin-4
IL-6 Interleukin-6
IL-10 Interleukin-10
IL-12 Interleukin-12
IRFs Interferon Regulatory Factors
IRS-1 Insulin Receptor Substrate-1
IRS-2 Insulin Receptor Substrate-2
JAK-STAT Janus Kinase-Signal Transducer and Activator of Transcription
LDH Lactate Dehydrogenase
MAPK Mitogen-Activated Protein Kinase
MFs Macrophages
M1/M2 Macrophage phenotypes (M1: Pro-inflammatory, M2:

Anti-inflammatory)
mTOR Mechanistic Target of Rapamycin
mTORC1 Mechanistic Target of Rapamycin Complex 1
NAFLD Non-Alcoholic Fatty Liver Disease
NF-kB Nuclear Factor kappa-light-chain-enhancer of activated

B cells
NK Natural Killer cells
PAMPs Pathogen-Associated Molecular Patterns
PEPCK Phosphoenolpyruvate Carboxykinase
PFK Phosphofructokinase
PI3K Phosphoinositide 3-Kinase
PKM2 Pyruvate Kinase M2
PRRs Pattern Recognition Receptors
RIG-I Retinoic Acid-Inducible Gene I
ROS Reactive Oxygen Species
SARS-CoV-2 Severe Acute Respiratory Syndrome Coronavirus 2
SGLT2 Sodium-Glucose Cotransporter 2
SOCS Suppressor of Cytokine Signaling
SREBPs Sterol Regulatory Element-Binding Proteins
TCR T Cell Receptor
TGF-b Transforming Growth Factor-beta
Th1 T helper 1 cells
Th2 T helper 2 cells
TLRs Toll-Like Receptors
TNF Tumor Necrosis Factor
Treg Regulatory T cells
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