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Objective: To identify new metabolic biomarkers associated with myasthenia

gravis (MG).

Methods: We analyzed 285 potential metabolic molecules from UK Biobank

(UKB) for MG patients and identified elevated serum cystatin C (Cys-C). Validation

was performed using laboratory data, ELISA, and clinical information from

Chinese (CHN) acetylcholine receptor antibody (AChR-Ab) positive generalized

MG (gMG) cohorts. We assessed cytokines/chemokines/complements and

peripheral blood T lymphocytes using Luminex assays and flow cytometry.

MG-relevant scores including myasthenia gravis activities of daily living score

(MG-ADL) and quantitative myasthenia gravis score (QMG) were prospectively

collected and retrospectively analyzed. The correlations between serum Cys-C

and the ratio of T helper 1 (Th1)/Th2 were assessed.

Results: Serum Cys-C levels were significantly elevated in MG patients compared

to healthy controls in both UKB cohorts and Chinese MG cohorts (CHN) (UKB:

0.99 ± 0.20 vs. 0.86 ± 0.12 mg/L, p = 2.26E-41; CHN: 1.08 ± 0.30 vs. 0.87 ± 0.13

mg/L, p = 4.83E-08). Higher serum Cys-C levels were found in MG patients with

high disease burden, as stratified by MG-ADL score. SerumCys-C correlated with

MG scores, including QMG (R = 0.40, p = 3.90E-03) and MG-ADL scores (R =

0.42, p = 2.40E-03). The ratio of Th1/Th2 correlated well with the serum Cys-C

(R = 0.29, p = 3.10E-02).
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Conclusions: SerumCys-C levels were significantly elevated in AChR-Ab positive

gMG patients and correlated with disease severity and Th1/Th2 ratio, suggesting

its potential as an efficient biomarker for predicting the clinical severity of MG.

Future prospective cohort studies with a large sample size are expected to

validate these findings.
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1 Introduction

Myasthenia gravis (MG) is a T-cell-dependent, B-cell-mediated

autoimmune disease caused by antibodies targeting the nicotinic

acetylcholine receptor (AChR) or other components of the post-

synaptic muscle endplate at the neuromuscular junction (NMJ) (1).

The clinical presentation of MG ranges from an isolated ocular form to

severe weakness of the limb, bulbar and respiratory muscles. The age of

onset varies from childhood to late adulthood, with disease peaks

observed in younger adult women and older men (2). MG represents a

growing burden globally due to its increasing prevalence, substantial

healthcare costs, reduced quality of life, and the significant psychosocial

challenges it poses on patients and caregivers (3–5).

From both clinical and immunological perspectives, MG is a

heterogeneous autoimmune disorder. The identification of reliable

biomarkers is promising for improving diagnostic accuracy,

distinguishing MG from other diseases associated with muscle

weakness, guiding therapeutic decision-making, and evaluating

prognosis (2). Previous studies have shown that delayed treatment

or poor adherence can worsen the disease burden in MG, with around

60% of patients initially presenting with ocular symptoms eventually

progressing to generalized MG. Kimiaki et al. introduced the concept

of early fast therapy, highlighting that repeated strategies such as

plasma exchange or intravenous immunoglobulin enabled MG

patients to more frequently and rapidly achieve minimal

manifestations or better, while maintaining prednisolone at ≤5 mg/

day for ≥6 months (6). Autoantibodies against the components at the

NMJ serve as sensitive, specific, and well-established diagnostic

markers for MG. Approximately 80% of MG patients present with

autoantibodies against AChR, while a smaller subset is seropositive for

antibodies targeting muscle-specific kinase (MuSK), low-density

lipoprotein receptor-related protein 4 (LRP4), or agrin (2).

Additionally, AChR-antibody (AChR-Ab) titers have also been used

as a biomarker for the therapeutic response of immunotherapies (7),

although the absolute levels of these autoantibodies do not correlate

with disease severity (8).

Beyond pathogenic autoantibodies, various potential biomarkers

have been identified to be associated with MG, including microRNAs

(e.g., miR-146), inflammatory cytokines (e.g., IFN-g, IL-21),

complement segments (e.g., C5a), and serum metabolites (e.g.,

arachidonic acid) (9–12). However, these findings were restrained to
02
insufficient validation or small sample sizes. The emergence of high-

throughput omics profiling techniques has facilitated biomarker

discovery, with genome-wide association studies (GWAS)

identifying specific HLA variants (e.g., HLA-B*08:01) and proteomic

analyses revealing ITIH3 as a potential biomarker (13, 14). Peripheral

metabolomics, offering an accessible approach to evaluate

inflammatory status in MG patients, represents a promising yet

unexplored avenue for biomarker discovery.

In this study, we leveraged metabolic screening data from the

UK Biobank (UKB) cohort of 502,400 adults and an independent

Chinese MG cohort of 120 patients to: (1) identify novel peripheral

biomarkers associated with the MG; (2) validate these biomarkers in

an independent MG cohort and assess the associations with clinical

and immunological parameters (Figure 1).
2 Methods

2.1 Screening for potential metabolic
biomarkers for MG in UKB

UKB is a large-scale, population-based prospective cohort study

designed to investigate the genetic, environmental, and lifestyle

determinants of a wide range of diseases and health outcomes (15),

which has been relatively underutilized in research onMG to date. We

retrieved 285 potential metabolic molecules that have been screened in

patients with MG from UKB, including 30 from blood biochemistry,

251 from nuclear magnetic resonance (NMR) metabolomics, and four

from urine assays (Supplementary Table 1). MG patients were

identified using UKB codes 1260 and 1437 based on self-reported

illness data (https://biobank.ndph.ox.ac.uk/ukb/field.cgi?id=20002).

Descriptions provided by patients were verified by a clinician and,

where possible, cross-referenced with entries in the coding tree.

Only the baseline group (Instance 0) was used for analysis, as given

the limited representation of MG cases in later instances. We

categorized all participants (n = 502,409) by their illness code

into three groups: (1) MG (n = 191), (2) Healthy control (HC, n

= 118,493), and (3) Other diseases (defined as non-MG, n =

383,716). Subsequently, a primary screening was conducted by

comparing the p-values of MG vs. HC, followed by a secondary

comparison of MG vs. non-MG controls. The UKB received ethical
frontiersin.org
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approval from the North West Multicenter Research Ethics

Committee, and all participants provided written informed

consent. This study was performed under the UKB application

number 19542.
2.2 Validation for the identified biomarker
and cytokine measurement in MG

From July to December 2024, 60 patients with anti-AChR-Ab

generalized MG (gMG) were enrolled from the prospective registered

cohort (NCT04535843), alongside 60 age- and sex-matched HCs.

The study protocol was approved by the Ethics Committees of

Huashan Hospital (2019–441 and 2022-913), and participants

provided written informed consent. The basic demographic

information and clinical features including sex, age at screening,
Frontiers in Immunology 03
onset age, thymoma status, thymectomy history, the clinical subtypes,

myasthenia gravis activities of daily living score (MG-ADL),

quantitative myasthenia gravis score (QMG), myasthenia gravis

composite score (MGC), MG quality of life measure score (MG-

QOL-15r) were collected (16–18). Peripheral blood serum samples

were obtained from both MG patients and HCs and stored at -80°C

refrigerator before analysis. MG patients were stratified into high-

burden (MG-ADL score ≥6) and low-burden (MG-ADL <6) groups

based on MG-ADL scores at enrollment (19).

Serum Cys-C levels were measured using an ELISA kit (Beyotime,

China; PC220 Human Cys-C ELISA Kit). Twenty-two cytokines,

chemokines, and complements were selected based on a literature

review, including TNF-a, IFN-a, IFN-b, IFN-g, IL-4, IL-6, IL-18, IL-
17, IL-23, IL-2, IL-10, IL-19, IL-8, CCL3, CXCL2, CXCL4, CXCL5,

BAFF and APRIL, C2, C5a and C9 (20–22). These were analyzed

using two independent Human Luminex Discovery Assay panels
FIGURE 1

Flowchart of patient enrollment in this study. This flowchart illustrates the process of screening and identification of serum Cys-C as a potential
biomarker for MG in the UKB cohort (n = 502,400), including 191 MG patients and 118,493 HCs, with a total of 285 metabolic molecules analyzed.
Validation and further analyses were conducted in Chinese MG cohorts, involving serum Cys-C measurements (60 MG patients and 60 HCs) and
laboratory data review (120 MG patients and 146 HCs). Additionally, associations between serum Cys-C levels and inflammatory markers were
investigated, including peripheral blood T-cell subset flow cytometry and cytokine/chemokine measurements in a subset of 25 MG patients and 25
HCs. Cys-C, Cystatin C; UKB, UK Biobank; MG, myasthenia gravis; HC, health control.
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TABLE 1 The top ten elevated molecules identified in MG from the UKB.
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(R&D Systems). Plasma samples were transferred into wells

containing immobilized antibodies that capture the target molecules

of interest. The Luminex assay results were analyzed on a Luminex®

100/200™ instrument (Luminex Corporation). Cytokine

measurements were obtained using a single replicate per sample,

with values below the detection threshold recorded as 0 pg/ml. If more

than 30% of cytokine results for a sample reported low quality, a

backup plasma sample was retrieved and repeatedly tested.
2.3 Retrospective analysis of laboratory
data in a Chinese MG cohort

We then retrospectively reviewed the laboratory biochemical

data and the peripheral mononuclear cell flow cytometry from a

Chinese cohort of gMG patients (n=120) and HCs (n=146) from the

Department of Neurology, Huashan Hospital in 2024. HCs had no

history of MG or other chronic inflammatory/autoimmune

diseases. To eliminate the potential confounding effects of

immunosuppressants on renal function, we enrolled the patients

with treatment-naive gMG, as they had not received any

immunotherapies at the time of assessment (n=35).

Laboratory data collected included: (1) renal function indicators

in blood metabolic panel such as serum Cys-C, estimated

glomerular filtration rate (eGFR, calculated by CKD-EPI

creatinine equation), blood urea nitrogen (BUN), and uric acid

(UA) (23); and (2) peripheral blood T lymphocyte flow cytometry

results, specifically the absolute counts of Th1 and Th2 cells and

their relative proportions among Th cells. The Th cell subsets were

identified as follows: Th: CD3+CD4+, Th1: CXCR3-CCR6-; Th2:

CXCR3-CCR6+. All laboratory analyses were performed and

reported by the same centralized laboratory at Huashan Hospital.
2.4 Statistical analysis

Continuous variables were reported as mean ± standard

deviation (SD) and compared using T-tests or analysis of variance

(ANOVA). Categorical variables were reported as percentages (%)

and compared using the chi-square test or Fisher’s exact test,

depending on sample size. Correlation analysis was conducted

using the Pearson method. In cases where multiple comparisons

were made, the False Discovery Rate (FDR) method was applied to

adjust p-values. The Wilcoxon signed-rank test was performed to

compare differences between groups.
3 Results

3.1 Identification of elevated serum Cys-C
in MG

In this study, by leveraging the metabolic screening data from

the large UKB cohort (n = 502,400), we classified participants into

three groups: MG patients (n = 191), healthy controls (HC, n =

118,493), and individuals with other diseases (n = 383,716)
Frontiers in Immunology 05
(Table 1). Serum Cystatin C (Cys-C) levels were significantly

higher in MG patients compared to HCs (MG vs. HCs, 0.99 ±

0.20 vs. 0.86 ± 0.12 mg/L, p = 2.26E-41, adjusted p = 1.18E-40),

ranking as the most prominently elevated biomarker among all 363

molecules analyzed. Furthermore, MG patients exhibited markedly

higher serum Cys-C levels compared to patients with other diseases

(MG vs. Other diseases, 0.99 ± 0.20 vs. 0.92 ± 0.19 mg/L, p = 2.88E-

06, adjusted p = 1.02E-05), suggesting that serum Cys-C represents

a distinctive metabolic signature in MG patients (Figure 2A).
3.2 Validation of serum Cys-C levels in an
independent Chinese MG cohort

In an independent Chinese (CHN) gMG cohort, 120 AChR-

Ab positive gMG patients and 146 HCs were enrolled in this

study (Table 2). The sex (CHN gMG vs. HCs, men%/women%,

30.12%/69.88% vs. 43.15%/56.85%, p =6.60E-02) and age (CHN

gMG vs. HCs, 53.08 ± 18.89 vs. 48.13 ± 13.40 years, p =6.05E-02)

distributions were comparable between the two groups.

Compared with HCs, CHN gMG patients exhibited elevated

serum Cys-C levels (CHN gMG vs. HCs, 1.08 ± 0.30 vs. 0.87 ±

0.13mg/L, p = 4.83E-08). Since Cys-C is mainly involved or

associated with renal glomerular filtration, we next analyzed the

impact of renal impairment in patients with MG by utilizing

CHN gMG cohort and MG patients from UKB (24). The renal

function-related indicators, including eGFR (CHN gMG vs.

HCs, 105.30 ± 20.66 vs. 101.01 ± 14.33ml/min, p = 5.17E-02),

Uric Acid (UA) (CHN gMG vs. HCs, 0.27 ± 0.07 vs. 0.32 ±

0.09mmol/L, p = 6.85E-01), BUN (CHN gMG vs. HCs, 6.64 ±

2.41 vs. 5.61 ± 1.17mmol/L, p = 7.17E-01) and enzymatic CRE

(UKB MG vs. UKB HCs, 9760.00 ± 7047.00 vs. 8394.00 ±

5658.00mmol/L, p = 5.70E-02), showed no significant

differences between MG and HCs in both CHN gMG and UKB

MG cohort (Figure 2A).

Given the potential confounding effects from the

immunosuppressive therapies, 35 treatment-naive CHN gMG

patients were subsequently selected, with sex and age comparable

to those of HCs (Sex, p = 9.80E-01; Age, p =3.55E-01) (Table 3).

Treatment-naive MG patients exhibited significantly elevated

serum Cys-C levels compared to HCs (naive CHN gMG vs. HCs,

1.04 ± 0.26 vs. 0.87 ± 0.13mg/L, p = 8.19E-03), while other renal

function-related indicators were remained comparable, including

eGFR (naive CHN gMG vs. HCs, 102.50 ± 12.66 vs. 100.40 ±

12.46ml/min, p = 5.93E-01), UA (naive CHN gMG vs. HCs, 0.30 ±

0.12 vs. 0.32 ± 0.09mmol/L, p = 5.36E-01), BUN (naive CHN gMG

vs. HCs, 6.50 ± 2.21 vs. 5.61 ± 1.17mmol/L, p = 1.33E-01), further

confirming that the elevation of serum Cys-C in MG patients was

unrelated to renal function impairment (Figure 2B).
3.3 Serum Cys-C correlates with disease
severity in patients with MG

Based on MG-ADL scores, MG patients were stratified into

high-disease burden (MG-ADL score ≥6, N = 18) and low-disease
frontiersin.org
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burden (MG-ADL score <6, N=42) groups at enrollment (Table 4)

(19). Serum Cys-C levels were higher in the high-burden group than

in the low-burden group (High burden MG vs. HCs, 1.12 ± 0.29 vs.

1.04 ± 0.27, p =6.10E-02), and both groups had significantly

elevated Cys-C levels compared to HCs (High burden MG vs.

HCs, 1.12 ± 0.29 vs. 0.92 ± 0.14, p = 4.47E-05; Low burden MG vs.

HCs, 1.04 ± 0.27 vs. 0.92 ± 0.14, p = 6.00E-03) (Figure 3A).
Frontiers in Immunology 06
We then analyzed the associations between serum Cys-C and

clinical severity of MG, as measured by the MG-QMG and MG-

ADL scores. Serum Cys-C levels correlated significantly with

advanced MG-QMG scores (R=0.40, p = 3.90E-03) and MG-ADL

scores (R=0.42, p = 2.40E-03. No correlation was observed between

serum Cys-C levels and AChR antibody titers (R=0.08, p = 6.50E-

01) (Figure 3B). A comparative analysis of the same cohort of 37
TABLE 2 Clinical characteristics and renal function-related indicators of UK and Chinese cohort.

Feature
UK cohort Chinese cohort

HC (n=764) MG1 (n=191) p value HC (n=146) MG (n=120) p value

Sex, % men/% women 42.93%/57.07% 42.93%/57.07% 1.00E+00 43.15%/56.85% 30.12%/69.88% 6.60E-02

Age (years), mean ± SD 59.49 ± 6.79 59.49 ± 6.80 1.00E+00 48.13 ± 13.40 53.08 ± 18.89 6.05E-02

AChR positive, n (%) / / / / 120 (100%) /

Cys-C (mg/L), mean ± SD 0.89 ± 0.12 0.99 ± 0.21 7.21E-09 0.87 ± 0.13 1.08 ± 0.30 4.83E-08

eGFR (ml/min), mean ± SD / / / 101.01 ± 14.33 105.30 ± 20.66 5.17E-02

Enzymatic CRE (mmol/L), mean ± SD 8394.00 ± 5658.00 9760.00 ± 7047.00 5.70E-02 / / /

BUN (mmol/L), mean ± SD / / / 5.61 ± 1.17 6.64 ± 2.41 7.17E-01

UA (mmol/L), mean ± SD / / / 0.32 ± 0.09 0.27 ± 0.07 6.85E-01
1Self-reported MG.
MG, myasthenia gravis; HC, health control; AChR, acetylcholine receptor; Cys-C, Cystatin C; eGFR, estimated glomerular filtration rate; BUN, blood urea nitrogen; UA, uric acid;
CRE, creatinine.
FIGURE 2

Measurement of serum Cys-C levels and renal function-related indicators of UK and Chinese cohort. Comparison of serum Cys-C and renal
function-related indicators levels, including eGFR, UA, BUN and enzymatic CRE, between MG patients and HCs in the UK cohort (self-reported MG:
N = 191, HCs: N = 118,493) and the CHN AChR-Ab+ gMG cohort (MG: N = 120, HCs: N = 146). (B) Comparison of serum Cys-C and renal function-
related indicators levels, including eGFR, UA and BUN, between naive CHN gMG patients (N=35) and HCs (N=70). MG, myasthenia gravis; HC, health
control; eGFR, estimated glomerular filtration rate; BUN, blood urea nitrogen; UA, uric acid; CRE, creatinine; Cys-C, Cystatin C; CHN, chinese; gMG,
generalize myasthenia gravis. “***” indicates p < 0.001, and “****” indicates p < 0.0001.
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patients pre- and post-treatment revealed a significant reduction in

serum Cys-C levels following treatment (1.26 ± 0.27 to 1.00 ± 0.27;

p < 0.001) (Figure 3C). Among the cohort of 37 patients, all MG

patients received pyridostigmine and steroids. Additionally, some

patients underwent treatment with oral immunosuppressants

(tacrolimus, mycophenolate mofetil, and azathioprine), targeted

therapies (efgartigimod, eculizumab, and rituximab), as well as

rescue therapies (intravenous immunoglobulin and plasma

exchange) (Supplementary Table 2).
Frontiers in Immunology 07
3.4 Serum Cys-C levels are associated with
the Th2 conversion to Th1 in MG

Cys-C has been implicated in switching the inefficient Th2

cytokine response to an effective Th1 response, potentially involved

in the regulation of autoimmunity (25). To further explore its role

in MG pathogenesis, we analyzed the proportion or count of T

lymphocyte subsets and MG-related cytokines in a subgroup of 25

gMG patients. Compared to HCs, MG patients exhibited a

significantly increased proportion of Th1 cells (MG vs. HCs,

28.12 ± 7.45 vs. 22.63 ± 6.27, p = 1.37E-03), while the proportion

of Th2 cells remained unchanged (MG vs. HCs, 43.07 ± 13.39 vs.

46.34 ± 11.95, p = 2.85E-01) (Figure 4A). In addition, the Th1/Th2

ratio was markedly elevated in gMG patients (MG vs. HCs, 0.79 ±

0.45 vs. 0.56 ± 0.33, p = 1.48E-02) and showed a significant positive

correlation with serum Cys-C levels (R=0.29, p = 3.10E-02)

(Figure 4B). Furthermore, the differentiation of functional

effectors such as Th1 and Th2 cells from T cells are subject to the

regulation of cytokines (26). Compared with HCs, MG patients

exhibited an elevation in plasma inflammatory molecules, including

IL-6, IL-8 and IL-10, though differences did not reach statistical

significance (Figure 4C).
4 Discussion

In this study, we analyzed MG-related data from the UKB cohort

for the first time and investigated Cys-C as a potential biomarker

candidate for MG. Our findings revealed significantly elevated serum

Cys-C levels in MG patients, a result consistently validated across
TABLE 3 Clinical characteristics and renal function-related indicators in
treatment-naive MG patients.

Feature HC (n=70)
Naive
MG (n=35)

p
value

Sex, % men/% women 43.15%/56.85% 42.86%/57.14% 9.80E-01

Age (years), mean
± SD

48.13 ± 13.40 51.90 ± 15.51 3.55E-01

AChR positive, n (%) / 30 (100%) /

Cys-C (mg/L), mean
± SD

0.87 ± 0.13 1.04 ± 0.26 8.19E-03

eGFR (ml/min), mean
± SD

100.40 ± 12.46 102.50 ± 12.66 5.93E-01

Enzymatic CRE
(mmol/L), mean ± SD

5.61 ± 1.17 6.50 ± 2.21 1.33E-01

BUN (mmol/L), mean
± SD

0.32 ± 0.09 0.30 ± 0.12 5.36E-01
MG, myasthenia gravis; HC, health control; AChR, acetylcholine receptor; Cys-C, Cystatin C;
eGFR, estimated glomerular filtration rate; BUN, blood urea nitrogen; UA, uric acid.
TABLE 4 Clinical characteristics MG patients with low and high disease burden.

Basic characteristic HC (n=60) Low-burden MG (n=42) High-burden MG (n=18) p value

Sex, % men/% women 41.67%/58.33% 42.86%/57.14% 50.00%/50.00% 9.71E-01

Age (years), mean ± SD 42.10 ± 16.54 42.80 ± 16.45 43.67 ± 11.81 5.57E-01

AChR positive, n (%) / 42 (100.00%) 18 (100.00%) /

Thymoma, n (%) / 10 (23.81%) 7 (28.00%) 3.48E-01

Thymectomy, n (%) / 6 (14.29%) 2 (8.00%) 9.99E-01

Generalized MG, n (%) / 42 (100.00%) 18 (100.00%) /

EOMG, n (%) / 24 (57.14%) 8 (44.44%) 4.09E-01

LOMG, n (%) / 8 (19.05%) 3 (16.67%) 7.24E-01

TAMG, n (%) / 10 (23.81%) 7 (38.89%) 3.49E-01

QMG, mean ± SD / 5.64 ± 4.20 19.28 ± 7.66 <0.001

MG-ADL, mean ± SD / 1.60 ± 1.98 14.17 ± 5.33 <0.001

MG-QOL15r, mean ± SD / 5.14 ± 7.48 27.27 ± 15.55 <0.001

MGC, mean ± SD / 2.93 ± 3.78 26.78 ± 12.58 <0.001
MG, myasthenia gravis; HC, health control; AChR, acetylcholine receptor; EOMG, early-onset myasthenia gravis with AChR antibody; LOMG, late-onset myasthenia gravis with AChR-Ab;
TAMG, thymoma-associated myasthenia gravis; QMG, quantitative myasthenia gravis score; MG-ADL, MG-activities of daily living profile; MG-QOL15r, myasthenia gravis quality of life 15-
item revised; MGC, myasthenia gravis composite.
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different cohorts and populations. Furthermore, our analysis

demonstrated a significant correlation between Cys-C levels and

MG disease severity. Notably, Cys-C levels were associated with the

shift from Th2 to Th1 immune responses, a process known to

contribute to the pro-inflammatory environment in MG, thereby

providing insights into its role in MG pathogenesis (27).

Cystatins, constituting a large group of evolutionarily conserved

proteins, function mainly as reversible, tight-binding inhibitors of

cysteine proteases (cathepsins), and are involved in several immune

processes controlling the cathepsins (28). Cathepsins play crucial

roles in oncogenesis and autoimmune diseases, primarily through

activation of inflammatory responses and promotion of

extracellular matrix (ECM) degradation (29). Cys-C is a classical

and potent cysteine protease inhibitor that belongs to the family II

of the cystatin super-family, and is produced and released at a

constant rate by all nucleated cells. It is critical for controlling the

cleavage and removal of the MHC class II invariant chain (30, 31).

Clinically, Cys-C is widely used as a biomarker of renal

functions due to its relatively low molecular weight and ease of

detection (25). In systemic lupus erythematosus (SLE), Cys-C is a

promising marker for monitoring organ damage and disease

activity in SLE (32). Growing evidence suggests the direct

involvement of Cys-C in various immunologic disorders, with its

encoding gene regulating cytokine expression under inflammatory

or infectious conditions (33, 34). Previous studies have shown that
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Cys-C downregulation enhances human leukocyte antigen (HLA)

class II expression in macrophages, increases CD4+ T lymphocyte

proliferation, and enhances IFN-g secretion (35). Conversely,

another study concluded that elevated Cys-C levels in IFN-g
induced macrophages shift the immune responses toward

protective Th1 immunity (25). Meanwhile, Hashimoto et al.

observed significant downregulation of Cys-C transcripts upon

dendritic cells maturation, a process essential for T cell activation

and the bridge between innate and adaptive immunity during acute

infection (25, 36). Cys-C exhibits context-dependent roles in

autoimmunity. While it suppresses cathepsins to limit

inflammation, elevated Cys-C in MG paradoxically correlates

with immune dysregulation. This may stem from its dual

immunomodulatory effects: promoting Th1 responses in

macrophages (25) yet exacerbating Th1/Th17-driven pathology in

MG (37). Our data linking higher Cys-C to increased Th1/Th2

ratios suggest it amplifies autoimmune pathways via Th2-to-Th1

conversion. Future studies should target tissue-specific protease-

immunity crosstalk to restore homeostasis in MG.

Collectively, these findings indicate a critical role for Cys-C in

the immunoregulation of T cell subsets. A previous study using an

experimental autoimmune MG (EAMG) model demonstrated that

increased proportions of Th1 and Th17 cells exacerbate MG

pathogenesis (37). Given the pivotal role of T lymphocytes in MG

pathogenesis, we hypothesize that Cys-C regulates the Th2-to-Th1
FIGURE 3

Associations between Serum Cys-C and MG disease severity in Chinese MG cohorts. Comparison of serum Cys-C levels between low-burden MG
(N=42), high-burden MG (N=42) and HCs (N=60). (B) Correlations between serum Cys-C levels and indicators associated with MG, including QMG
score, MG-ADL score and AChR titers. (C) Comparative analysis of serum Cys-C level in a subset of MG patients (N = 37) before and after treatment.
MG, myasthenia gravis; QMG, quantitative myasthenia gravis score; MG-ADL, MG-activities of daily living profile; AChR, acetylcholine receptor; Cys-
C, Cystatin C. “**” indicates p < 0.01, “***” indicates p < 0.001, and “****” indicates p < 0.0001.
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conversion via various cytokines, thereby influencing the

pathogenesis of MG. In our study, a significant positive

correlation was observed between Cys-C levels and the Th1/Th2

ratio, suggesting that elevated Cys-C levels promote the conversion

of an inefficient Th2 cytokine response to an effective Th1 response

in MG.

Beyond its role in Th2-to-Th1 conversion, Cys-C may

contribute to the pathogenesis of MG through additional

mechanisms. One potential pathway involves the modulation of

antigen-presenting cell function by disrupting the activity of

cysteine proteases, which can lead to abnormal self-antigen

presentation and the activation of autoreactive T cells (38).

Another mechanism is its ability to amplify complement-

mediated synaptic damage by regulating the complement cascade

in a protease-dependent manner, particularly through its

interaction with complement component C4 (39). This evidence

highlights the intricate roles of Cys-C in immune regulation and

tissue damage in MG, underscoring the importance of further

research into therapeutic approaches that target protease-

mediated immune system interactions.

Currently, few MG biomarkers have been identified as

correlated with disease severity. While flow cytometry-based

markers representing autoreactive T-cell activation are valuable,

they require substantial time and resources for evaluation. Serum

Cys-C serves as a more efficient and robust biomarker for

monitoring disease progression, thereby making it a promising

candidate for widespread clinical application.
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This study has several limitations that warrant consideration:

First, elevated Cys-C expression is associated with inflammatory

autoimmune diseases and tumor development (25), which may

limit its specificity as a biomarker for MG. Second, the underlying

molecular mechanisms by which Cys-C contributes to MG

pathogenesis were not investigated, leaving its precise role in

disease progression unclear. Moreover, the retrospective design of

this study introduces potential selection bias, which may limit the

generalizability of our findings to broader populations. Finally, the

small sample size reduces the statistical power and increases the risk

of bias.
5 Conclusion

Serum Cys-C levels were significantly elevated in AChR-Ab

positive gMG patients and positively correlated with disease severity

and the Th1/Th2 ratio. These findings suggest that serum Cys-C

may serve as a potential biomarker for monitoring disease

progression for MG.
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FIGURE 4

Associations between serum Cys-C and inflammatory markers in Chinese MG cohorts. Comparison of the proportion of Th1 cells and Th2 cells of T
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Cystatin C. “*” indicates p < 0.05, “**” indicates p < 0.01.
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