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Introduction: Recent vaccine and infectious disease studies have highlighted the

importance of antibodies that activate cellular Fc functions, including antibody-

dependent cellular phagocytosis (ADCP) and antibody-dependent cellular

cytotoxicity (ADCC), which are mediated by different Fc gamma Receptors

(FcgRs). Activation of these functions requires complex overlapping interactions

between IgG antibodies, FcgRs, and antigens that can be challenging to

deconvolve experimentally.

Methods: Here we created an ordinary differential equation model that

simultaneously predicted FcgRIIIa immune complexes upstream of ADCC and

FcgRIIa immune complexes upstream of ADCP as a function of antigen, IgG, and

FcgR concentration and binding properties. We then used the model to dissect

mechanisms driving immune complex formation.

Results: Model results suggested that the maximum formation of immune

complexes would not occur at highest total IgG titers. Instead, higher IgG titers

have the potential to decrease FcgRIIIa (ADCC) and/or FcgRIIa (ADCP) immune

complexes, due to competition between antibody subclasses for antigen and

FcgR binding. We used the model to simulate vaccine boosts of IgG1 or IgG3 in

105 participants from an HIV vaccine trial, and found that boosting IgG1 and IgG3

in combination was not predicted to result in significant changes in either FcgRIIIa
(ADCC) or FcgRIIa (ADCP) immune complexes. Surprisingly, simulated boosting

of IgG3 alone had the potential to significantly decrease ADCP (p<0.00001),
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though it would increase ADCC responses. We also illustrated how the model

could be used to assess how variability in viral load, FcgR expression, FcgR
polymorphisms, and IgG titers across different tissue compartments can lead

to differences in FcgRIIIa and FcgRIIa complexes.

Discussion: Altogether, these results illustrate how a computational framework

provides new quantitative insights into activation of Fc effector functions

that could be used to guide future rational design of therapeutic and

prophylactic interventions.
KEYWORDS

antibody-mediated effector functions, antibody-dependent cellular cytotoxicity
(ADCC), human immunodeficiency virus (HIV), ordinary differential equation model,
mechanistic model
1 Introduction

Recent vaccine and infectious disease studies emphasize the

importance of non-neutralizing antibody functions that can

activate Fc Receptors (FcRs) on innate immune cells to induce

multiple cellular functions including antibody-dependent cellular

phagocytosis (ADCP) and antibody- dependent cellular cytotoxicity

(ADCC) (1–6). These functions have been correlated with

protection and linked to optimal vaccine efficacy for a broad

range of pathogens. For example in HIV, ADCC was identified as

a secondary correlate of protection in the RV144 vaccine trial, and

linked to increases in vaccine-specific IgG1 and IgG3 (6–9). In the

same RV144 study, polyfunctional antibodies capable of activating

multiple Fc-mediated responses were induced, similar to those seen

with protective non-human primate HIV vaccines and in HIV elite

controllers (10–13). In contrast, monofunctional antibodies were

observed in non-protective HIV vaccines (6), though it has not been

possible to replicate these results in vaccine trials conducted in other

populations. Altogether these findings underscore the importance

of understanding quantitative mechanisms by which ADCC,

ADCP, and other Fc effector functions are activated, especially

person-to-person variability driven by differences in antibody titers

and binding properties. Such insights would be valuable for

tailoring effective immune interventions against pathogens in

diverse populations.

ADCC and ADCP share overlapping upstream activators,

relying on the binding of IgG antibodies to FcgRs (traditionally

FcgRIIa for ADCP and FcgRIIIa for ADCC). However, the

activation of these pathways is complex and influenced by several

factors, including individual variation in IgG subclass titers (IgG1–

4), post translational modifications (such as glycosylation of the

antibody Fc region), such as glycosylation of the antibody Fc

region), and genetic polymorphisms in FcgRs. Additionally,

tissue-specific differences in immune cell populations and

receptor expression, such as FcgRIIa on phagocytes and FcgRIIIa
on natural killer (NK) cells, drive heterogeneity in Fc effector
02
responses. This heterogeneity is particularly pronounced in

mucosal environments like the respiratory and gastrointestinal

tracts, where distinct immune populations and local antibody

concentrations shape immune responses. Challenges associated

with evaluating human tissue-specific samples limit the ability to

experimentally assess the relative importance of individual changes

in this complex system.

Vaccine boosting strategies have been employed to enhance

neutralizing antibody titers, but their effects on Fc effector functions

remain less understood. In HIV, boosting has been shown to elevate

total IgG levels but skew subclass distribution toward IgG2 and

IgG4, leading to diminished Fc effector activity (6, 14–16). Previous

computational efforts have provided insight into FcR activation and

ADCC/ADCP dynamics. For instance, Lemke et al. (2021)

developed an ordinary differential equation (ODE) model to

examine personalized responses in RV144 participants (17).

However, this model was limited in that it only evaluated

complexes for each FcgR (FcgRIIa or FcgRIIIa) in isolation and

did not consider the competition between FcRs for the

same antibody-antigen complexes, which would be essential for

understanding polyfunctionality.

In this study, we address these gaps by developing a new

computational framework that models the simultaneous

activation of FcgRIIa and FcgRIIIa. Our approach enables

quantitative evaluation of the balance between ADCC and ADCP

under varying conditions, such as changes in IgG subclass titers

following vaccine boosting. Incorporation of interactions between

multiple FcRs enables understanding of how genetic variability,

antibody features, and tissue-specific environments contribute to

polyfunctional immune responses. Furthermore, we illustrate how

the model can be used to simulate differences that may arise in

mucosal tissue compartments, providing insights that are difficult to

obtain experimentally. Overall, this framework aids in unraveling

the complexities of Fc-mediated polyfunctionality and the future

design of immunotherapeutic strategies tailored to individual and

tissue-specific immune landscapes.
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2 Results

2.1 A sensitivity analysis highlights the
importance of IgG1-and IgG3-related
parameters, and how high titers may
reduce Fc effector functions

We first created a system of ordinary differential equations

(ODEs) to simulate the dynamic interactions between IgG

antibodies, antigens, and multiple Fcg receptors (FcgRs) in the

blood (Figure 1). Example equations are provided in Figure 1, and

a full list of equations can be found in Supplementary Material. The

model extends our prior work in Lemke et al. (2021) (17) and Lemke

et al. (2022) (18), by including multiple FcRs in parallel, which

enables assessment of potentially competitive interactions that occur

between multiple Fcg receptors. This competition is central to

polyfunctionality, allowing for better evaluation of differences in

tissue-specific activation. The affinity parameters for the model are

summarized in Supplementary Table 1. The forward binding rates of

FcgR to the various IgG subclasses are taken from Bruhns et al. (19),

the reverse binding rate is estimated from the average value in pooled
Frontiers in Immunology 03
RV144 samples, and the antigen-antibody binding rate is determined

from SPRmeasurements from pooled samples. The concentrations of

antibody, antigen, and FcgR for the blood were estimated from the

literature (20–23) and are summarized in Supplementary Table 2.

In order to understand which IgG and FcR features have the

most significant impact on FcgRIIa and FcRgIIIa complex

formation, we performed a one-dimensional sensitivity analysis,

in which each baseline parameter was varied individually by a factor

of 0.05-20x and FcgRIIa and FcRgIIIa complex formation were

subsequently calculated (Figure 2). Unsurprisingly, the most

sensitive parameters for both FcgR outputs involved IgG1 and

IgG3, specifically IgG1 and IgG3 concentrations, and IgG1 and

IgG3 affinities for both antigen and Fc receptor. Antigen and Fc

receptor concentration were also found to be sensitive parameters.

In terms of IgG subclass concentrations, the model illustrated that

increases in FcgRIIa complex formation were primarily associated

with increases in IgG1, whereas increases in FcgRIIIa complex

formation were driven by increases in IgG3. Both of these results

were expected given the higher affinity of FcgRIIa for IgG1 and

FcgRIIIa for IgG3. Intriguingly, however, the model also suggested

that IgG1 and IgG3 have the potential to negatively impact FcgRIIIa
FIGURE 1

Model schematic illustration of FcR2a on macrophages and FcR3a on natural killer cells as examples for antibody-dependent cellular phagocytosis
(ADCP) and antibody-dependent cytotoxicity (ADCC) respectively. Forward and reverse reactions shown for binding of antibody to antigen,
formation of a dimer, then subsequent binding of either FcR2a or FcR3a.
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and FcgRIIa complex formation respectively. When IgG1 was

increased by 20-fold, the model predicted a 26.6% decrease in

FcgRIIIa complexes. Likewise, the model suggested that a 20-fold

increase in IgG3 may decrease FcgRIIa complex formation by as

much as 54.9%. We also performed global sensitivity analyses, in

which all parameters are varied simultaneously across a given range

and parameter sets are chosen randomly within the parameter space

across multiple simulations. The global sensitivity analysis revealed

similar results, highlighting the importance of IgG1 and IgG3

concentration and affinity parameters and suggesting that
Frontiers in Immunology 04
increasing IgG1 decreases FcgRIIIa responses and IgG3 decreases

FcgRIIa responses (Supplementary Figure 1). Inspection of the

model revealed that the unexpected decreases in FcR complex

formation with increased in IgG titers was likely due to

competition between IgG1 and IgG3 subclasses for antigen, with

stronger versus weaker binding for FcgRIIIa vs. FcgRIIa. At very
high IgG1 concentrations, antigen remains bound in anti-IgG1

intermediate complexes, thus reducing antigen availability for IgG3

and lowering formation of FcgRIIIa complexes. A similar

mechanism was observed for IgG3 and FcgRIIa. Overall, these
FIGURE 2

1D sensitivity analysis of two-FcgR model using in vivo blood parameters. Parameters were altered 0.05-20X of the baseline blood values (from
Supplementary Tables 1, 2) as the model was used to predict formation of FcgRIIa (left) and FcgRIIIa (right) complexes. Color indicates the amount of
each respective complex formed.
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results provide a mechanism by which increased levels of IgG1 and

IgG3 may negatively impact FcgR complex formation and

downstream activation of ADCC and ADCP. Interestingly, the

sensitivity analysis also indicated that complex formation for each

receptor was not sensitive to the concentration of the other receptor

(Figure 2). This suggests that competition between FcgRs does not
influence output; rather, it is driven by IgG subclass competition as

described above. To explore this in more detail, we computed

complex formation for each individual receptor alone (like the

model framework created in Lemke et al., 2021 (17)), and also in the

presence of the other receptor (Supplementary Figure 5). Results

confirmed the absence of competition between receptors, as output

for an individual receptor was the same, whether or not another

receptor was included in the model. In other parameters spaces well

outside the physiologically relevant range for this study (very high

antigen concentration and very high FcR concentrations), we did

find that FcgR competition has the ability to influence output

(Supplementary Figure 6).

In order to further explore the interaction between IgG1 and

IgG3 and their combined effects on FcgRIIa and FcgRIIIa complex

formation, we performed a two-dimensional (2D) sensitivity analysis

by tuning each antibody concentration over .001x–1000x it's baseline

value and computing complex formation for FcgRIIa and FcgRIIIa
(Figure 3A). The resulting landscape highlighted changes in ADCP

(FcgRIIa complexes) and ADCC (FcgRIIIa complexes) that might be

expected with increases in IgG1 and IgG3 that result from vaccine
Frontiers in Immunology 05
boosting. The model suggested that more antibody is not necessarily

ideal and that maximizing one Fc effector function tends to lead to

decreases in another function at certain combinations of IgG1 and

IgG3. For example, for FcgRIIa complexes, the landscape illustrates

sensitivity to IgG1 up to 100 nM at low levels of IgG3 (<103 nM),

however this sensitivity has a limit and IgG3 has the capacity to

reduce complex formation at high titers (Figure 3A). Conversely,

FcgRIIIa complex formation is predicted to be highly sensitive to

IgG3 from 10 to 500 nM, but at high levels of IgG1, FcgRIIIa
engagement would be reduced (Figure 3C). Interestingly, at

constant levels of IgG1, the model predicts that increases in IgG3

would increase FcgRIIIa complex formation (ADCC) but decrease

FcgRIIa functions (ADCP). For example, a 1000-fold increase in IgG3

would increase ADCC by 616%, but in parallel it would be expected

to decrease ADCP by 74.7%. This is likely due to the increased

relative affinity of FcgRIIIa for IgG3 in comparison to FcgRIIa, which
leads to competition between antibodies for antigen and less antigen-

bound IgG1to activate ADCP via FcgRIIa. A similar effect was

observed for constant IgG3, where increases in IgG1 were predicted

to result in increases in FcgRIIa functions (ADCP) but decreases in
FcgRIIIa functions (ADCC). For example, a 1000-fold increase in

IgG1 leads to a 734% increase in ADCP while simultaneously leading

to a 69.5% decrease in ADCC (Figure 3). Perhaps most interestingly,

parallel increases in both IgG1 and IgG3 were not predicted to

maximize FcgRIIa and FcgRIIIa complexes due to the potential for

high IgG1 to significantly reduce FcgRIIIa complex formation.
FIGURE 3

2D Sensitivity analysis and relationship between IgG1 and IgG3. (A) FcgRIIaH complex formation (green surface) and FcgRIIIaV (purple surface) plotted
across a combination of IgG1 and IgG3 concentrations with baseline blood parameter values indicated with a black point. (B) Heatmap showing
complex formation with yellow indicating higher values and blue indicating lower values. The curved line indicates the region with the highest
gradient (regions which are very sensitive to small perturbations). (C) Cross-section of surface shown at constant IgG1 = 100nM (above) and
constant IgG3 = 100 nM (below), showing the baseline x parameter value with a dashed line and the inverse relationship between FcgRIIaH
formation and FcgRIIIaV formation as antibody levels increase.
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To illustrate this concept more concretely in a vaccine population

after boosting-related increase in IgG1 and IgG3, we used data from

the RV144 HIV clinical trial, where antigen-specific IgG1, IgG2,

IgG3, and IgG4, as well as antigen-specific FcgRIIa and FcgRIIIa
responses were measured in 105 plasma samples. Experimental IgG

subclass measurements made in mean fluorescent intensity (MFI

units) were converted to concentration as described in the methods

and previously published (Lemke 2021) (17). We used converted

concentration values as input into our two FcR model and predicted

in vivo blood FcgRIIa and FcgRIIIa complex formation for each

vaccinee. The vaccinee samples are illustrated under in vivo

conditions on the surface in Figure 4A, with an average FcgRIIa
complex formation of 2.76e-10 nM and mean FcgRIIIa complex

formation of 2.77e-10 nM. The model was then used to predict

FcgRIIa and FcgRIIIa complex formation after a simulated “boost” in

IgGI and IgG3, separately and in combination. Boosting each

vaccinee’s personal IgG1 titers by 10-fold shifted all the vaccinees

into a non-sensitive plateau region of the landscape (Figure 4B) where

mean FcgRIIa complex formation was significantly higher than

baseline (2.85e-10 nM, adjusted p-value = 0.0069). The IgG1-only

boost decreased FcgRIIIa complex formation significantly (2.46e-10

nM, adjusted p-value = 0.03). Boosting IgG3 in isolation by 10-fold

significantly decreased FcgRIIa by 17.5% (2.28e-10 nM, adjusted p-

value< 0.0001) and increased FcgRIIIa by 70.0% (4.71e-10 nM,

adjusted p-value< 0.0001) (Figure 4C). Interestingly, simultaneously

boosting both IgG1 and IgG3 by 10-fold each led to no significant

difference in either FcgRIIa or FcgRIIIa complex formation due to the

shifting of the vaccinees along the FcgRIIa ≅ FcgRIIIa intersection

(Figure 4D). Thus, the ratio or balance between IgG1 and IgG3 is

more important to the trade-off between FcgRIIa functions and

FcgRIIIa functions more so than maximizing both values

simultaneously. The statistical significances between boosting

interventions are summarized in Figure 4E.
2.2 Host genetics influence the
optimization of effector functions

We next applied this quantitative framework to investigate

differences predicted to arise from genetic differences in Fc

receptor polymorphisms, which have the potential to change IgG

binding to FcgRs. We evaluated two known polymorphisms for

both FcgRIIa and FcgRIIIa including the higher affinity

polymorphisms (FcgRIIa-H131 and FcgRIIIa-V158) as well as the
lower affinity polymorphisms (FcgRIIA-R131 and FcgRIIIa-F158)
(19). For each polymorphism, we evaluated both homozygous and

heterozygous combinations. The landscapes for FcR formation with

the two heterozygous combinations (H131/F158 and R131/V158)

are shown in Figure 5A. With the R131/V158 genotype (low affinity

FcgRIIa and high affinity FcgRIIIa), FcgRIIIa is always greater than
FcgRIIa regardless of IgG1 and IgG3 levels. There is also a much

lower maximum for ADCP (FcgRIIIa) with this combination in

comparison to the H131/F158 combination (high affinity FcgRIIa
and low affinity FcgRIIIa). Example points A (high IgG1 and low

IgG3) and B (high IgG3 and low IgG1) were used to display the
Frontiers in Immunology 06
balance of FcgRIIa and FcgRIIIa across the four different

polymorphism genotype combinations in Figure 5B. A horizontal

line indicates equivalent FcgRIIa and FcgRIIIa formation; above the

line is higher ADCP responses (FcgRIIa), while below the line is

higher ADCC (FcgRIIIa) responses. While ADCC responses are

relatively consistent across phenotypes, the R131/V158

combination is the only genotype to flip to higher levels of ADCC

rather than ADCP at high levels of IgG1.

We next plotted vaccinee data on our polymorphism landscapes

in simulated boosting scenarios to determine whether individuals

could respond differently to interventions based on FcR

polymorphism combinations. Model predictions indicated

significant differences for baseline FcgRIIa formation between any

combination that included H131 versus R131 (2.76e-10 nM for H131

versus 1.86e-10 nM for R131, adjusted p-value< 0.0001). In contrast,

there were no significant differences in FcgRIIa formation with H131

(or R131) when comparing a genetic pairing with F158/V158. We

observed a similar pattern for FcgRIIIa formation (2.77e-10 nM for

V158 versus 1.71e-10 nM for F158, adjusted p-value< 0.0001).

Figure 5C summarizes the differences between FcgRIIIa and

FcgRIIa formation in all four polymorphism combinations, with

the greatest difference observed between R131/V158 (higher

ADCC) and H131/F158 (higher ADCP). The same pattern was

observed across all of the boosting patterns, including IgG1-only

boost, IgG3-only boost, and IgG1 and IgG3 boost. These results

indicate that personalized differences in binding affinity based on

genetic polymorphism combinations could play an important role in

an individual’s capacity for maximizing specific Fc effector functions.
2.3 The model illustrates the potential for
altered Fc responses in mucosal tissues

Fc effector functions play an important role in mucosal tissues

(24), however these functions are difficult to evaluate in vivo. We

used the model to make predictions for how FcR complex

formation might change in mucosal tissues as a function of

differences in viral load, variability of Fc receptor expression on

effector cells, the number of effector cells, and IgG titers present at

mucosal sites. We used parameters from the literature as shown in

Supplementary Tables 1, 2, and Figure 6A. Viral load (antigen

concentration) is estimated to be highest in the rectal mucosa,

however antibody concentrations are more than 100x lower in

mucosal surfaces than in the blood (20, 22, 23, 25, 26). In the blood,

there are similar levels of FcgRIIa and FcgRIIIa (42%/58%) (23) but
published data suggests that the balance is much more skewed in

mucosal tissues (Figure 6B). For example, in the rectal tissue there

are more monocytes and thus higher expression of FcgRIIa
(associated with ADCP; 78% of combined FcgRIIa and FcgRIIIa
expression), while in the penile tissue there are more natural killer

cells present and thus higher expression of FcgRIIIa (associated with
ADCC; 98% of combined FcgRIIa and FcgRIIIa expression).

As expected, due to the larger number of monocytes in the

rectal mucosa, the model suggested that ADCP was the more

prominent function in this tissue type. The penile tissue and
frontiersin.org
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semen had lower levels of antigen, and mostly NK cells which leads

to prominence of ADCC. The blood had a mixture of the two

functions but has much higher levels of antibodies than the mucosal

tissues, leading to overall higher Fc effector responses.
Frontiers in Immunology 07
We then used the model to predict FcgRIIa and FcgRIIIa
complex formation across variable combinations of IgG1 and

IgG3 in penile and rectal tissue compared to blood (Figure 6C).

Model predictions suggested that in the penile tissue, ADCC was
FIGURE 4

Simulation of the impact of antibody boosting in RV144 vaccinee data on FcR complex formation. (A) Baseline plasma values of gp120-specific IgG1
and IgG3 values with simulated FcR complex formation plotted on the surface. Simulated boosting of (B) IgG1-only x10, (C) IgG3-only 10x, and (D)
simultaneous IgG1 and IgG3 boosting x10 plotted. (E) Statistical significance between the population FcgRIIa and FcgRIIIa formation across baseline
and various interventions with significant adjusted p-value denoted by asterisks. Kruskal-Wallis with Dunn’s multiple comparison test was used to
evaluate differences between antibody boosting regimens. (n.s.: p> .05, ****p < .0001).
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the dominant function and boosts in IgG1 or IgG3 mainly caused

increases in ADCC without much change in ADCP. In the rectal

tissues, high IgG1 at any level of IgG3 had the potential to result in a

steep increase in ADCP, a pattern which was not present in other

tissue we evaluated. These results could be informative for the

future design of tissue-specific boosting interventions, or for

understanding the impact of antibody decay in different tissues.

For example, if ADCC is protective against HIV transmission (27–
Frontiers in Immunology 08
29), the model illustrates how interventions that preferentially boost

ADCP (such as increasing IgG1) in the rectal tissue have the

potential to detract from more protective ADCC responses.

Conversely, increases in IgG1 or IgG3 both have the potential for

improving ADCP and ADCC in penile tissue. We additionally

explored how polymorphism combinations may affect FcR effector

functions in the mucosal tissues. Unlike model predictions in blood,

polymorphisms did significantly alter the balance of ADCP and
FIGURE 5

Simulating FcR complex formation across different polymorphisms combinations (A) Antibody landscapes for two of the four possible combinations
of FcgR genotypes (high-affinity FcgRIIaH131 paired with low affinity FcgRIIIaV158 and low-affinity FcgRIIaR131 paired with high affinity FcgRIIIaV158)
show that ADCP has lower potential in the R131/V158 combination. (B) Excess complex formation as defined by the formation above 50% correlating
with an equal balance of FcgRIIa/IIIa. (C) Difference between FcgRIIIa and FcgRIIa complex formation across different boosting conditions for the
RV144 vaccinee data. Differences between boosting regimens were evaluated using the Kruskal-Wallis test with Dunn’s multiple comparisons test.
(*p < .05, ****p < .0001).
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ADCC in mucosal tissues, likely due to considerably lower antibody

levels that reduce the sensitivity to FcR-antibody affinity compared

to antibody concentrations (Supplementary Figure 3).
3 Discussion

Overall, this study offers a new quantitative framework to

evaluate the complex interplay between antibody-dependent

cellular phagocytosis (ADCP) and antibody-dependent cellular

cytotoxicity (ADCC) in immune responses. By modeling the

interactions of different IgG subclasses with Fc receptors (FcRs),

we challenge the conventional view that higher antibody titers

necessarily enhance Fc-mediated immune functions. Instead, the

model reveals the potential for a more nuanced mechanism, where

competition between IgG subclasses for antigen binding and
Frontiers in Immunology 09
differential affinities for FcRs can lead to an inverse relationship

between IgG titers and specific effector functions. This new insight

was not apparent in our previous work involving models that

focused on single FcR receptors in isolation [18]. This highlights

the importance of IgG subclass distribution in shaping immune

responses, which may vary across individuals and vaccine regimens.

For example, the model demonstrates that high levels of IgG1 can

increase ADCP but may suppress ADCC, while elevated IgG3

enhances ADCC but reduces ADCP. This delicate balance

suggests that neither ADCP nor ADCC is maximized when both

IgG1 and IgG3 are elevated, pointing to an optimal range where

these functions can coexist. This insight has significant implications

for vaccine development strategies, particularly in the context of

personalized medicine. Our findings suggest that even small

changes in IgG subclass titers can significantly alter Fc effector

functions, especially in individuals whose antibody levels fall within
FIGURE 6

Fc receptor functions across different tissues. (A) Visualization of baseline parameters used as input for mucosal (rectal and penile) and blood
models. Sources summarized in Supplementary Tables 1, 2. (B) Baseline simulation results showing complex formation involving FcgRIIa and FcgRIIIa
as log complex formation or percentage of total FcgR complexes. (C) 2D landscapes showing IgG1 and IgG3 combinations affect ADCP and ADCC
model output as measured by FcgR complex formation.
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sensitive regions of the functional landscape. Furthermore,

simulated boosting of IgG1 and IgG3 does not enhance

both ADCP and ADCC as expected, underscoring the complexity

of antibody competition and the need for more precise

immunomodulation strategies.

This quantitative framework also extends beyond subclass boosting,

offering a means to investigate the role of FcR polymorphisms, which

are often challenging to assess independently of individual variability in

antibody titers. There have been mixed results on the association

between FcR polymorphisms and HIV infection with and without

vaccines (30). Many of these studies have looked at the effect of

homozygous or heterozygous polymorphisms, while also considering

the combination across FcR types (high affinity FcgRIIa with low affinity

FcgRIIIa). The model created here with two FcRs was also able to be

evaluate homozygous versus heterozygous combinations within one

FcR type, which produced the expected results that heterozygous

individuals tend to fall between the responses in homozygous

individuals. FcgRIIa has been proposed as a mediator of latent

reservoirs, suggesting that polymorphisms that change its affinity may

affect the size of the reservoir (31). Individuals with a low-affinity

FcgRIIa/high-affinity FcgRIIIa combination were more likely to exhibit

ADCC dominance, potentially making it difficult to optimize ADCP

responses in those individuals. Interestingly, we found that these

differences were less pronounced in mucosal tissues compared to the

blood, likely due to lower antibody concentrations in mucosal tissues.

This finding underscores the importance of tissue-specific immune

dynamics, which could influence pathogen transmission and disease

progression in ways that blood-based models cannot fully capture.

Furthermore, the same model can be used to explore how post-

translational modifications, such as glycosylation and fucosylation of

the antibody Fc region, further modulate these interactions.

The two FcR model created here provides a valuable approach for

investigating similar mechanisms in other infectious and autoimmune

diseases. For example, Fc-mediated antibody responses are essential in

protection against SARS-CoV-2, mediated by both vaccination and

natural infection, as they contribute to viral clearance and correlate

with outcomes such as disease severity and survival (32–37). Notably,

studies on SARS-CoV-2 mRNA vaccines have revealed that boosting

may disproportionately increase IgG4 titers, potentially reducing Fc

effector functions like ADCP (38). This highlights the importance of

considering the variability of subclass concentrations, binding affinities,

and Fc functions when designing vaccines and therapeutic strategies for

other diseases, where skewed subclass responses or impaired Fc

functions might influence disease progression or protection.

There are a number of limitations to the current model that

could be modified based on specific future applications. The model

considers the described IgG-FcR system in isolation from other

receptors, ligands, and antibodies that are certainly present in in

vivo scenarios. While this presents a unique opportunity to

understand the isolated mechanisms that link IgG subclass

distribution to FcgRIIa and FcgRIIIa complexes upstream of

ADCC and ADCP, the model would require the addition of other

FcR and antibody species to capture other Fc effector functions or to

better approximate specific in vivo conditions. IgA would be
Frontiers in Immunology 10
essential to include in future models, especially those involving

mucosal tissues. We also note several assumptions that were used to

simplify the parameters of the model, including the equal affinity of

each subclass binding to antigen, and similar dissociation rates for

each antibody subclass to FcRs, though these could also be modified

in future applications. Lastly, the model uses FcR complex

formation as a surrogate for downstream Fc effector functions

themselves. This assumption is reasonable given the positive

association between FcgRIIa engagement and ADCP and that

between FcgRIIIa engagement and ADCC. Nevertheless, it would

be important to include downstream signaling and inhibitory

receptors in future iterations of the model. It would also be

important to validate the model predictions using cellular

function assays.

This work supports the future development of multiplex assays

that would enable experimental validation of models that include

multiple Fcg receptors in parallel. Existing studies, including those

used for the baseline values of boosting studies in Figure 4, have

been validated using single-receptor systems such as those

described in Lemke et al. (2021). However, no published assays

currently measure the simultaneous activation or engagement of

multiple FcgRs in the same experimental context, independent of

downstream signaling. Our model highlights the need for these, to

test newly generated ideas regarding competition among IgG

subclasses, antigen availability, and FcR binding. The novel

predictions emerging from our dual-FcR framework underscore

the biological relevance of co-expressed receptors and suggest that

experimental systems capable of capturing this complexity are

essential for a more complete understanding of Fc effector

functions in vivo.

Despite its limitations, the model provides an important step

towards integrating literature-based parameters to understand

mechanistic differences in Fc effector functions across different

tissues that are difficult to evaluate and sample experimentally. In

the future, this model could be used to optimize antibody responses,

tailor vaccinations to individual variability, guide local boosting

strategies, and enhance our understanding of immune responses in

different tissues to inform the design of novel vaccines and improve

immunotherapy outcomes. Despite remaining challenges, this

framework represents a promising tool for low-cost hypothesis

testing related to immune responses in both the blood and

mucosal tissues, offering potential pathways for improved vaccine

design and therapeutic interventions.
4 Methods

4.1 Computational methods

4.1.1 System of ordinary differential equations
We expanded the system of ODE equations established in

Lemke et al. (2021) and Lemke et al. (2022) to account for the

potential binding of antigen-bound IgG dimers to multiple different

classes of FcgRs, thereby considering potential competition between
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substrates and receptors within the system (17, 18). The env-IgG-

FcgRIIa and -FcgRIIIa framework is illustrated in the model

schematic with example reaction equation shown in Figure 1. The

system of equations is written using the laws of mass action kinetics,

in combination with conservation equations for total antigen, total

FcR, and each IgG subtype. We assumed no degradation or

production of species over the short time span of the model.

The model includes stepwise chemical kinetic reactions,

beginning with antigen binding and progressing to Fcg receptor

complex formation.
Fron
1. Antigen antibody binding: 2 kon IgG1-ag [IgG1][antigen] -

koff IgG1-ag [IgG1-antigen]

2. Antibody dimerization: kon IgG1-ag [IgG1][IgG1-antigen] - 2

koff IgG1-ag [IgG1-IgG1-antigen]

3. FcR2aH complex binding: kon IgG1-FcR2aH [FcR2aH][IgG1-

IgG1-antigen] - koff IgG1-FcR2aH [FcR2aH-IgG1-IgG1-

antigen] FcR3aV complex binding = kon IgG1-FcR3aV

[FcR3aV][IgG1-IgG1-antigen] - koff IgG1-FcR3aV [FcR3aV-

IgG1-IgG1-antigen]
The system is governed by mass-action kinetics. As an example,

the rate of change in the single bound IgG1-antigen complexes is

given by:
d[IgG1-antigen]/dt = 2kon IgG1-ag [IgG1][antigen] - koff IgG1-ag
[IgG1-antigen]

- kon IgG1-ag [IgG1-antigen][IgG1] + koff IgG1-ag [IgG1-

IgG1-antigen]

- kon IgG2-ag [IgG1-antigen][IgG2] + koff IgG2-ag [IgG1-

IgG2-antigen]

- kon IgG3-ag [IgG1-antigen][IgG3] + koff IgG3-ag [IgG1-

IgG3-antigen]

- kon IgG4-ag [IgG1-antigen][IgG4] + koff IgG4-ag [IgG1-

IgG4-antigen]
Each antibody subclass is tracked in a similar manner, resulting

in a large but structured system of ODEs (See Supplementary

Material: Detailed description of the system of ODEs). Total

concentrations of each IgG subclass, antigen, and FcR are

conserved. For example, the conservation equation for IgG1 is:
Free IgG1 = Total IgG1 - Bound IgG1

[IgG1] = [IgG1total] - [IgG1-antigen] - 2 [IgG1-IgG1-antigen]

- [IgG1-IgG2-antigen] - [IgG1-IgG3-antigen]

- [IgG1-IgG4-antigen] - 2 [IgG1-IgG1-antigen-FcR2]

- [IgG1-IgG2-antigen-FcR2] - [IgG1-IgG3-antigen-FcR2]

- [IgG1-IgG4-antigen-FcR2] - 2 [IgG1-IgG1-antigen-FcR3]

- [IgG1-IgG2-antigen-FcR3] - [IgG1-IgG3-antigen-FcR3]

- [IgG1-IgG4-antigen-FcR3]
The initial IgG subclass concentrations were estimated from

Raux et al. (2000) (20) based on gp120 antigen-specific IgG1 and
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IgG3 EU/mL values measured in the serum, seminal secretions, and

rectal secretions in HIV-type 1 infected subjects (asymptomatic

CDC stage II/III infection). The IgG2 and IgG4 were found to be

very low in HIV-infected individuals and were estimated to be 100

EU/mL and 10 EU/mL respectively. The EU/mL values were then

converted to estimated concentrations based on total IgG

concentration measured in untreated HIV-infected individuals in

Pillay et al. (2019) (21) and subsequently using the expected

proportions of each subclass in serum, seminal secretions, and

rectal secretions to calculate the subclass concentrations across each

tissue. The antigen concentrations in each tissue were obtained

from Zuckerman et al. (2004) (22), in which HIV RNA levels were

measured in untreated HIV-infected individuals in the plasma,

rectum, and semen. The RNA levels were converted to nanomolar

concentrations assuming 20 envelope proteins on the surface of

each virus (39) and then using Avogadro’s number. The FcR

concentrations were calculated based on a study by Cheeseman

et al. (2016) (23) in which they measured the distribution of CD14+

monocytes and natural killer (NK) cells in whole blood, penile

tissue, and colorectal tissue. They then used flow cytometry to

characterize the expression of various Fc receptors on the different

cell types. We used these values accounting for the distribution of

cell types in each tissue and then the expression of FcgRIIa and

FcgRIIIa on each cell type to calculate a summed total FcgR
concentration for each tissue type. Supplementary Tables 1, 2

contain a summary of the affinity and concentration parameter

values and sources for the model respectively.

The initial concentration of each complex was set to zero and

binding affinities for lgG1, lgG2, lgG3, lgG4, and FcgR dimers were

set based on literature values (19). Envelope binding affinities were

determined via SPR measurements as described Supplementary

Table 1. We obtained KAs for each IgG subclass binding to

FcgRIIIA-V158 from the literature (19) and converted these KAs

to kons by estimating a universal koff from pooled RV144 serum

samples (0.01 s-1), as done in Lemke et al. (2021). MATLAB’s

ode113 solver function was utilized to predict the concentration of

each complex over 105 seconds, with an absolute error tolerance of

1e-50 and a relative tolerance of 1e-10. We assumed sequential IgG

antibody binding to antigen prior to engagement of any antigen-

IgG-IgG complex with any FcgR dimer. We assumed no

cooperativity in IgG binding antigen (such that affinity

parameters were independent of the presence of another IgG on

the same antigen). For antigen-IgG complexes containing two of the

same IgG subclass we used literature values for the reported value of

that subclass (19). For complexes containing two different IgG

subclasses, we assumed the affinity of the heterogeneous complex to

be the average of the two individual IgG subclass affinities

4.1.2 MFI conversion to nM
The de-identified RV144 data (available in GitHub repository)

is used in this paper to simulate the effects of boosting personalized

IgG1 and/or IgG3 concentration on FcgR complex formation. This

data comes from the RV144 phase III clinical trial from the US

Military HIV Research Program (MHRP) (40). Samples from week

26 (2 weeks post vaccination) RV144 vaccine recipients (n = 30; n =
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75 from two separate shipments) were evaluated using data from

McLean et al. (2017) and are the same samples validated using the

single FcR model in Lemke et al. (2021) (17, 41). When plotting

RV144 vaccinee data for boosting simulations, experimental MFI

measurements (as described in Rerks-Ngarm et al. (2009) (7)) were

converted to concentration measurements using a conversion factor

based on a reference IgG1 concentration of 10,000 ng/mL, as done

in previous work by Lemke et al. (2021) (17). For multiplex

readings, there is a log-linear relationship between MFI and

concentration when measurements are within the machine’s

dynamic range (42). Conversion formulas were based on this

typical relationship. We assumed that MFI measurements were in

the dynamic range, and that the average IgG1 concentration was

10,000 ng/mL. The conversion factor found for IgG1 was then

applied to the remaining species within that given assay. The

concentrations for species IgGn (where n = 1 through 4) were

converted from assay concentrations to plasma concentrations by

multiplying by a factor of 200 to account for dilution of plasma

samples for the assay.

Conversion Factor =  
log10 Reference Concentration

mean( log10 MFIIgG1)

½IgGn� in nM =  
10( log10 MFIIgGn)*Conversion Factor

Molecular weightIgGn
*200
4.1.3 Sensitivity analyses
We first performed a one-dimensional sensitivity analysis

across each of the tissues for the two FcgR model. This was done

by calculating the model output (FcgRIIa complex formation and

FcgRIIIa complex formation) at the baseline parameter value, and

then also varying each parameter, one at a time across a

physiological relevant range. We use baseline blood concentration

values from Supplementary Table 2 (IgG1 = 581 nM, IgG2 = 2.3

nM, IgG3 = 82.6 nM, IgG4 = 0.23 nM, Antigen = 2.2e-6 nM. FcRII

= 2.5e-2 nM, and FcRIII = 5.5e-2) and the affinity parameters from

Supplementary Table 1 and then take each of the 31 baseline

parameters multiplied by a factor (0.05x, 0.1x, 0.4x, 2.5x, 10x, and

20x) to simulate a wide range of possible parameters. Figure 2

displays these results, where each box represents a simulation run

with the baseline parameters and one altered parameter, in which

we calculate the FcR complex formation output of the model. The

heatmap shows the log of the FcR complex formation, such that red

indicates higher FcgR complex formation and blue indicates lower

FcgR complex formation. Exact values for the sensitivity analyses

across blood, penile, and rectal tissues are displayed in

Supplementary Figure 2.

We also performed a global uncertainty and sensitivity analysis

for FcRII and FcRIII complex formation (43) using the baseline

blood parameters described above and in Supplementary Table 1

and the affinity parameters from Supplementary Table 2. In the

global sensitivity analysis algorithm provided by the Kirschner lab

at the University of Michigan, we assigned log-uniform probability

density functions (pdfs) to each parameter (initial concentrations
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and affinities) with a minimum 0.05X of baseline and a max 20X of

baseline for all parameters (43). These pdfs were sampled using

Latin hypercube sampling (LHS) to create random combinations of

parameter values. The model was evaluated under each of the

5,000 sets of random parameter combinations, allowing for a

multidimensional exploration of the system. Partial rank

correlation coefficient (PRCC) calculated within the algorithm

determined the correlation between each input variable’s variance

throughout multidimensional analysis and the output variable,

giving a sensitivity measure for each parameter and a statistical

significance of its effect on complex formation. The results are

shown in Supplementary Figure 1.
4.1.4 Generation of IgG1 versus IgG3 landscapes
We were also able to perform two-dimensional sensitivity analyses

by varying two parameters within the model simultaneously and

plotting the results on a landscape surface. 625 simulations were run

with differing combinations of initial IgG1 and IgG3 concentrations

with tissue-specific baseline values for all other parameters. All

combinations of 25 IgG1 and IgG3 concentration values were

uniformly spaced on a logarithmic scale between 0.001X-1000X

baseline concentrations. Results were plotted as a grid surface for

each FcgR, with FcgRIIa (green) and FcgRIIIa (purple) complex

formation across the IgG1 and IgG3 combinations plotted on the

same graph. Heatmaps showing the complex formation for each FcgR
type were also generated (Figure 3B). Cross-sections at an intermediate

value of IgG1 or IgG3 (100 nM) were visualized as well (Figure 3C).

For boosting simulations using RV144 vaccinee data (Figure 4), we

predicted individual FcgRIIa and FcgRIIIa complex formation (n =

105) based on IgG subclass 1–4 concentrations. This data has been

validated using a single FcgR model in Lemke et al. (2021) and is

expanded here to visualize the simultaneous formation of both FcgRIIa
and FcgRIIIa complexes using the dual receptor model (17).

Individuals were plotted as circles at their specific IgG1 and IgG3

initial concentrations, which are converted from MFI to nM as per

Section 4.1.2 with their individually predicted complex formation

concentration. Simulations of IgG1, IgG3, or simultaneous IgG1 and

IgG3 boosting in the dual FcgR model were performed at 10x personal

baseline concentrations. Ordinary one-way ANOVA and Tukey’s

multiple comparison test were performed to determine significance

across the different boosting simulations or FcgR polymorphisms.

When evaluating the landscapes for the four different polymorphism

combinations, the FcgR polymorphism and IgG class specific affinity

parameters were taken from the literature, reported in Supplementary

Table 1. Example points A and B (using first and third quartile of IgG1

and IgG3 concentrations) were used for demonstration of differences in

FcgR complex formation.
4.1.5 Software
ODE modeling, sensitivity analyses, and 3-D plots were

completed using MATLAB 2022b (MathWorks, Natick, MA).

Visualization of the remaining plots, and statistics were

completed using GraphPad Prism version 10. Custom MATLAB

code is available (github.com/suzshoff/2FcRODEModel/) to run the
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simulations necessary to generate the data and figures (steady state

complex formation concentrations) used in this analysis.

4.1.6 Statistical analysis
Statistical significance for the IgG boosting vaccinee simulations

and polymorphism simulations were determined using a Kruskal-

Wallis test with Dunn’s multiple comparisons test (a = 0.05).

Statistical significance denoted with adjusted p-value less than

0.05 shown with one asterisk, less than 0.01 with two asterisks,

continuing down to less than 0.0001 with four asterisks.
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