
Frontiers in Immunology

OPEN ACCESS

EDITED BY

César Antonio Echeverrı́a,
Universidad de Atacama, Chile

REVIEWED BY

Jiawen Bu,
China Medical University, China
Dingxi Li,
Henan Provincial Cancer Hospital, China

*CORRESPONDENCE

Huiping Liu

003433@hnucm.edu.cn

Qiying Liu

2843403653@qq.com

†These authors have contributed equally to
this work

RECEIVED 18 February 2025

ACCEPTED 23 May 2025
PUBLISHED 05 June 2025

CITATION

Wu X, Liu Q, Jiang Z, Wang G, Liao L, Ye X,
Xing M, Sun H, Liu Q and Liu H (2025)
Targeting ferroptosis: a promising avenue
for ovarian cancer treatment.
Front. Immunol. 16:1578723.
doi: 10.3389/fimmu.2025.1578723

COPYRIGHT

© 2025 Wu, Liu, Jiang, Wang, Liao, Ye, Xing,
Sun, Liu and Liu. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Review

PUBLISHED 05 June 2025

DOI 10.3389/fimmu.2025.1578723
Targeting ferroptosis:
a promising avenue for
ovarian cancer treatment
Xiaolan Wu1,2,3,4†, Qizhi Liu5†, Zhili Jiang6, Guiyun Wang1,2,3,4,
Lingyu Liao1,2,3, Xiaojuan Ye1,2,3, Min Xing1,2,3, Han Sun1,
Qiying Liu7* and Huiping Liu1,2,3,4,6*

1School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine,
Changsha, Hunan, China, 2Hunan Provincial Key Laboratory of Traditional Chinese Medicine
Prescription and Syndrome Differentiation Translational Medicine, Hunan University of Chinese
Medicine, Changsha, Hunan, China, 3Hunan University of Chinese Medicine, Key Laboratory of
Traditional Chinese Medicine Oncology of Hunan Province, Changsha, Hunan, China, 4Department of
Gynaecology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China,
5College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha,
Hunan, China, 6Medical School, Hunan University of Chinese Medicine, Changsha, Hunan, China,
7Department of Traditional Chinese Medicine, Changsha Hospital for Maternal and Child Health Care,
Changsha, Hunan, China
Ovarian cancer(OC) is the second most common gynecological malignancy

worldwide. While traditional treatments such as cytoreductive surgery,

chemotherapy, and targeted drugs have made progress, patients with

advanced disease still face high recurrence rates and resistance to treatment.

As a result, there is an urgent need to develop new therapeutic strategies.

Ferroptosis, a novel form of programmed cell death characterized by iron-

dependent lipid peroxidation, has recently gained attention for its potential in

cancer therapy. Studies indicate that OC cells are highly sensitive to ferroptosis,

and targeting this pathway can effectively overcome chemotherapy resistance

and improve treatment outcomes. This review systematically examines the

molecular mechanisms of ferroptosis and its role in OC, with a focus on its

involvement in tumor initiation, progression, TME and resistance. Furthermore,

we highlight the research advancements on various ferroptosis inducers,

including natural products, small molecule compounds, and nanotechnology,

and explore their potential in overcoming resistance and enhancing patient

prognosis. We also discuss the challenges facing ferroptosis-based treatments

for OC, such as species differences, drug resistance, personalized treatment

needs, and clinical translation issues. Ultimately, targeted modulation of

ferroptosis offers new hope for OC therapy. Future research should focus on

further elucidating its molecular mechanisms and exploring effective inducers

and combination therapies to enhance its clinical applicability in precision and

personalized medicine.
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1 Introduction

Ovarian cancer(OC) ranks as the second most common

malignant tumor among gynecological cancers worldwide,

accounting for an estimated 3.7% of cases and 4.7% of cancer

deaths in 2020 (1). OC is a highly heterogeneous disease, with only

about half of patients surviving 5 years after diagnosis (2). Although

cytoreductive surgery, taxane-based platinum chemotherapy, and

targeted therapies—such as bevacizumab and PARP inhibitors—

have made significant progress in clinical settings, the majority of

patients with advanced stages still experience disease recurrence

and treatment failure (3). Consequently, the prognosis for patients

with advanced OC remains poor, characterized by high relapse rates

and resistance to conventional therapies (4).This highlights the

urgent need for novel therapeutic strategies, particularly those

targeting resistance mechanisms, to improve survival outcomes (5).

In recent years, ferroptosis has attracted widespread attention as

a type of programmed cell death. First proposed by Dixon et al. in

2012, ferroptosis differs from other cell death pathways, such as

apoptosis and necrosis, and is characterized by the accumulation of

iron-dependent lipid peroxides (6).This process is driven by factors

including intracellular iron overload, glutathione(GSH) depletion,

and excessive reactive oxygen species (ROS)generation, which

ultimately result in irreversible damage to the cell membrane and

cell death (7). Given its unique regulation of cancer cell metabolic

reprogramming and iron metabolism, ferroptosis plays a crucial

role in tumors and has emerged as a hot topic in anti-cancer

research (8–10).OC cells exhibit a high dependence on iron

metabolism, making them significantly more susceptible to

ferroptosis compared to normal cells (11). Studies have

demonstrated that activating ferroptosis can inhibit OC growth
Abbreviations: OC, Ovarian cancer; GSH, Glutathione; GCL, Glutamate-

Cysteine Ligase; GSS, Glutathione Synthetase; SLC7A11, Solute Carrier Family

7 Member 11; SLC3A2, Solute Carrier Family 3 Member 2; PUFAs,

polyunsaturated fatty acids; PLs, Phospholipids; RNS, reactive nitrogen species;

PLOOHs, phospholipid peroxides; PLOHs, phospholipid alcohols; FSP1,

Ferroptosis Suppressor Protein 1; P450, Cytochrome P450; RTAs, reactive

antioxidants; MUFA, Monounsaturated Fatty Acid; SCD1, stearoyl-CoA

desaturase; ACSL3, Acyl-CoA Synthetase Long-Chain Family Member 3;

MDA, Malondialdehyde; CoQ10, Coenzyme Q10; ACSL4, acyl-CoA synthetase

long-chain family member 4; LPCAT3, lysophosphatidylcholine acyltransferase

3; POR, Cytochrome P450 oxidoreductase; Nrf2, Nuclear factor erythroid 2-

related factor 2; FTH1, ferritin heavy chain 1; NQO1, quinone oxidoreductase 1;

CHE, Chelerythrine; MDR, multidrug resistance; HIPEC, Hyperthermic

intraperitoneal peroperative chemotherapy; VEGF, Vascular endothelial growth

factor; BEV, bevacizumab; SPIO, superparamagnetic iron oxide; TFR1,

Transferrin Receptor 1; FPN, ferroportin; GPX4, glutathione peroxidase4; ROS,

reactive oxygen species; NADPH, nicotinamide adenine dinucleotide phosphate;

BH4, tetrahydrobiopterin; GCH1, GTP cyclohydrolase 1; DHFR, dihydrofolate

reductase; SAS, Sulfasalazine; DMT1, Divalent metal transporter 1; LIP, labile

iron pool; TF, transferrin; STEAP, six-transmembrane epithelial antigen of the

prostate; NTBI, non-transferrin-bound iron; SLC39A14, metal transport

proteins; NCOA4, nuclear receptor coactivator 4; ERS, Endoplasmic Reticulum

Stress; IRE, Iron responsive element; IRP, Iron responsive protein.
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and reverse chemotherapy resistance (12, 13). Particularly in

chemotherapy-resistant OC, ferroptosis can selectively target

tumor cells while sparing normal tissues by modulating redox

homeostasis and lipid metabolism (14–16). As a result, targeting

ferroptosis offers a promising strategy to overcome chemotherapy

resistance and improve the prognosis of advanced OC patients (17–

21). However, despite significant progress in understanding the

molecular mechanisms and regulatory networks of ferroptosis, its

clinical application in treating OC still faces challenges, including

the need for efficient and selective induction of ferroptosis and the

integration of existing therapies to enhance treatment efficacy.

This article reviews the research progress on targeted ferroptosis

in OC treatment, with a focus on the molecular mechanisms of

ferroptosis, its role in treating OC, the relationship between

chemoresistance and ferroptosis, and the potential of natural

products and small molecule drugs in inducing ferroptosis.

Additionally, the article explores the potential of natural products

and small molecule drugs in inducing ferroptosis and the potential

applications of emerging nanotechnologies and combination

treatment strategies. It also addresses the limitations of current

research and offers insights for future studies on targeted ferroptosis

in OC therapy.
2 Molecular mechanisms of
ferroptosis

2.1 Overview of ferroptosis

The term ferroptosis is derived from the Latin word ferrum,

meaning iron. Research on lipid metabolism, oxidative stress, and

iron homeostasis forms the foundation for understanding

ferroptosis. In 1876, Henry John Horstman Fenton proposed the

Fenton reaction. Iron, a key trigger and mediator of ferroptosis

signaling, can catalyze the formation of harmful free radicals through

the Fenton reaction (22). In 1929, polyunsaturated fatty acids

(PUFAs), such as linoleic acid and linolenic acid, were recognized

as crucial substrates for lipid peroxidation in ferroptosis (23).

Phospholipids (PLs), which are integral components of cell

membranes, contain PUFA groups and play a critical role in the

process of ferroptosis (24).In 1955, Harry Eagle and colleagues

discovered that cysteine (Cys) is essential for cell survival, and its

deficiency, leading to GSH depletion, can result in cell death (25). In

1985, Helmut Sies coined the term “oxidative stress” (26), referring

to a process where an excess of oxidizing substances—such as free

radicals and peroxides—disrupts intracellular redox balance,

triggering a range of harmful biological effects (27). GSH depletion

impairs the cell’s ability to counteract oxidative stress, making it

more susceptible to damage from oxidants like hydrogen peroxide

(28). Regarding lipid metabolism, several studies have identified key

mechanisms involved in lipid metabolism during ferroptosis (23,

29). These foundational studies provide key insights into the

mechanisms driving ferroptosis.

Since 2012, ferroptosis has emerged as a prominent topic in

biomedical research, with a rapid increase in related studies (30, 31).
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It has been implicated in a wide range of biological processes,

including development, aging, immunity, and cancer. Over the past

decade, significant breakthroughs have been made in understanding

the mechanisms of ferroptosis and harnessing it for

therapeutic benefits.
2.2 Regulation of ferroptotic signaling

2.2.1 Classical ferroptotic pathway
2.2.1.1 GPX4 and the GSH-dependent antioxidant system

Glutathione peroxidase4 (GPX4) is a key molecule in inhibiting

ferroptosis, primarily by preventing the propagation of the lipid

peroxidation chain reaction through the reduction of lipid

hydroperoxide (LOOH) to inactive LOH(phospholipid alcohols).

The activity of GPX4 relies on the tripeptide GSH as a reducing

agent, and GSH synthesis is central to its function. This synthesis is

driven by two enzymatic reactions: Glutamate-Cysteine Ligase

(GCL) and Glutathione Synthetase(GSS).GCL catalyzes the

binding of glutamate to cysteine, while GSS facilitates the

attachment of glycine to glutamylcysteine, forming GSH. To

support GSH synthesis, cells uptake cysteine from the

extracellular environment via the system Xc-, which consists of

the Solute Carrier Family 7 Member 11(SLC7A11) and Solute

Carrier Family 3 Member 2 (SLC3A2) subunits. Inhibition of

GPX4 disrupts intracellular iron homeostasis and lipid peroxide

reduction, inducing ferroptosis (32).

2.1.1.2 Lipid peroxidation and PUFA

Lipid peroxidation is a key determinant of ferroptosis

sensitivity. It is a biochemical process in which free radicals, such

as ROS and reactive nitrogen species (RNS), attack and oxidize

lipids in cell membranes and organelles. During lipid peroxidation,

ROS and RNS react with PUFAs in plasma and organelle

membranes to generate lipid peroxides (33). ROS are oxygen-

containing, chemically reactive molecules that can initiate or

amplify ferroptosis sensitivity in various cell types and tissues

(34). RNS, which are reactive chemical species derived from

nitrogen sources, include peroxynitrite, nitrosyl radicals and

nitroxides. Studies have shown that ferroptosis can be induced by

modulating cellular lipid peroxidation using peroxynitrite

generators (35).

The mechanism of the lipid peroxidation chain reaction

involves three stages: initiation, propagation, and termination,

along with various regulatory mechanisms and key molecules. In

the initiation stage, promoters such as hydroxyl radicals remove

allylic hydrogen atoms, generating lipid radicals with a carbon core.

During propagation, these lipid radicals rapidly combine with

oxygen to form lipid peroxyl radicals. This stage is driven by

divalent iron (Fe²+), which reacts with hydrogen peroxide

through the Fenton reaction to produce highly reactive hydroxyl

(•OH) radicals. These •OH radicals can directly attack PUFAs, such

as linoleic acid and arachidonic acid, in cell membranes. Due to

their multiple double bonds, these fatty acids are highly susceptible
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to reaction with free radicals, resulting in lipid peroxide formation.

The accumulation of iron ions exacerbates lipid peroxidation,

particularly in PUFAs within cell membranes. In addition to

Fenton-type chemistry, enzymes like lipoxygenases and P450

(Cytochrome P450) oxidoreductases can also promote lipid

peroxidation in membranes. Once initiated, the lipid peroxidation

chain reaction accelerates, with lipid peroxides such as LOOH

further cleaving to produce new free radicals, like peroxyl

radicals, which attack other lipid molecules and perpetuate the

chain reaction.

The termination phase of lipid peroxidation relies on antioxidant

systems, such as Ferroptosis Suppressor Protein 1(FSP1), vitamin E,

and free radical scavengers, to neutralize free radicals and inhibit

ferroptosis. FSP1 reduces coenzyme Q10(CoQ10) to its reduced

form, coenzyme QH2, using nicotinamide adenine dinucleotide

phosphate (NADPH). Vitamin E reacts with lipid peroxyl radicals,

forming a non-radical product and preventing further radical

propagation. Free radical scavengers, such as reactive antioxidants

(RTAs), block the lipid peroxidation chain reaction by directly

interacting with free radicals. The lipid peroxidation chain reaction

continues until these antioxidant systems intervene and the

termination product is formed (36). Exogenous supplementation of

Monounsaturated Fatty Acid(MUFA), stearoyl-CoA desaturase

(SCD1)-mediated cellular MUFA production, and Acyl-CoA

Synthetase Long-Chain Family Member 3 (ACSL3)-dependent

MUFA membrane enrichment have been reported to reduce the

propensity of cells to die by ferroptosis (37).The main byproduct of

lipid peroxidation is lipid hydroperoxides. Lipid peroxidation

produces a variety of aldehydes, including as Malondialdehyde

(MDA), propionaldehyde, hexanal, and 4-HNE. PLs are the major

lipid structures involved in ferroptosis, and lipid peroxidation of the

phospholipid bilayer can promote ferroptosis. Among the fatty acids

in PLs, PUFAs are the most susceptible to autoxidation—a free

radical chain reaction that converts lipids into lipid hydroperoxides

(38). Phospholipid hydroperoxides (PLOOH) are the key executors of

ferroptosis. PLs containing two PUFA tails are particularly potent

drivers of this process (39). PL-PUFA2, rather than PL-PUFA1,

represents the key lipid class involved in ferroptosis (40).

PLs containing PUFAs are the primary substrates for lipid

peroxidation in ferroptosis and are upregulated by enzymes such

as acyl-CoA synthetase long-chain family member 4 (ACSL4),

lysophosphatidylcholine acyltransferase 3 (LPCAT3), ALOXs, and

Cytochrome P450 oxidoreductase(POR) (41).The membrane

remodeling enzymes, ACSL4 (42) and LPCAT3, are key drivers of

ferroptosis. ACSL4 enhances ferroptosis by promoting lipid

oxidation. Interestingly, in certain cell types, ACSL4 may also

play a protective role against ferroptosis (43). This may be related

to the metabolic state of cells and the tumor microenvironment.

LPCAT3 is transcriptionally regulated by the YAP/ZEB/EP300 axis

and works in conjunction with ACSL4 and YAP to modulate

ferroptosis sensitivity (44). Lipoxygenase (LOX) is a dioxygenase

that catalyzes the conversion of polyunsaturated fatty acids, such as

linoleic acid and arachidonic acid, into their corresponding

hydroperoxides (45). POR is an enzyme essential for various
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metabolic processes (46) and plays a role in initiating lipid

peroxidation. Studies have shown that POR can induce

ferroptosis by promoting the peroxidation of membrane

polyunsaturated PLs (47).

Guanine cyclohydrolase 1 (GCH1) is the rate-limiting enzyme

in the tetrahydrobiopterin (BH4) biosynthesis pathway. BH4 is not

only a crucial cofactor for various enzymes, such as nitric oxide

synthase, but also plays a key role in ferroptosis defense by

inhibiting lipid peroxidation. Studies have shown that BH4 can

protect against ferroptosis by directly scavenging lipid peroxides

and inhibiting the generation of ROS (48). In addition, GCH1 and

BH4 can also support the regeneration of coenzyme Q, working

synergistically with the FSP1 system to protect cells from lipid

oxidative damage (49).
2.1.1.3 Iron metabolism and the Fenton reaction

Ferroptosis is an iron-dependent form of cell death closely

associated with disorders of iron metabolism (50). Iron is both a

catalyst and a key regulator of ferroptosis. As an essential mineral, it

is involved in numerous physiological processes. Fe²+ from heme

and non-heme sources is transported to the basal surface of

enterocytes, reoxidized to Fe³+ by ferroferrin (HEPH), exported

via the export protein ferroportin (FPN) (51), and then loaded onto

the circulating iron transporter transferrin (TF) for systemic

delivery. TF-bound iron is transported to peripheral cells, where

it binds to transferrin receptor 1 (TFR1). The binding activates the

non-receptor tyrosine kinase Src, which, in turn, triggers the

endocytosis of the TF-TFR1 complex (52). Once inside the cell,

Fe³+ is released and reduced to Fe²+ by the six-transmembrane

epithelial antigen of the prostate (STEAP) family reductase (53).

This Fe²+ participates in DNA synthesis, cellular respiration, and

energy metabolism. Iron can also be stored in ferritin or exported to

the circulation via FPN (54). A portion of Fe²+ is transported from

endosomes to the cytosol by Divalent metal transporter 1(DMT1),

becoming part of the metabolically active labile iron pool (LIP).

The first step of ferroptosis is the excessive accumulation of

intracellular iron ions. Increased iron intake due to diet,

environmental factors, or other pathological conditions disrupts

systemic iron homeostasis. This leads to enhanced TfR-mediated

iron influx, while iron storage proteins, such as ferritin, become

saturated and can no longer store excess iron. As a result, free iron

(Fe²+) levels rise, contributing to ferroptosis. The liver regulates iron

absorption, recycling, and tissue levels by secreting hepcidin, which

reduces iron efflux by negatively regulating FPN (55). Increased

hepcidin secretion binds to FPN and triggers its degradation (55).

Iron regulatory proteins (IRPs) bind to the 5’ IRE of FPN1 and FT

mRNAs, resulting in translational repression (56). Additionally,

IRPs bind to the 3’ IRE of TFR1 mRNA, stabilizing it and enhancing

TFR1 protein synthesis. As a consequence, TFR1 levels increase

while FT and FPN levels decrease. Moreover, STEAP (54) and

DMT1 are upregulated (57). Ultimately, these changes lead to an

increase in intracellular iron (58).

In cancer and inflammation, hepcidin secretion from the liver

and peripheral tissues increases, leading to decreased FPN

expression, which limits iron circulation and contributes to
Frontiers in Immunology 04
anemia. Cancer cells exhibit an “iron-seeking” phenotype by

upregulating iron-related proteins (TFR1, STEAP, DMT1,

hepcidin, SLC39A14) and downregulating FPN, thereby

promoting iron uptake and accumulation (59). Studies have

shown that exogenous iron supplementation, in the form of

ammonium ferric citrate at submillimolar doses, induces ROS and

lipid peroxidation in mitochondria (60). This also suggests that

intracellular iron accumulation increases cellular susceptibility

to ferroptosis.

2.2.2 Noncanonical ferroptotic pathway
2.2.2.1 p53 signaling in ferroptosis

p53 is a classic tumor suppressor that plays an important role in

cell cycle regulation, apoptosis, metabolic regulation and

maintenance of genomic stability (61). p53 directly inhibits the

expression of SLC7A11, limiting the uptake of L-cysteine, thereby

reducing the synthesis of GSH and reducing the activity of GPX4

(62).In addition, SAT1 and GLS2 are transcriptional targets of p53.

Studies have shown that p53 enhances ferroptosis by upregulating

the expression of SAT1 and GLS2 (63). p53 can also enhance iron

uptake and increase the accumulation of the LIP by upregulating

the expression of TFR1 (64). This effect makes the iron-dependent

Fenton reaction more likely to occur, thus generating more

hydroxyl radicals (•OH) and inducing lipid peroxidation. In

addition, p53 promotes lipid remodeling of intracellular PUFAs

by regulating the expression of ACSL4, thereby exacerbating lipid

peroxidation (65).

2.2.2.2 Ferritinophagy and autophagy-dependent
ferroptosis

Ferritinophagy is a form of selective autophagy that targets

ferritin for degradation, releasing stored iron and increasing the

level of the LIP (66).During ferritinophagy, the ferritin receptor

nuclear receptor coactivator 4(NCOA4) binds to ferritin and

transports it to the autophagosome for degradation, releasing the

stored iron. Studies have shown that inhibiting NCOA4 or blocking

ferritinophagy can significantly reduce ferroptosis (67).

In some cases, autophagy can enhance the sensitivity of cells to

ferroptosis. Autophagy-related genes (ATG5, ATG7) significantly

affect the occurrence of ferroptosis by promoting mitochondrial

autophagy and regulating the level of lipid peroxidation (68, 69).

Additionally, studies have shown that overactivation of autophagy

may accelerate ferritinophagy and the release of free iron,

promoting the Fenton reaction and lipid peroxidation chain

reaction, which in turn exacerbates ferroptosis (70).

2.2.2.3 Endoplasmic Reticulum Stress and ferroptosis

Endoplasmic Reticulum Stress (ERS) is a cellular stress response

triggered by protein misfolding or calcium imbalance in the ER.

Studies have shown that ERS plays a crucial role in cell death by

regulating ferroptosis-related molecules and signaling

pathways (71).

Studies have found that the ER stress-induced IRE1a-XBP1
signaling pathway regulates the expression of ACSL4, promotes the

phospholipidation of PUFAs, enhances Lipid Peroxidation(LPO),
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and aggravates ferroptosis (72, 73). ER stress promotes ferroptosis

by activating the PERK pathway, upregulating the expression of

ATF4, and further enhancing the expression of ferroptosis-driving

factors, ACSL4 and LPCAT3 (74, 75). Overactivation of ATF4 may

also induce the downregulation of SLC7A11, reduce intracellular

GSH levels, and further aggravate ferroptosis (76). Regulation of

ferroptotic signaling is shown in Figure 1.
3 Role of ferroptosis in OC

3.1 Ferroptosis in the onset and metastasis
of OC

OC is widely considered to be a “hidden killer” of women. Due to

its high mortality rate, it remains one of the leading causes of cancer-

related deaths in women worldwide. Recent studies have found that

ferroptosis, a special type of programmed cell death, plays a

significant role in the occurrence, development and metastasis of

OC (77, 78). Ferroptosis causes cell death by inducing intracellular

oxidative stress and destroying lipid peroxides on the cell membrane.

Acording to Figure 2, this mechanism plays a crucial role in the

proliferation, drug resistance and metastasis of OC cells (79, 80).
Frontiers in Immunology 05
In a study exploring the different cellular origins and

pathogenesis of endometriosis-related OC (CCOC and ENOC),

Ian Beddows et al. found (81) that CCOC cells enhance the gene

expression of cysteine and GSH synthesis pathways and

downregulate iron transporters. Battaglia, A.M. et al. also found

that (82) iron metabolism plays a key role in the sphere-forming

ability of OC cells. Under non-adhesive culture conditions,

increased iron promoted the growth and maintenance of OC

stem-like cells, while iron chelators significantly inhibited

this process.

OC cells promote survival by inhibiting ferroptosis, a

mechanism that not only facilitates the early initiation of tumors

but also enables them to remain invasive during progression. For

example, MEX3A promotes the proliferation of OCCC cells and

tumor progression by regulating the stability of wild-type p53 and

inhibiting ferroptosis (83). In addition, abnormal upregulation of

SCD1 and FADS2 enhances lipid metabolism activity and tumor

invasiveness in ascites-derived OC cells by inhibiting ferroptosis

(84). Furthermore, studies have shown that OC metastasis-derived

cells exhibit higher ferroptosis sensitivity and increased PUFA

content, suggesting a close link between ferroptosis and the

potential for OC metastasis (85). The relationship between

ferroptosis susceptibility and poor prognosis in OC has also been
FIGURE 1

Regulation of ferroptotic signaling (A) Classical Ferroptosis Pathway: This pathway primarily involves the synthesis of GSH and the reduction of lipid
hydroperoxides (LOOH) by GPX4, which prevents ferroptosis. Cells take up cysteine (Cys) through the System Xc- to support GSH synthesis. GSH
then inhibits the propagation of lipid peroxidation through GPX4, avoiding ferroptotic cell death. Polyunsaturated fatty acids (PUFAs) and
phospholipids (PLs) play crucial roles in this process, with lipoxygenases (ALOXs) and other enzymes like POR, ACSL4, and LPCAT3 driving lipid
peroxidation. (B) Noncanonical Ferroptosis Pathway: This pathway involves different molecular mechanisms, including the regulation of p53, GLS2,
and SAT1, and affects ferroptosis through the expression of transferrin receptor 1 (TFR1) and ferritin. Endoplasmic reticulum stress (ERS) and
autophagy also play significant roles in ferroptosis, with key players like ATG5 and ATG7 regulating the autophagic process.
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further verified. Additionally, other molecules, such as MAD2L2

and NAT10, also promote OC progression by inhibiting the

ferroptosis pathway. As a key regulatory factor, MAD2L2 further

accelerates tumor progression by suppressing ferroptosis (86).

Upregulation of NAT10 promotes ovarian tumor development by

enhancing fatty acid metabolism and inhibiting ferroptosis (87).

These findings suggest that ferroptosis plays a critical role in the

onset and metastasis of OC. Therefore, regulating ferroptosis and its

associated signaling pathways may offer new insights and strategies

for the clinical treatment of OC. In summary, ferroptosis and its

related regulatory molecules could become promising targets for

future OC therapies.
3.2 Ovarian cancer tumor
microenvironment and ferroptosis

The tumor microenvironment (TME) is a dynamic, complex

system that significantly influences cancer progression and

therapeutic response. Recent studies have highlighted ferroptosis,

a novel form of programmed cell death, as being regulated by

various components of the TME, particularly through interactions

among immune cells, stromal cells, and the extracellular matrix

(88–90). These intricate interactions not only impact the

effectiveness of ferroptosis inducers but also shape the tumor’s

overall biological characteristics. For instance, Wei C et al.’s (91)

immune and ferroptosis-related risk scoring model underscores the

pivotal role of ferroptosis within the TME. Similarly, the prognostic

risk model developed by Gao J et al. (92), which focuses on

ferroptosis-related long noncoding RNAs (lncRNAs), further

demonstrates how these lncRNAs regulate the TME in

ovarian cancer.

A key interaction in the TME involves the regulation of immune

cells, particularly macrophages. Ji H-Z et al. (93) discovered that in

ovarian cancer, tumor-associated macrophages secrete CXCL8,

activate CXCR2, and upregulate the expression of SLC7A11 and

GPX4 in endothelial cells via the NF-kB signaling pathway, thereby

protecting endothelial cells from ferroptosis. This mechanism not

only explains ferroptosis resistance within the TME but also

underscores the crucial role of ferroptosis in tumor progression.

Additionally, Wang Y et al. (94) identified that growth factors such

as FGF2, 3, 8, 17, 18, 19, and 23 are closely linked to the ferroptosis

signaling pathway in ovarian cancer. Their study found that FGF

co-expresses with ferroptosis-related genes like GPX4, FTH1, and

HMOX1, and that the level of FGF expression is negatively

correlated with immune cell infiltration. This suggests that FGF

influences ovarian cancer progression by modulating iron

metabolism and immune responses. Li Z et al. (95) also pointed

out that in the fatty acid-rich TME of ovarian cancer, the

upregulation of SLC27A4 enhances tumor cell resistance to

ferroptosis by promoting the selective uptake of MUFA, thereby

inhibiting lipid peroxidation. Moreover, Atiya HI et al. (96)found

that endometriosis-derived mesenchymal stem cells (enMSC)

contribute to ovarian clear cell carcinoma (OCCC) growth
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through iron regulation. Specifically, when CD10-negative enMSC

were co-cultured with OCCC cells, significant changes were

observed in iron transport and export, highlighting the crucial

role of iron homeostasis in the TME for ovarian cancer progression.
3.3 Chemoresistance and ferroptosis in OC

As is shown in Figure 2, ferroptosis plays a crucial role in the

chemoresistance of OC (97, 98). Various molecular mechanisms

work together to suppress ferroptosis, thereby enhancing cancer cell

resistance to chemotherapy. However, research indicates that

targeting these resistance-related pathways can restore ferroptosis

sensitivity and improve chemotherapy efficacy.

ACSL1 enhances the stability and activity of FSP1 by promoting

its N-myristoylation, thereby inhibiting lipid peroxidation and

ferroptosis. This mechanism contributes to significant resistance to

platinum-based chemotherapy in OC cells. Notably, Zhang et al.

found that inhibiting ACSL1 or targeting the N-myristoylation

process of FSP1 can restore ferroptosis sensitivity and significantly

improve the efficacy of platinum-based drugs (99). Meanwhile,

JAM3, a transmembrane protein from the junctional adhesion

molecule family, plays a crucial role in cell adhesion and signal

transduction, particularly in cell migration and tumor metastasis

(100, 101). Studies have shown that high JAM3 expression is closely

associated with cisplatin resistance and poor prognosis in OC

patients. Specifically, JAM3 enhances the resistance of highly

adhesive OC cells to ferroptosis by activating the NRF2/FSP1

pathway and inhibiting lipid peroxidation. Targeting the JAM3-

NRF2/FSP1 pathway presents a promising therapeutic strategy to

overcome drug resistance and increase ferroptosis sensitivity

(102).Additionally, Frizzled-7 (FZD7) is a key marker of platinum-

resistant OC cells (103, 104). Wang et al. (105) found that OC cells

maintain redox balance and resist oxidative damage by activating the

FZD7–b-catenin–Tp63–GPX4 signaling pathway, further

promoting chemotherapy resistance. Therefore, targeting FZD7

and its downstream pathways may be an effective strategy for

improving chemotherapy sensitivity. Furthermore, as a ubiquitin

ligase, STUB1 plays a crucial role in regulating ferroptosis in OC cells

and enhancing sensitivity to the chemotherapy drug paclitaxel.

STUB1 promotes ferroptosis by mediating the ubiquitination and

degradation of HOXB3, thereby inhibiting PARK7 expression (106).

Understanding this mechanism provides a potential new approach

for overcoming paclitaxel resistance in OC and lays the groundwork

for future targeted therapy research.

In summary, the inhibition of ferroptosis is one of the important

mechanisms of OC resistance. With the in-depth study of these

molecular mechanisms, more and more evidence shows that

targeting these key regulatory factors can effectively restore the

sensitivity of OC cells to ferroptosis and improve the therapeutic

effect of chemotherapy drugs. In the future, intervention strategies

targeting these molecular mechanisms may become an effective way

to break through the bottleneck of OC resistance and bring more

clinical benefits to patients with resistant OC.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1578723
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wu et al. 10.3389/fimmu.2025.1578723
3.4 OC prognosis and ferroptosis

Ferroptosis is closely related to the metabolic regulation of

tumor cells, drug resistance and the prognosis of patients (Figure 2).

The importance of ferroptosis-related molecules in the prognosis of

OC has been demonstrated by an increasing number of studies. Wu,

X et al. found that high levels of SLC7A11 and GPX4 co-expression

are important predictors of platinum resistance and poor prognosis

in patients with epithelial OC. According to mechanistic research,

SLC7A11 and GPX4 stop ferroptosis by boosting cells’ antioxidant

potential and preventing lipid peroxidation (107). ALDH3A2 is an

enzyme involved in lipid metabolism that catalyzes the oxidation of

long-chain fatty aldehydes to fatty acids, thereby regulating cellular

lipid homeostasis and antioxidant capacity. Studies have shown that

ALDH3A2 affects the sensitivity of tumor cells to ferroptosis by

regulating lipid metabolism, GSH metabolism, phospholipid

metabolism, and aldehyde metabolism pathways (108). Using

TCGA and GTEx data, Dong, H. et al. also discovered that a poor

prognosis for patients with OC was linked to high expression of

ALDH3A2 (109). In addition to being closely linked to intracellular
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methylation processes, MTHFR is a crucial metabolic enzyme

involved in the metabolism of folate and homocysteine (110).

According to studies, women with OC who have high MTHFR

expression had a far worse prognosis (111). Wang, X. et al. also

discovered that MTHFR knockdown can greatly increase the anti-

tumor effect and boost the lethal effect of ferroptosis inducers (such

Erastin and RSL3) (112). In addition to metabolic regulation,

transcription factors also play an important role in ferroptosis-

related prognostic mechanisms. According to Furutake, Y. et al.,

YAP1 activation greatly increased the sensitivity of OCCC cells to

ferroptosis inducers (such Erastin) via boosting lipid peroxidation,

and low nuclear YAP1 expression was strongly linked to a poor

prognosis in OCCC (113). This discovery suggests that YAP1 may

play a part in controlling ferroptosis during the treatment of OC.

Zhang et al. found that CEBPG expression is significantly higher in

OC tissue than in benign ovarian tissue and is associated with poor

prognosis in OC patients. Further studies revealed that CEBPG

inhibits ferroptosis by regulating SLC7A11 transcription, thereby

promoting the proliferation, migration, and invasion of OC

cells (114).
FIGURE 2

The role of ferroptosis in OC tumorigenesis, progression, and chemotherapy resistance. Tumorigenesis & Progression: Several factors, including
MEX3A, SCD1, FADS2, MAD2L2, and NAT10, contribute to OC development and progression by suppressing ferroptosis, promoting tumor growth.
Chemotherapy Resistance: ACSL1, JAM3, FZD7, and STUB1 are linked to resistance against chemotherapeutic agents, potentially reducing ferroptosis
susceptibility and enabling tumor survival. Tumor Prognosis: High expression of SLC7A11, GPX4, ALDH3A2, MTHFR, YAP1, and CEBPG correlates with
poor prognosis by inhibiting ferroptosis, whereas ferroptosis induction could improve patient outcomes.
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These ferroptosis-related molecules not only reveal the key

biological mechanisms for the prognosis of OC patients, but also

provide new directions for precision treatment strategies

targeting ferroptosis.
3.5 Molecular mechanisms and regulatory
networks of ferroptosis in OC

3.5.1 The role of miRNA, lncRNA, and circRNA in
ferroptosis of OC

As is shown in Figure 3, the occurrence of ferroptosis in OC

cells is closely related to the expression of multiple RNA molecules,

among which miRNA, lncRNA and circRNA play an important role

as regulatory factors in the sensitivity and tolerance of ferroptosis.

These RNA molecules influence the ferroptosis process through

distinct mechanisms, significantly impacting the growth, migration,

invasion, and prognosis of OC.

MiR-93-5p is a small noncoding RNA belonging to the

microRNA (miRNA) family. Li, C et al. reported that miR-93-5p

down-regulated SLC7A11, reduced GSH levels, increased the

accumulation of ROS and lipid peroxides, and ultimately induced

ferroptosis (115). In addition, Sun et al. showed that miR-382-5p

can promote ferroptosis by inhibiting SLC7A11 and may become a

potential target for the future treatment of OC (116). Another

microRNA, miR-424-5p, can reduce the accumulation of lipid
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peroxidation end products (such as MDA) and reduce

ferroptosis-related cell death by directly targeting ACSL4. In

contrast, inhibition of miR-424-5p can enhance the sensitivity of

OC cells to ferroptosis (117).

Through multi-omics analysis, Wang, K. et al. revealed the

significant role of ferroptosis-related long noncoding RNAs

(lncRNAs) in OC. Eight ferroptosis-related lncRNAs were

screened (such as RP11-443B7.3, TRAM2-AS1, FAM13A-AS1,

AC107959.3, AC068870.2, ACBD3-AS1, LINC01857, and

AL031186.1), and were found to be closely associated with the

prognosis of OC patients. A risk scoring model based on these

lncRNAs was constructed to assess the potential benefits of

immunotherapy (118). In addition, TPT1-AS1, a long noncoding

RNA, promotes the transcription of GPX4 by upregulating the

transcription factor CREB1, thereby inhibiting ferroptosis and

enhancing the proliferation, migration, and invasion of OC cells

(119). In epithelial OC (EOC), ADAMTS9-AS1 upregulation

indirectly promotes SLC7A11 expression and inhibits ferroptosis

by suppressing microRNA-587. Silencing ADAMTS9-AS1, on the

other hand, increases microRNA-587 levels, leading to reduced

SLC7A11 expression, which in turn promotes ferroptosis and

inhibits the proliferation and migration of OC cells (120).

In terms of circular RNA regulation, Chai, B. et al. reported that

hsa_circ_0001546, functioning as a molecular chaperone for the 14-

3–3 protein, interacts with CAMK2D to promote the abnormal

phosphorylation of Tau protein at Ser324, thereby driving lipid
FIGURE 3

Regulation of ferroptosis by miRNAs, lncRNAs, circRNAs, and post-transcriptional modifications (A) miRNA, lncRNA, and circRNA regulation in
ferroptosis: Key miRNAs like MiR-93-5p, MiR-382-5p, and MiR-424-5p influence ferroptosis by modulating critical genes such as SLC7A11, GPX4,
and ACSL4. hsa_circ_0001546 and TPT1-AS1 also contribute to lipid peroxidation (LPO) and ferroptosis sensitivity. Additionally, CREB1 plays a role in
ferroptosis regulation through lipid metabolism and by impacting ACSL4 activity (B) Post-transcriptional Modifications: Modifications such as
methylation (Me) and acetylation (Ac) are involved in regulating the expression and function of key proteins like SLC7A11 and GPX4, both of which
are essential for ferroptosis regulation. The enzyme NAT10 influences fatty acid metabolism and ferroptosis by modifying mRNA stability, particularly
for genes like ACOT7. In addition, methyltransferases such as METTL3, FTO, and WTAP are critical in the regulation of GPX4 and SLC7A11, further
modulating the ferroptotic process.
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peroxidation-dependent ferroptosis. This mechanism effectively

inhibits the proliferation and metastasis of OC cells, offering a

potential new strategy for targeted therapy (121).

3.5.2 Post-transcriptional modifications and
ferroptosis

Recent studies have increasingly highlighted the crucial role of

post-transcriptional modifications in regulating ferroptosis, as well

as in tumorigenesis and cancer progression (Figure 3) (122–124). A

study found that NAT10 enhances the stability and translation of

ACOT7 mRNA through m6A-driven translational regulation and

ac4C RNA modification, thereby remodeling fatty acid metabolism,

inhibiting ferroptosis and promoting the occurrence and

progression of OC. More importantly, the study pointed out that

the small molecule inhibitor fludarabine can target NAT10 and

inhibit the acetylation modification of ACOT7 mRNA, inhibiting

the acetylation modification of ACOT7 mRNA and effectively

preventing tumor development. This offers a promising new

strategy for treating OC (87).

Other studies have also highlighted the critical role of post-

transcriptional modifications in regulating ferroptosis. For instance,

research has shown that m6A modification influences ferroptosis

sensitivity by modulating the expression of key genes, such as GPX4

and SLC7A11 (125). m6A-related enzymes such as METTL3,

WTAP, and FTO affect mRNA stability and translation efficiency

by regulating RNA methylation modification, thereby participating

in the regulation of lipid peroxidation and cell ferroptosis (126,

127). These findings further suggest that post-transcriptional

modifications play an important role in regulating ferroptosis in

OC cells, offering new insights for potential therapeutic strategies.

3.5.3 Ferroptosis inhibitors and promoters
3.5.3.1 Ferroptosis inhibitors

NRF2 is a transcription factor that helps maintain cellular redox

balance by regulating antioxidant gene expression. It plays a crucial

role in responding to oxidative stress, inflammation, and cellular

metabolism (128). Studies show that NRF2 impacts iron

homeostasis in OC cells by regulating the expression of HERC2

and VAMP8. Specifically, NRF2 upregulates HERC2 expression,

promoting ferritin degradation and increasing free iron levels.

Conversely, NRF2 downregulates VAMP8 expression, inhibiting

ferritin autophagy, and thereby modulating ferroptosis sensitivity

(129). Additionally, SGK1 (serum and glucocorticoid-induced

kinase 1) inhibits ferroptosis in OC through both NRF2-

dependent and -independent pathways. Sang et al. reported that

SGK1 enhances antioxidant defense and reduces lipid peroxide

production by activating the NRF2 pathway. Furthermore, SGK1

directly regulates intracellular iron and lipid metabolism through

NRF2-independent pathways, further inhibiting ferroptosis (130).

SLC2A12 and SLC27A4 also contribute to cellular metabolism.

Under hypoxic conditions, HIF-1A binds to HIF-1B and

upregulates SLC2A12 expression by binding to the hypoxia

response element (HRE) in the SLC2A12 promoter. This

regulation enhances GSH metabolism, promotes GPX4

expression, and inhibits lipid peroxide formation, thereby
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preventing ferroptosis (131). In contrast, SLC27A4 inhibits lipid

peroxide production and ferroptosis in OC by promoting

monounsaturated fatty acids (MUFA) and phospholipid

remodeling (123). PTRF/Cavin-1 is a protein involved in cell

membrane structure and signal transduction. It inhibits

ferroptosis by maintaining cell membrane integrity and lipid

homeostasis. Xiang et al. identified PTRF/Cavin-1 as a key

regulator in OC, preventing ferroptosis. Knockdown of PTRF/

Cavin-1 increased OC cells’ sensitivity to ferroptosis inducers,

such as Erastin and RSL3 (132).

PAX8, a transcription factor, enhances the antioxidant capacity

of OC cells by upregulating genes related to GSH synthesis, such as

GCLC and GSS, thereby inhibiting ferroptosis (133). FXN, a

mitochondrial iron-sulfur cluster assembly protein, regulates the

degradation of mitochondrial antioxidant protein PRDX3 and

inhibits ferroptosis in OC stem cells. FXN deficiency increases

ROS accumulation, disrupts the intracellular redox balance, and

induces ferroptosis, impairing the survival and self-renewal of

tumor stem cells (134). Moreover, Miyahara et al. found that

FDX2 prevents ferroptosis, cell senescence, and apoptosis in OC

cells by maintaining mitochondrial iron-sulfur cluster homeostasis.

Knockdown of FDX2 causes ROS accumulation and increased lipid

peroxidation, significantly heightening the sensitivity of OC cells to

ferroptosis inducers. In vivo experiments also demonstrated that the

loss of FDX2 inhibited tumor growth (135). Finally, SQLE, the rate-

limiting enzyme in the cholesterol biosynthesis pathway, is

significantly overexpressed in OC (136, 137). Zhang et al.

discovered that SQLE inhibits lipid peroxide generation and ROS

accumulation by regulating cholesterol and lipid metabolism,

reducing ferroptosis occurrence. Knockdown of SQLE

significantly increased the sensitivity of OC cells to ferroptosis

inducers, such as GPX4 inhibitors, and markedly inhibited tumor

growth in in vivo experiments (138). The ferroptosis inhibitors is

shown in Figure 4.

3.5.3.2 Ferroptosis promoting factors

STEAP3, a key regulator of iron metabolism, has been shown by

Han, Y. et al. to inhibit the expression of SLC7A11 through

activation of the p53 signaling pathway. This reduces GSH levels,

increases lipid peroxidation and ROS accumulation, ultimately

inducing ferroptosis and inhibiting OC progression (139). The

LIF/LIFR autocrine loop enhances OC cells’ sensitivity to

ferroptosis by suppressing the antioxidant defense system

downstream of the STAT3/NRF2/SLC7A11-GPX4 axis. Ebrahimi,

B. et al. demonstrated that the LIFR inhibitor EC359 not only

inhibited OC cell growth and stem cell properties, but also induced

lipid peroxidation and cell death by downregulating anti-ferroptosis

genes, ultimately slowing tumor progression in both in vivo and in

vitro models (140). HRD1 inhibits tumor proliferation and

metastasis by promoting the ubiquitination and degradation of

SLC7A11. Wang, Y. et al. found that elevated HRD1 expression

increases ROS and lipid peroxidation levels, triggers ferroptosis, and

limits tumor growth (141). In addition, Yang, W.-H. et al. reported

that the Hippo pathway effector YAP promotes ferroptosis by

regulating the E3 ubiquitin ligase SKP2. Knockdown of YAP
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significantly decreased the sensitivity to lipid peroxidation and

ferroptosis, while genetic or chemical inhibition of SKP2

protected cancer cells from ferroptosis. This discovery reveals the

critical regulatory roles of YAP and SKP2 in ferroptosis and offers

new therapeutic avenues for targeting YAP or SKP2 in cancer

treatment (142). The ferroptosis promoters is shown in Figure 4.
4 Preclinical strategies for ferroptosis-
based OC therapy

Figures 5 and 6 show the preclinical strategies for ferroptosis-

based OC treatment.
4.1 Combination drug therapy for OC

In recent years, OC treatment has increasingly focused on

combination therapies, particularly the use of ferroptosis inducers

alongside chemotherapy drugs. This approach has shown promise in

enhancing treatment efficacy and overcoming drug resistance. For

example, Battaglia et al. reported that Ferlixit can mitigate Erastin

resistance by increasing intracellular iron levels, inducing

mitochondrial dysfunction, and activating lipid peroxidation. Thus,

the combination of Erastin and Ferlixit can synergistically enhance

ferroptosis induction (82). The combination of Erastin and RSL3

significantly enhances cytotoxicity, particularly in multidrug-
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resistant and Ras-mutated OC cells, demonstrating strong

therapeutic potential (143). Meanwhile, NRF2 and GPX4 play key

roles in the antioxidant defense system of OC cells. Studies have

shown that co-administering the NRF2 inhibitor ML85 with the

GPX4 inhibitors RSL3 and ML210 induces lipid peroxidation and

ROS accumulation, triggering both ferroptosis and apoptosis. This

combination effectively inhibits OC cell growth and metastasis.

Further animal studies confirm its efficacy in reducing abdominal

implanted tumors, offering a promising strategy for OC treatment

(144).Additionally, Eribulin, a non-taxane microtubule inhibitor

widely used for advanced breast and OC, has shown effectiveness

in patients resistant to other treatments. Research indicates that

Eribulin induces ferroptosis in ovarian clear cell carcinoma (OCCC)

cells by enhancing ROS generation, increasing intracellular iron

levels, promoting lipid peroxidation, and inhibiting the NRF2-HO-

1 antioxidant pathway. Furthermore, Eribulin exacerbates

ferroptosis by disrupting mitochondrial function and reducing

DHODH protein expression. Its combination with the GPX4

inhibitor ML210 further enhances its anti-tumor effects, presenting

a potential therapeutic target for OCCC (145).

Targeting DNA repair pathways, the PARP inhibitor Olaparib

has also shown potential in regulating ferroptosis. Hong T. et al.

found that Olaparib suppresses SLC7A11 expression and reduces

GSH synthesis, thereby promoting lipid peroxidation and

ferroptosis in OC. Further studies indicate that combining PARP

inhibitors with ferroptosis inducers significantly enhances

treatment sensitivity in BRCA wild-type OC (146). Additionally,
FIGURE 4

Ferroptosis regulatory network in OC cells. Ferroptosis-promoting factors (highlighted in red) include LIF/LIFR, STAT3, HRD1, and SKP2, which are
involved in regulating iron metabolism, oxidative stress, and lipid peroxidation (LPO), all of which contribute to ferroptosis. SLC7A11, SLC2A12, and
STEAP3 play important roles in iron uptake and GSH synthesis, while VAMP8 and ferritin autophagy regulate intracellular iron storage. Ferroptosis
inhibitory factors (highlighted in green) such as GPX4, NRF2, PAX8, and p53 help prevent ferroptosis by maintaining cellular redox balance and
suppressing lipid peroxidation. FXN, FDX2, and PTRF/Cavin-1 contribute to iron homeostasis and mitochondrial function.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1578723
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wu et al. 10.3389/fimmu.2025.1578723
the combination of Olaparib and arsenic trioxide (ATO) has been

shown to enhance chemotherapy sensitivity in platinum-resistant

OC by promoting both ferroptosis and apoptosis. Specifically, ATO

strengthens Olaparib’s anti-cancer effects by activating the AMPK

pathway and inhibiting SCD1, offering a promising combination

therapy strategy to overcome platinum resistance (147). BRCA1

also enhances OC cell sensitivity to ferroptosis by promoting GPX4

degradation through K6-linked polyubiquitination. Conversely,

BRCA1 deficiency leads to increased GPX4 levels, inhibiting

ferroptosis and promoting tumor growth. In BRCA1-deficient OC

cells, PARP inhibitors (PARPi) can induce ferroptosis, and their

combination with GPX4 inhibitors exhibits significant synergistic

anti-tumor effects. This approach presents a promising strategy for

optimizing the treatment of BRCA1-deficient cancers (148).

Additionally, in the context of drug resistance, HSP27 and fatty

acid oxidation (FAO) reduce ROS levels induced by cisplatin,

thereby inhibiting its cytotoxic effects in platinum-resistant OC.

Studies have shown that combining ivermectin and perhexiline to

inhibit HSP27 and FAO significantly enhances cisplatin’s

effectiveness against drug-resistant OC cells. This finding suggests
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that targeting HSP27 and FAO could offer a promising strategy for

overcoming drug resistance in OC treatment (149).

In summary, combining ferroptosis inducers with

chemotherapy or targeted therapies can enhance the sensitivity of

OC cells to treatment while overcoming drug resistance, offering

new options for clinical management. However, further research is

needed to evaluate the long-term effects, safety, and impact of these

combination strategies on the tumor microenvironment. Such

studies will help develop more precise and effective treatments for

OC patients.
4.2 Development of new nanomedicines

The creation of medications based on nanomaterials has created

new avenues for the treatment of OC in recent years. When paired

with the ferroptosis process, nanomaterials can improve therapeutic

efficacy and demonstrate great promise in targeted therapy. A

promising new treatment approach for OC is provided by

this combo.
FIGURE 5

Schematic diagram of the classification of therapies for OCs.
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Zhang, Y. et al. created the nanomedicine known as SPIO-

Serum, which is made up of superparamagnetic iron oxide

nanoparticles attached to human serum. By increasing iron

absorption, causing mitochondrial damage, and causing lipid

peroxidation, the nanoparticles dramatically increase ferroptosis

in OC cells (150). This finding offers a fresh theoretical foundation

for iron oxide nanomaterial-based OC treatment. Furthermore,

Cheng, S. et al. created a novel ferroptosis inducer using an

ultrasound-responsive Bi2MoO6-MXene (BMO-MXene)

heterojunction. By increasing ROS production and suppressing

GPX4 and SLC7A11 expression, BMO-MXene markedly

increased ferroptosis in OC cells. Subsequent research revealed
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that BMO-MXene may stimulate immunogenic cell death (ICD)

when ultrasound is applied, which would activate the tumor

immune microenvironment and stop OC from growing (151).

This research offers a novel approach to the accurate and non-

invasive management of OC. Li, G. et al. created HA@PFG

nanoparticles based on hyaluronic acid in another study. By

releasing Fe³+ into the OC tumor microenvironment, these

nanoparticles triggered ferroptosis by causing lipid peroxidation

and GSH consumption (152). Furthermore, by targeting the highly

expressed cholesterol receptor SR-B1 in OC cells, HDL-like

nanoparticles (HDL NPs) caused lipid peroxidation and

ferroptosis, which blocked cholesterol absorption and decreased
FIGURE 6

Natural products modulate ferroptosis in OC by upregulating or downregulating key molecular pathways. Natural compounds are categorized into
different groups, including polyphenols, alkaloids, terpenoids, steroids, naphthoquinones, coumarins, polysaccharides, proteins, trace elements (Se),
and traditional Chinese medicine (Scutellaria barbata D. Don and Scleromitrion diffusum). Left Panel: Compounds that upregulate ferroptosis, such as
sodium citrate, shikonin, and progesterone, promote lipid peroxidation and Fenton reactions, increasing free iron and oxidative stress. Key proteins
such as NCOA4 mediate ferritinophagy, leading to intracellular iron accumulation. Right Panel: Compounds that downregulate ferroptosis, such as
curcumin, honokiol, and eriodictyol, act by enhancing antioxidant pathways. These include upregulation of GPX4, HO-1, and GSH metabolism,
reducing lipid peroxidation and preventing ferroptotic cell death.
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GPX4 expression. HDL NPs can greatly increase the killing effect of

chemotherapy-resistant OC cells when combined with

chemotherapeutic medications (like carboplatin) (153). This study

targets SR-B1 and cholesterol metabolism, offering a novel

approach to treating OC.

Iron Nitroprusside (FeNP) is an iron-based self-therapeutic

nanomaterial that exerts significant anti-tumor effects in OC by

inducing ferroptosis and chemodynamic therapy (CDT). In the

acidic lysosomal environment, FeNP releases Fe²+, which catalyzes

the Fenton reaction, converting endogenous H2O2 into ·OH. This

generates ROS and lipid peroxides, triggering ferroptosis.

Additionally, FeNP disrupts redox homeostasis by inhibiting

GPX4 expression, further promoting ferroptosis (154).The

development of novel nanomedicines offers an innovative

therapeutic strategy for treating OC.
4.3 Application of small molecule
compounds

Since the mechanism of ferroptosis has been gradually revealed,

the use of small molecule drugs in the treatment of OC has shown

great promise, particularly in causing ferroptosis, which offers a

novel approach to OC treatment.

Erastin is a classic ferroptosis inducer. According to research by

Zhan, S. et al., Erastin induces ferroptosis in OC cells by inhibiting

xCT transporters and inducing the accumulation of ROS, and

significantly enhances the sensit iv i ty of OC cel ls to

chemotherapeutic drugs such as cisplatin (155). In addition,

Cang, W. et al. found that Erastin induces TAMs to polarize to

M2 phenotype by activating the STAT3 signaling pathway and

secreting IL-8, which significantly enhances the migration and

invasion ability of ferroptosis-resistant OC cells (156). ABCB1 is a

drug efflux transporter, and its overexpression is closely related to

multidrug resistance in OC. Erastin can also enhance the sensitivity

of ABCB1-overexpressing OC cells to Docetaxel by inhibiting the

drug efflux activity of ABCB1 (157). In recent years, sodium

molybdate (Na2MoO4) has steadily gained attention because of

its potential for treating cancer (158, 159). Mao, G. et al. showed

that Na2MoO4 significantly induced ferroptosis of OC cells by

increasing the level of LIP, promoting the production of NO, and

depleting GSH (160). Based on ferroptosis, the novel small molecule

USP2 inhibitor ML364 has demonstrated anti-tumor potential

(161). Yang, D. et al.showed that ML364 significantly enhanced

RSL3-induced ferroptosis by downregulating Cyclin D1 and

increasing ROS levels, providing new ideas for the development

of ferroptosis-based therapeutic strategies (162). Another novel

small molecule compound, linoleic acid-glucosamine hybrid (LA-

GlcN), has the ability to enter tumor cells and selectively recognize

overexpressed glucose transporter 1 (GLUT1), thereby inducing

ferroptosis in HGSOC cells and offering a new approach to the

precision treatment of high-grade serous OC (163). Mihajlović, E.

et al. showed that FETPY, a novel diiron(I)sulfur-carbene complex,

triggers ferroptosis in OC cells by promoting iron uptake and

inducing membrane lipid peroxidation (164). Shen, X. et al.
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found that the platinum (II) complex PtQ induced ferroptosis in

OC cells by downregulating the SLC7A11/GPX4 signaling axis and

significantly enhancing lipid peroxidation and the accumulation of

ROS (165). NTX-301 is a novel DNA demethylating agent. Wang,

Y. et al. showed that NTX-301 enhances the ferroptosis sensitivity

of OC cells by upregulating the expression of ACSL4. In addition,

NTX-301 induces increased lipid peroxidation levels and further

exacerbates cell ferroptosis by regulating iron metabolism-related

genes (166). The identification of these small molecule compounds

shows the potential clinical use of ferroptosis-based treatment for

OC and offers a new anti-cancer method.
4.4 Increasing the usage of current
medications

One of the key tactics in the treatment of cancer is the

repurposing of current medications for new uses. A growing

number of research have started to investigate the novel function

of conventional medications in the treatment of cancer, particularly

through the anti-tumor effects of ferroptosis, a novel mechanism of

cell death (167, 168).

Ropivacaine is a local anesthetic drug that belongs to the amide

anesthetic class. The amide anesthetic class includes the local

anesthetic medication ropivacaine. Apart from its use in clinical

anesthesia, research has demonstrated that ropivacaine causes

ferroptosis by raising intracellular levels of ROS and free iron

(Fe²+) and dramatically reduces the stemness of OC cells by

blocking the PI3K/AKT signaling pathway. In addition to

preventing cancer cells from proliferating, this form of action

may also successfully overcome tumor stem cell resistance to

treatment. The anti-tumor activity of ropivacaine was further

confirmed by in vivo tests, which offered a theoretical foundation

for its use in the treatment of OC (169). Meanwhile, there has been

modest advancement in the repurposing of other widely used

medications for the treatment of tumors. For instance, the

sedative dexmedetomidine has been shown to control

immunological responses in the tumor microenvironment and

may potentially influence pathways linked to ferroptosis by

causing oxidative stress (170). Furthermore, recent research has

demonstrated that some medicines, such doxycycline, can also

cause ferroptosis by disrupting lipid metabolism or triggering

oxidative stress pathways, offering a possible novel therapy

approach for OC (171, 172). Future advancements in the

treatment of OC are anticipated to come from the expansion of

the use of current medications by focusing on ferroptosis.
4.5 Natural products in the treatment of
OC via targeting ferroptosis

As is shown in Figure 6, in recent years, natural products have

become an important direction in cancer treatment research due to

their wide range of biological activities and low side effects

(Table 1). Several studies have shown that natural products have
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TABLE 1 Natural products in the treatment of OC via promoting ferroptosis.

Compound Classification Concentration Model Effect Mechanism/target Reference

O↑, HMOX1↑, TFRC↑, LTF↑, POR↑, NCOA4↑ (174)

ive)↑
AMPK↑, Akt/mTOR↓ (175)

+↑, Targets SCD1: inhibits SCD1 protein translation
and stability

(176)

PO↑, HCAR1/MCT1↓, AMPK↑, SREBP1↓ (177)

O↑,
4↓

Binds to OTUB2, inhibits YAP signaling, promotes
lipid peroxidation

(178)

H↓, ATF4↓, GSH metabolism↓, Autophagy↓ (179)

O↑, SCD1↑ mediates POA production, promotes
lipid peroxidation

(180)

GPX4↓, GSH depletion, Lipid peroxidation↑ (181)

O↑, Downregulates Nrf2/HO-1/xCT/GPX4 pathway (182)

O↑, Upregulates ACSL4, promotes lipid peroxidation (183)

O↑, Downregulates GPX4 expression, promotes
lipid peroxidation

(184)

O↑, Induces ER-mitochondrial calcium transfer, inhibits
PI3K/MAPK signaling

(185)

O↑, Downregulates Nrf2/HO-1/GPX4 pathway (186)

O↑,
8↑

Activates p53, induces lipid peroxidation, G2 phase
arrest via p38 MAPK

(187)

O↑, Downregulates SLC7A11/xCT, NRF2, GPX4 (188)

O↑, Downregulates HOXC11, inhibits PROM2/
PI3K/AKT

(189)

(Continued)
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Shikonin Naphthoquinone
Compounds

Shi: 0.8 mg/kg, Cis: 3.0 mg/kg (in vivo);
Shi: 1.0-1.5 μM, Cis: 7-12 μM (in vitro)

Cisplatin-resistant OC cells (A2780/
DDP, SKOV3/DDP, OVCAR4/DDP)

Ferroptosis↑, ROS↑, LP
Fe²+↑, GPX4↓

Daphnetin Coumarins 5-40 μg/ml A2780, SKOV3, OVCAR8 (OC cells),
IOSE80 (normal)

ROS↑, Apoptosis↑,
Autophagy (cytoprotec

Agrimonolide Coumarins 10-40 μM (in vitro); 50 mg/kg (in vivo) A2780, SKOV-3 cells; SKOV-3
xenograft model

Ferroptosis↑, ROS↑, Fe
SLC7A11↓, GPX4↓

Curcumin and
its derivatives

Polyphenols IC50: 3.9 μM Anglne/HO8910PM cells Ferroptosis↑, GPX4↓, L
HCAR1↓, MCT1↓

Honokiol Polyphenols In vitro: 25-100 μM; In vivo: 30 mg/kg SKOV3, 3AO cells; Xenograft
mouse model

Ferroptosis↑, ROS↑, LP
Fe²+↑, SLC7A11↓, GPX

Anisomycin Antibiotic 31.8 μM HuOCSCs Ferroptosis↑, ATP↓, GS
LPO↑, Fe²+↑

Progesterone
+ Niraparib

Steroids P4: 5 mg/kg, Nir: 50 mg/kg (in vivo); P4:
10 μM, Nir: 10 μM (in vitro)

OVCAR3, A2780, SKOV3 cells;
Xenograft mouse model

Ferroptosis↑, ROS↑, LP
GPX4↓, Fe²+↑

Sodium Selenite (SS) Trace Elements
and Derivatives

In vitro: >333 ng/mL; In vivo: 1000–2000
μg/kg

SKOV3 cells; SKOV3 xenograft
mouse model

Ferroptosis↑, ROS↑,
LPO↑, GPX4↓

Carboxymethylated
Pachyman (CMP)

Polysaccharides In vitro: 100-200 μg/ml; In vivo: 50
mg/kg

SKOV3, Hey cells; Xenograft
mouse model

Ferroptosis↑, ROS↑, LP
Fe²+↑, GSH↓

Portulaca oleracea L.
polysaccharide (POL)

Polysaccharides In vitro: 50-100 μg/ml; In vivo: 50 mg/kg SKOV3, Hey cells; Xenograft
mouse model

Ferroptosis↑, ROS↑, LP
Fe²+↑, GSH↓

Angelica sinensis
polysaccharide (ASP)

Polysaccharides In vitro: 50-300 μg/mL; In vivo: 0.2 mg/
kg/day

SKOV3/DDP, A2780/DDP cells;
Xenograft mouse model

Ferroptosis↑, ROS↑, LP
GSH↓, GPX4↓

Laminarin Polysaccharides In vitro: 0.1–2 mg/mL; In vivo: 2 mg/mL ES2, OV90 cells; Zebrafish
xenograft model

Ferroptosis↑, ROS↑, LP
Ca²+↑, MMP↓,
PI3K/MAPK↓

Chelerythrine (CHE) Alkaloids In vitro: 5-15 μM; In vivo: 5–10 mg/kg A2780, SKOV3 cells; Xenograft
mouse model

Ferroptosis↑, ROS↑, LP
Fe²+↑, GSH↓

Chaetoglobosin
K (ChK)

Alkaloids In vitro: 1-10 μM; In vivo: N/A OVCAR-3, A2780/CP70 cells;
Normal ovarian IOSE-364 cells

Ferroptosis↑, ROS↑, LP
GPX4↓, p53↑, Caspase

Harmine Alkaloids In vitro: 20-30 μM; In vivo: 60 mg/kg SKOV3 cells; Xenograft mouse model Ferroptosis↑, ROS↑, LP
Fe²+↑, GSH↓, SOD↓

Artesunate (ART) Terpenes In vitro: 40 μM; In vivo: 70 mg/kg SKOV3, ES2 cells; Xenograft
mouse model

Ferroptosis↑, ROS↑, LP
GSH↓, GPX4↓
t

²

-
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TABLE 1 Continued

Compound Classification Concentration Model Effect Mechanism/target Reference

SKOV3PT, A2780PT cells; Xenograft
mouse model

Ferroptosis↑, ROS↑, LPO↑,
GSH↓, Bcl-2↓

Induces ROS production, downregulates Bcl-2,
inhibits NF-kB pathway

(190)

ES2, A2780cp, OVCA433 cells;
Xenograft mouse model

Ferroptosis↑, ROS↑, LPO↑,
GSH↓, GPX4↓

Upregulates ROS, suppresses GPX4, inhibits AKT/
ERK/FOXM1 and mTOR pathways

(191)

SKOV3, OVCAR-3 cells; Xenograft
mouse model

Ferroptosis↑, ROS↑, LPO↑,
Fe²+↑, GSH↓, GPX4↓, xCT↓

Downregulates NRF2/HO-1/GPX4/xCT pathway (192)

A2780/DDP cells; Xenograft
mouse model

Ferroptosis↑, ROS↑, LPO↑,
GSH↓, Fe²+↑, GPX4↓

Inhibits NRF2/GPX4 pathway, reduces
antioxidant defense

(193)

SKOV3, OVCAR3 cells; Xenograft
mouse model

Ferroptosis↑, ROS↑, LPO↑,
GSH↓, GPX4↓, ACSL4↑

Downregulates Akt phosphorylation, upregulates
p53, promotes lipid peroxidation

(194)

IGROV-1, SKOV-3 cells (cisplatin-
sensitive and resistant)

Ferroptosis↑, ROS↑, LPO↑,
GPX4↓, JNK↑, p38↑

Induces oxidative stress, activates MAPK signaling,
synergizes with cisplatin

(195)

A2780 cells; Zebrafish tumor model Ferroptosis↑, ROS↑, LPO↑,
GSH↓, Fe²+↑, FTH1↓

Induces heme catabolism and ferritinophagy,
regulates NFE2L2/HMOX1/MAP1LC3B/
NCOA4 pathway

(196)

SKOV3, A2780 cells; Xenograft
mouse model

Ferroptosis↑, Apoptosis↑,
ROS↑, LPO↑, Fe²+↑, GPX4↓

Inhibits CAMKK2/AMPK pathway, activates
NCOA4-mediated ferritinophagy

(197)

SKOV3 cells Ferroptosis↑, ROS↑, LPO↑,
GPX4↓, SLC7A11↓

Downregulates Nrf2/HO-1/NQO1,
induces ferritinophagy

(198)
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Costunolide Terpenes In vitro: 10-40 μM; In vivo: 5–10 mg/kg

MAP30 Proteins
and Peptides

In vitro: 10-40 μg/mL; In vivo: 125-250
μg/kg

Norcantharidin
(NCTD)

Terpenoids In vitro: 10-20 μg/ml; In vivo: 100–200
mg/kg

Tripterygium
glycosides (TG)

Terpenoids In vitro: 100-1600 μg/mL; In vivo: 1
mg/kg

Obacunone (OB) Terpenoids In vitro: 10-40 μM; In vivo: 100 mg/kg

d-Tocotrienol Terpenoids In vitro: 5-20 μg/ml; In vivo:
Not reported

SB-SD Extract Traditional
Chinese Medicine

In vitro: 50-600 μg/mL; In vivo: up to
250 μg/mL

Sodium citrate trace elements and
their derivatives

In vitro: 15–50 mM; In vivo: 4 g/kg/day

Eriodictyol Flavonoids In vitro: 10-50 μM; In vivo: Not reported

↑ represents upregulate, ↓ represents downregulate.
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the potential to regulate the expression levels of ferroptosis-related

factors (173). Natural products in particular are considered to be a

potentially effective therapy option for OC. In the treatment of OC,

natural products can not only promote the death of cancer cells by

promoting ferroptosis, but also enhance the sensitivity of cancer

cells to ferroptosis, forming a synergistic effect with existing

therapies (such as chemotherapy, radiotherapy, etc.), thereby

improving the treatment effect.

In this review, we summarized the roles of several natural

products, including flavonoids, polyphenols, alkaloids, terpenes,

polysaccharides, coumarins, proteins and peptides, trace elements

and their derivat ives , Tradit ional Chinese Medicine,

naphthoquinone compounds, steroid compounds, etc., in OC and

the mechanisms by which they regulate ferroptosis-related

pathways to achieve their anti-cancer effects. We also analyzed

their potential clinical application prospects, providing a new

perspective for the development and application of natural

products in the treatment of OC.

4.5.1 Flavonoids
Eriodictyol is a natural flavonoid compound that regulates the

Nrf2/HO-1/NQO1 signaling pathway, inhibits the expression of

GPX4 and SLC7A11, thereby significantly enhancing the levels of

intracellular ROS and LPO, and ultimately inducing ferroptosis. In

addition, eriodictyol promotes mitochondrial dysfunction and

ferritinophagy, exacerbating oxidative stress and effectively

inhibiting the proliferation of OC cells (such as SKOV3), and its

ferroptosis effect can be reversed by Ferrostatin-1 (198).

4.5.2 Polyphenols
Curcumin is a natural polyphenolic compound derived from

the rhizome of turmeric, which has been widely studied for cancer

treatment in recent years (199). In an OC model, curcumin and its

derivatives significantly induced ferroptosis by inhibiting the

activity of GPX4 and downregulating the expression of key

molecules such as MCT1 and HCAR1. Curcumin can enhance

the generation of ROS and lipid peroxides, while causing lipid

metabolism imbalance by inhibiting cellular antioxidant capacity.

In addition, curcumin activated the AMPK signaling pathway and

inhibited the SREBP1-mediated fatty acid synthesis pathway,

further exacerbating the ferroptosis effect. In vivo studies have

shown that the curcumin derivative NL01 can significantly inhibit

the growth of OC transplanted tumors without causing obvious

toxicity (177).

Honokiol is a biphenyl lignan extracted from the bark extract of

Magnolia plant species, which has a wide range of antioxidant,

antimicrobial, antidiabetic, anti-inflammatory, anti-aggregant,

analgesic, antitumor, antiviral and neuroprotective activities

(200). Honokiol inhibits the YAP signaling pathway by binding to

the deubiquitinase OTUB2, significantly upregulating LPO and

ROS, and inducing ferroptosis in OC cells. At the same time,

Honokiol can reduce the expression of key antioxidant factors

SLC7A11 and GPX4, further weakening the antioxidant capacity

of tumor cells. Its in vivo experimental results show good safety and

significant anti-tumor effects (178).
Frontiers in Immunology 16
4.5.3 Alkaloids
Harmine is a natural alkaloid derived from the plant Peganum

harmala, which has anti-inflammatory, antibacterial, anti-diabetic,

anti-malarial, anti-depressant and significant anti-tumor effects

(201). Harmine significantly reduces the risk of OC. Studies have

shown that Harmine significantly induces ferroptosis in OC cells

SKOV3 by downregulating ferroptosis inhibitors such as SLC7A11/

xCT, NRF2, and GPX4, promoting Fe²+ accumulation, LPO, and

ROS generation. Additionally, Harmine also leads to a decrease in

GSH and SOD levels, further exacerbating oxidative damage (188).

Chelerythrine (CHE) is a benzylisoquinoline alkaloid derived

from plants. Studies have shown that CHE can trigger ferroptosis by

downregulating the Nrf2/HO-1/GPX4 signaling pathway, reducing

antioxidant defense capacity, and increasing lipid peroxidation and

ROS accumulation. In addition, CHE significantly reduced

intracellular GSH levels, accompanied by an increase in Fe²+. In

vitro experiments showed that CHE could inhibit the proliferation

of OC cells A2780 and SKOV3 and induce ferroptosis, while

combined treatment with the Nrf2 activator TBHQ could reverse

the CHE-induced ferroptosis effect. In vivo, CHE significantly

inhibited tumor growth in the SKOV3 xenograft model and

further enhanced the ferroptosis effect by inhibiting the

expression of Nrf2 and related antioxidant proteins (186).

Anisomycin is an antibiotic purified from Streptomyces lividans

and is a potential anticancer drug. Anisomycin weakens the cell’s

ability to clear ROS and lipid peroxidation by inhibiting

intracellular GSH levels and the activity of the key antioxidant

enzyme GPX4, leading to the accumulation of lipid peroxides and

the occurrence of cellular ferroptosis. In addition, Anisomycin can

further aggravate the effects of ferroptosis by regulating the

autophagy signaling pathway, and its mechanism of action is

closely related to the inhibition of GSH metabolism mediated by

ATF4. In the OC model, Anisomycin not only significantly

promoted the accumulation of Fe²+, but also induced oxidative

damage to cell membrane lipids, ultimately triggering ferroptosis

signals (179).

Hydroquinidine (HQ) is a natural alkaloid derived from

cinchona bark, which has significant anticancer effects in OC

cells. HQ activates the oxidative stress pathway by inhibiting the

expression of cell cycle-related proteins CDK1 and CDK6,

significantly enhancing the apoptotic effect associated with

ferroptosis. In addition, HQ can further aggravate the

accumulation of intracellular lipid peroxides by reducing the

expression level of GPX4 and inhibiting the activity of

ferroportin. In SKOV-3 OC cells, HQ showed significant anti-

proliferation, migration inhibition and apoptosis induction effects,

and had low toxicity to normal cells, providing a new strategy for

the treatment of OC (202).

Chaetoglobosin K (ChK) belongs to the class of natural

products called mycotoxins and is also classified as an alkaloid,

specifically an indole-diterpenoid alkaloid. This compound is

extracted from fungi and has shown significant anticancer activity

in platinum-resistant OC cells (203). ChK can inhibit cancer cell

growth through multiple mechanisms, including inducing

ferroptosis and apoptosis (204). Studies have shown that ChK
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1578723
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wu et al. 10.3389/fimmu.2025.1578723
triggers ferroptosis by downregulating the expression of the

antioxidant factor GPX4 and increasing the levels of ROS and

lipid peroxidation. In addition, ChK can further enhance cancer cell

death by upregulating the p53 signaling pathway and activating the

caspase-8-dependent extrinsic apoptosis pathway. Both in vivo and

in vitro experiments have shown that ChK has low toxicity to

normal ovarian cells, showing good selectivity and therapeutic

potential (187).

4.5.4 Terpenoids
Artesunate (ART) is a well-tolerated antimalarial drug and a

potential anti-OC drug that induces ferroptosis (205). Artesunate

has been widely studied. Studies have shown that (206) ART

inhibits the transcription factor HOXC11, reduces the activity of

the downstream PROM2/PI3K/AKT signaling pathway,

significantly induces lipid peroxidation and ROS production, and

reduces GSH levels, thereby triggering ferroptosis. In addition, ART

further aggravates oxidative damage by inhibiting the expression of

GPX4. Both in vitro and in vivo experiments have shown that ART

significantly inhibits the proliferation, migration and growth of OC

cells, and its effect of inducing ferroptosis can be partially reversed

by overexpression of HOXC11 (189).

Costunolide is a natural sesquiterpene lactone compound that

has shown significant inhibitory effects on platinum-resistant OC

cells in research. Costunolide significantly increases the generation

of ROS while reducing the level of antioxidant factor GSH,

triggering lipid peroxidation and leading to cell death. Its induced

ferroptosis mechanism is achieved by downregulating Bcl-2 protein,

enhancing mitochondrial membrane permeability and inhibiting

NF-kB pathway. In addition, costunolide also exhibits synergistic

effects with cisplatin, effectively overcoming the chemotherapy

barriers of platinum-resistant OC by promoting the accumulation

of ROS and increasing the sensitivity of cells to cisplatin (190).

Obacunone (OB) is a natural bioactive compound extracted

from citrus fruits. OB activates the Akt/p53 signaling pathway by

downregulating Akt phosphorylation and upregulating p53

expression, thereby promoting iron-dependent lipid peroxidation

and ROS production and inducing ferroptosis in OC cells. In

addition, OB significantly reduces the levels of GSH and GPX4,

while upregulating the expression of ACSL4, further enhancing the

ferroptosis effect (194).

Norcantharidin (NCTD) is an effective anticancer drug. Studies

have shown that NCTD is a potential anti-OC therapeutic agent,

and its mechanism of action depends on the regulation of the

NRF2/HO-1/GPX4/xCT axis, thereby promoting the accumulation

of ROS, lipid peroxidation and Fe²+, inducing OC cell death. In vivo

and in vitro experiments, NCTD not only significantly reduced the

survival rate of OC cells, but also inhibited the growth of

transplanted tumors, while significantly increasing the levels of

ferroptosis-related markers MDA and PTGS2 (192).

Tripterygium glycosides (TG) is an active ingredient extracted

from the traditional Chinese medicine Tripterygium wilfordii,

which has anti-inflammatory, immunomodulatory and anti-

cancer effects. Studies have shown that TG induces ferroptosis by

regulating the NRF2/GPX4 signaling axis. TG treatment can
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significantly promote the accumulation of ROS and lipid

peroxidation, while exacerbating the depletion of GSH and

increasing the concentration of intracellular Fe²+. Studies have

also shown that when TG is used in combination with cisplatin, it

can significantly enhance the toxicity of cisplatin to drug-resistant

OC cells (such as A2780/DDP) through a synergistic effect. In vivo

studies have shown that TG alone or in combination with cisplatin

significantly inhibited the growth of transplanted tumors and

prolonged the survival time of tumor-bearing mice without

showing obvious toxic side effects (193). Tripterygium wilfordii

glycosides provide a potential new strategy for the treatment of

OC resistance.

d-Tocotrienol is a natural derivative of vitamin E and a type of

terpenoid. d-Tocotrienol is widely found in plants and exhibits

unique antioxidant and anti-tumor activities. Studies have shown

that d-tocotrienol effectively inhibits the growth of OC cells (OC) by

inducing ferroptosis. In addition, d-tocotrienol activated JNK and

p38 protein phosphorylation in the MAPK signaling pathway,

further enhancing the oxidative stress-induced cell death

response. In cisplatin-resistant OC cells (such as SKOV-3), d-
tocotrienol not only significantly reduced cell proliferation, but

also synergized with cisplatin treatment to significantly improve the

anti-cancer effect (195).

4.5.5 Polysaccharides
Carboxymethylated Pachyman (CMP) is a polysaccharide

derivative derived from Poria cocos. CMP weakens the

antioxidant defense capacity of tumor cells by downregulating the

Nrf2/HO-1/xCT/GPX4 signaling pathway, thereby inducing lipid

peroxidation and ROS accumulation, and ultimately leading to

ferroptosis. In vitro studies have shown that CMP significantly

reduced GSH levels and increased the accumulation of Fe²+ and

MDA in SKOV3 and Hey OC cells. At the same time, CMP

significantly upregulated the expression of ferroptosis marker

genes PTGS2 and CHAC1, and this effect could be reversed by

the ferroptosis inhibitor Ferrostatin-1. In vivo, CMP significantly

inhibited the growth of OC xenografts and reduced the expression

levels of Nrf2, HO-1, xCT and GPX4 in tumor tissues (182).

Purslane polysaccharide is a natural polysaccharide derived

from Purslane. Studies have shown that POL can significantly

upregulate the expression of ACSL4, promote the accumulation of

lipid peroxidation, ROS and Fe²+, and reduce the level of GSH,

thereby inducing ferroptosis. In addition, the survival rate of OC

cells decreased significantly after POL treatment, while the

ferroptosis inhibitors Ferrostatin-1 and Deferoxamine were able

to reverse this phenomenon, further proving that POL induces cell

death through iron-dependent lipid peroxidation. In vivo studies

also confirmed that POL can significantly inhibit the growth of OC

xenografts, as manifested by a decrease in tumor volume and

weight, and a significant increase in ACSL4, MDA and ROS levels

in tumor tissues (183).

Angelica sinensis polysaccharide (ASP) is derived from the

traditional Chinese medicine Angelica sinensis. Studies by Guo W

et al. have shown that ASP significantly downregulates the

expression level of the key antioxidant factor GPX4, weakens the
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antioxidant capacity of tumor cells, promotes the accumulation of

ROS and lipid peroxidation, and thus enhances the ferroptosis

effect. In addition, ASP exhibits a synergistic effect when used in

combination with cisplatin, significantly inhibiting the

proliferation, migration and invasion of cisplatin-resistant OC

cells (such as SKOV3/DDP and A2780/DDP), while significantly

increasing their apoptosis levels. In vivo studies have shown that the

combination of ASP and cisplatin can significantly inhibit the

growth of transplanted tumors, while having no obvious toxicity

to normal tissues and organs, showing a good safety profile (184).

Laminarin is a natural polysaccharide derived from brown algae

that achieves anti-cancer effects by inducing ferroptosis. Laminarin

induces intracellular Ca²+ accumulation and loss of mitochondrial

membrane potential by regulating the endoplasmic reticulum-

mitochondrial axis-related proteins GRP75 and MFN2,

significantly increasing ROS and lipid peroxidation levels. In

addition, Laminarin also significantly reduces the proliferation

ability of OC cells by inhibiting the phosphorylation of the PI3K/

MAPK signaling pathway, and induces the synergistic effect of

apoptosis and ferroptosis. In animal experiments, Laminarin

showed significant anti-tumor activity in the zebrafish transplant

tumor model, and no obvious toxicity was observed (185).

4.5.6 Coumarins
Daphnetin is a natural coumarin compound. Ma N et al.

showed that Daphnetin can inhibit NQO1 activity, leading to

intracellular iron accumulation and lipid peroxidation, thereby

activating ferroptosis, a non-apoptotic cell death pathway (207).

Fan X et al.’s research showed that Daphnetin can also trigger cell

death by inducing the generation of ROS and induce protective

autophagy by regulating the AMPK/Akt/mTOR pathway (175).

Ferroptosis mechanism provides theoretical support for the

potential application of Daphnetin in the treatment of OC.

Agrimonolide is a natural isocoumarin product derived from

the traditional Chinese medicinal herb Agrimonia pilosa Ledeb and

has multiple functional activities (208). Liu Y et al.’s study showed

that vanilloids significantly induced ferroptosis in OC cells A2780

and SKOV-3 by targeting and inhibiting the expression of SCD1.

Specifically, vanilloids treatment increased intracellular ROS, total

iron, and Fe²+ levels, and reduced the expression of ferroptosis

marker proteins SLC7A11 and GPX4. SCD1 overexpression can

significantly reverse the ferroptosis effect induced by vanilloids. In

in vivo studies, vanilloids inhibited the growth of OC xenografts in a

dose-dependent manner, while reducing the expression level of

SCD1 in tumor tissues (176).

4.5.7 Protein and peptide compounds
Momotarin (MAP30) is a natural active protein extracted from

the seeds of Momordica charantia, which has antioxidant, anti-

inflammatory, anti-cancer, anti-diabetic, anti-bacterial, anti-obesity

and immunomodulatory activities (209). Momordica protein is a

potential drug for adjuvant therapy of OC (210). Research by Chan

DW et al. showed that (191)MAP30 significantly increased the Ca²+

concentration in OC cells. This change led to oxidative stress and

mitochondrial dysfunction, further inducing the accumulation of
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ROS and lipid peroxidation. The experiment also found that the

ferroptosis-inducing effect of MAP30 could be partially reversed by

the ferroptosis inhibitor Ferrostatin-1. In addition, MAP30 can

significantly inhibit the proliferation and migration of OC cells by

inhibiting the AKT/ERK/FOXM1 and mTOR signaling pathways.

MAP30 is a safe and effective natural product that can be used as a

potential drug for the adjuvant treatment of OC.

4.5.8 Trace elements and their derivatives
Sodium citrate is a naturally derived citrate. Sodium citrate

chelates intracellular Ca²+, significantly reducing Ca²+

concentrations, thereby inhibiting the activity of the Ca²+/

CAMKK2/AMPK signaling pathway. On the one hand, this

mechanism induces cell apoptosis by inhibiting the HIF1a-
dependent glycolysis pathway; on the other hand, sodium citrate

triggers ferroptosis by activating NCOA4-mediated ferritinophagy,

leading to iron ion (Fe²+) accumulation and increased lipid

peroxidation levels. Studies have also found that sodium citrate

can significantly enhance the sensitivity of OC cells to

chemotherapeutic drugs, especially cisplatin and carboplatin (197).

Selenium (Se) is a trace element widely present in the natural

environment and is also one of the important components of

natural products. Studies have shown that high-dose sodium

selenite (SS) significantly induces ferroptosis of OC cells by

promoting ROS generation, weakening GPX4 expression, and

inducing lipid peroxidation. In addition, in vivo experiments have

verified that high-dose Se can significantly inhibit the growth of

SKOV3 xenograft tumors and exhibit tumor-specific toxicity (181).

4.5.9 Traditional Chinese medicine
Scutellaria barbata D. Don and Scleromitrion diffusum (SB-SD)

is a traditional Chinese medicine combination for the treatment of

OC. SB-SD extract significantly increases intracellular free iron

(Fe²+),ROS, and lipid peroxidation levels by promoting heme

catabolism and ferritinophagy, while reducing GSH and

mitochondrial membrane potential, ultimately leading to cell

death. Multi-omics analysis found that SB-SD forms a complex

ferroptosis regulatory network by upregulating the expression of

NFE2L2, HMOX1, MAP1LC3B, and NCOA4, and downregulating

the expression of FTH1. In addition, the anti-tumor effect of SB-SD

has been verified in both in vivo (zebrafish tumor model) and in

vitro experiments. SB-SD is a potential natural anti-cancer

treatment option (196).

4.5.10 Naphthoquinones
Shikonin is a natural naphthoquinone compound derived from

Lithospermum erythrorhizon. Studies have shown that shikonin

can effectively overcome the resistance of OC to cisplatin by

inducing ferroptosis. In cisplatin-resistant OC cells (such as

A2780/DDP, SKOV3/DDP, and OVCAR4/DDP) , the

combination of shikonin and cisplatin significantly enhanced the

level of cellular ferroptosis, including ROS generation, lipid

peroxidation accumulation, and increased Fe²+. Its mechanism of

action is related to the upregulation of HMOX1, which produces

Fe²+ by promoting heme degradation, thereby exacerbating ROS
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generation and lipid peroxidation. In addition, shikonin also

regulates the expression levels of other ferroptosis-related proteins

(such as TFRC, LTF, POR, NCOA4) and key enzymes (such as

GPX4) (174).

4.5.11 Steroids
Progesterone is derived from steroidal natural products and is

usually produced in vivo through cholesterol metabolism.

Progesterone significantly promotes ferroptosis of OC cells by

enhancing the production of POA and lipid oxidation. Studies

have shown that progesterone can activate the expression of SCD1,

a gene related to fatty acid metabolism, increase the expression of

GPX4, and weaken the cell’s ability to clear lipid peroxides. In

addition, progesterone combined with the PARP inhibitor

Niraparib can further enhance DNA damage, leading to increased

ROS and aggravated ferroptosis. In vivo studies have shown that

this combined treatment can significantly inhibit the growth of OC

transplanted tumors and prolong the survival of mice (180).
5 Limitations and considerations for
future research directions

Ferroptosis is a regulated form of cell death characterized by

iron accumulation and uncontrolled lipid peroxidation. This leads

to plasma membrane disruption and the release of intracellular

contents. Initially studied as a targeted therapy for cancer cells with

oncogenic RAS mutations, ferroptosis induction now shows

potential to complement chemotherapy, immunotherapy, and

radiotherapy in various cancer types. However, it can cause side

effects, including immune cell death, bone marrow damage, liver

and kidney damage, cachexia (severe weight loss and muscle

wasting), and secondary tumorigenesis (211). Currently, most

studies on ferroptosis focus on animal models and cell lines, and

there are significant differences between different species. Although

mouse models and human cell lines provide preliminary evidence

for the potential of ferroptosis in the treatment of OC, there is still

uncertainty as to whether their results can accurately reflect the

clinical situation of human patients. For example, the expression

levels and mechanisms of key molecules in the ferroptosis pathway,

such as FSP1 and GPX4, may vary between species (212–214).

Therefore, validation using more clinically relevant animal models

and human samples is critical in future studies.

Although some laboratory research progress has been made in

ferroptosis as a new target for the treatment of OC, there are still

challenges in translating these findings into effective clinical

treatments. The regulatory pathways of ferroptosis are relatively

complex and may involve multiple cross-signaling pathways, such

as ROS generation, lipid peroxidation, autophagy, inflammatory

response, etc. In clinical studies, the regulation of these mechanisms

may be affected by factors such as individual differences among

patients and tumor heterogeneity. Therefore, future studies need

more clinical data to verify the actual effect of ferroptosis-targeted

therapy and optimize treatment strategies. Ferroptosis is not an
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isolated cell death pathway. Studies have found that it interacts with

other cell death pathways such as apoptosis, necrosis, and

pyroptosis (97). For example, ferroptosis may work together with

apoptosis pathways or be regulated by other cell death pathways in

some cases. Therefore, future studies need to explore the

interactions between these cell death pathways in more depth and

consider jointly targeting multiple cell death pathways to improve

the therapeutic effect. Although targeted therapy for ferroptosis has

shown potential in laboratory studies, OC cells may develop

resistance in clinical treatment. The resistance mechanism may be

related to factors such as the regulation of key molecules in the

ferroptosis pathway, the balance of ROS generation, and changes in

iron metabolism. Future studies need to reveal the resistance

mechanism associated with ferroptosis and explore how to

overcome this resistance to achieve more lasting therapeutic

effects. Individual differences in ferroptosis regulation may affect

its effectiveness as a therapeutic target. Different OC patients may

respond differently to ferroptosis inducers due to differences in gene

mutations, tumor microenvironment, immune response, and other

factors. Therefore, the development of personalized treatment

strategies is critical. Future studies can explore the use of

multidimensional data such as genomics and proteomics to

analyze the response of OC patients to ferroptosis therapy, so as

to develop personalized treatment plans.

At present, drug development for ferroptosis is still in its

infancy, and the development of targeted drugs is progressing

slowly. The diversity and complexity of ferroptosis regulatory

molecules pose huge challenges to drug development. Future

research should focus on developing more efficient and selective

ferroptosis inducers and solving problems such as drug

biocompatibility, dose control, and targeting. In clinical

applications, physiological conditions such as liver and kidney

function of patients should also be considered to avoid treatment-

related side effects. Although ferroptosis, as an emerging target for

the treatment of OC, has been supported by laboratory and small-

scale preclinical studies, it is still necessary to verify its efficacy and

safety in extensive clinical trials. Large-scale, long-term clinical

trials are needed in the future to evaluate the true effect of

ferroptosis-targeted therapy in the treatment of OC and provide

strong data support for drug approval.
6 Discussions

This review systematically summarizes the research progress on

ferroptosis in OC treatment, focusing particularly on its potential to

overcome chemotherapy resistance and enhance treatment efficacy.

Targeting ferroptosis can effectively inhibit the growth, metastasis,

and drug resistance of OC cells, while improving chemotherapy

outcomes. Ferroptosis plays a crucial role in the onset, progression,

and metastasis of OC. OC cells often have a high dependence on

iron metabolism, which makes them more prone to ferroptosis than

normal cells. Key mechanisms of ferroptosis include lipid

peroxidation, ROS accumulation, and membrane rupture.
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Molecular pathways such as GPX4, SLC7A11, and ACSL4 are

central in regulating this process. By targeting these key

molecules, and by modulating iron metabolism and antioxidant

defense systems, ferroptosis can be induced directly to kill OC cells

and overcome chemotherapy resistance. Research on natural

products, small molecule compounds, and novel nanomedicines

has opened new avenues for clinical ferroptosis application. Natural

products like rutin, curcumin, and magnolol can induce ferroptosis

and enhance OC cells’ sensitivity to chemotherapy by regulating

antioxidant factors and lipid metabolism. Small molecules, such as

Erastin and RSL3, further promote ferroptosis by inhibiting critical

factors like GPX4 and SLC7A11. The development of novel

nanomedicines offers targeted treatment options, especially in

combination with ferroptosis mechanisms, to improve treatment

efficacy and overcome drug resistance.

Despite its promising potential, ferroptosis-based therapy faces

several challenges. First, efficient induction of ferroptosis still suffers

from selectivity issues. While ferroptosis can selectively target

tumor cells, the lack of fully specific ferroptosis inducers remains

a limitation. Ensuring accurate control over ferroptosis induction

and minimizing damage to normal tissues is an ongoing challenge.

Second, individual variation in iron metabolism, antioxidant

capacity, and ferroptosis sensitivity among OC patients

complicates the individualized regulation of ferroptosis-related

molecules. As a result, future ferroptosis therapies will need more

personalized approaches. Moreover, optimizing the combination of

ferroptosis inducers with other treatment modalities, such as

chemotherapy or targeted therapies, warrants further

investigation. Future research should focus on the following areas:

first, deepen understanding of ferroptosis regulation to improve its

selectivity and therapeutic effectiveness; second, develop more

selective ferroptosis inducers and explore their combination with

existing chemotherapy or targeted therapies; third, identify

biomarkers for ferroptosis-related molecules to guide

individualized treatment strategies; last but not least, investigate

the synergistic effects of ferroptosis with other treatments, such as

immunotherapy and radiotherapy, to provide more comprehensive

treatment options for OC.

In conclusion, ferroptosis represents a promising therapeutic

target for OC, with great potential for clinical application. By

advancing our understanding of its mechanisms, developing more

selective ferroptosis inducers, and optimizing combination

therapies, we hope to provide OC patients with more precise and

effective treatment options in the future.
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