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Deep vein thrombosis (DVT) is a complex multifactorial vascular disease

characterized by abnormal blood stasis and coagulation within the deep

veins, primarily occurring in the lower limbs. This pathological condition

not only causes local circulatory disruption but also has the potential to

trigger life-threatening pulmonary embolism through thrombus detachment,

thus posing a major threat to human health. Toll - like receptors (TLRs),

essential components of the innate immune system, have been increasingly

acknowledged as crucial determinants in the pathogenesis of DVT. TLRs

possess the ability to recognize a diverse range of pathogen - associated

molecular patterns (PAMPs) and endogenous danger - associated molecular

patterns (DAMPs). Upon activation, they trigger a cascade of inflammatory

responses that are intricately intertwined with the thrombotic process. This

review comprehensively scrutinizes the extant knowledge pertaining to the

role of TLRs in DVT. It systematically synthesizes the molecular mechanisms

underpinning the participation of TLRs in DVT, spanning platelet activation,

endothelial cell dysfunction, and leukocyte recruitment. Moreover, it delves

profoundly into the potential of targeting TLRs as therapeutic strategies for

DVT. This entails the exploration of the development and application of TLR

inhibitors or antagonists. By elucidating these aspects, the objective is to

proffer novel perspectives and insights for the prevention and treatment

of DVT.
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1 Introduction

DVT is a prevalent vascular condition that holds considerable

clinical significance and exhibits a high occurrence rate, particularly

in patients who have recently fracture, undergone surgery,

individuals who remain immobile for extended periods, and those

diagnosed with cancer (1). DVT not only causes lower limb

swelling, pain, and functional impairment, but may also lead to

serious complications such as pulmonary embolism, which can

threaten patients’ lives (2). According to the latest epidemiological

data, the incidence of DVT is on the rise globally, and its economic

burden and social impact cannot be ignored (3). Data from a

multinational cohort (2017–2023) involving over 1 million

surgical patients revealed that DVT and pulmonary embolism

(PE) accounted for 51% and 49% of venous thromboembolism

(VTE) cases (4). Preoperative DVT prevalence in lower-extremity

fractures reached 24.1%, with femoral fractures posing higher risks

than tibiofibular injuries (5). In the pathophysiological process of

DVT, Virchow’s triad—blood flow stasis, hypercoagulable state,

and vascular endothelial damage—are considered the main

pathogenic factors (6). However, research in recent years has

shown that immune-inflammatory response plays a key role in

the occurrence and development of DVT, especially the mediating

effects of inflammatory cells and cytokines (7).

TLR, is widely present in various immune and non-immune cells.

It plays a role in identifying PAMPs and DAMPs, which in turn

triggers multiple signaling pathways and modulates immune

responses (8). The activation of TLR signaling pathways is

significant not only for anti-infection immunity but is also

intricately connected to the development of various inflammatory

diseases, such as atherosclerosis, rheumatoid arthritis, and DVT (9,

10). Recently, an increasing amount of research has concentrated on

the particular mechanisms involved in TLR signaling pathways

related to DVT, as well as their possible therapeutic targets. For

example, the activation of TLR4 can lead to the activation of key

transcription factors such as NF-kB and IRF3 through MyD88-

dependent and MyD88-independent pathways, thereby inducing

the expression of inflammatory factors and coagulation factors

(11). In addition, TLR signaling pathways in endothelial cells have

also been found to be closely related to vascular endothelial

dysfunction, which in turn promotes thrombosis formation (12,

13). The results not only enhance our comprehension of how DVT

develops but also offer a foundational theory for creating new

treatment approaches.

In terms of treatment, the existing DVT treatment methods

mainly include anticoagulant therapy and thrombolytic therapy.

Although these methods have achieved certain effects in the

prevention and treatment of thrombosis, they still have the risk of

bleeding and therapeutic limitations (14–16). Therefore, the

regulation of TLR signaling pathways has become a promising

new therapeutic strategy. TLR antagonists and inhibitors have

shown good antithrombotic effects in experimental models,

indicating their potential for clinical application (17, 18). In

addition, research on natural products has also shown that by

regulating TLR signaling pathways, the inflammatory response and
Frontiers in Immunology 02
thrombosis formation of DVT can be effectively alleviated (19). This

review aims to focus on the specific roles of TLR in the

pathophysiological process of DVT, regulatory mechanisms, and

therapeutic strategies based on TLR signaling pathways. By

comprehensively analyzing the latest research progress, this article

aims to provide new theoretical basis and research directions for the

prevention and treatment of DVT.
2 The pathophysiological mechanisms
of deep vein thrombosis

2.1 Virchow’s triad

DVT is a complex pathological process, the pathogenesis of

which is mainly driven by Virchow’s triad, including blood flow

stasis, hypercoagulable state, and vascular endothelial damage (6).

Blood flow stasis is usually caused by venous valve dysfunction,

long-term bed rest, or restricted activity after surgery, leading to a

slowdown in venous blood flow and an increased risk of thrombosis

(20, 21). Hypercoagulable state can be caused by hereditary

coagulation factor abnormalities (such as prothrombin gene

mutation, protein C/protein S deficiency) or acquired factors

(such as cancer, pregnancy, oral contraceptives), which promote

thrombosis by increasing the activity of coagulation factors or

reducing the level of anticoagulant factors (22–24). Vascular

endothelial damage promotes platelet adhesion and aggregation

and initiates the coagulation cascade by exposing subendothelial

matrix components (such as collagen) and procoagulant substances

(such as tissue factor) (25–27).
2.2 The role of inflammatory response in
DVT

In addition to Virchow’s triad, the inflammatory response is

also significant in the pathophysiology of DVT (Figure 1).

Inflammatory cells, such as neutrophils, monocytes, and

macrophages, regulate the processes of thrombosis and

dissolution by releasing cytokines, chemokines, and enzymes (28–

31). Neutrophils release Neutrophil Extracellular Traps (NETs),

which not only capture pathogens but also promote thrombus

stabilization and formation. NETs are composed of DNA,

histones, and antimicrobial proteins, which can enhance fibrin

formation and promote platelet activation and aggregation, thus

accelerating thrombus development (32). Monocytes and

macrophages further enhance the coagulation response by

expressing tissue factor(TF) and other procoagulant factors in

DVT. Studies have shown that monocytes accumulate in the

venous intima and promote thrombus formation and

maintenance by secreting TF and inflammatory mediators (such

as IL-6, TNF-a) (33–35). In addition, macrophages participate in

thrombus dissolution and fibrin degradation by clearing red blood

cells and fibrin in the thrombus, maintaining the dynamic balance

of the thrombus (36, 37).
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3 Overview of TLR signaling pathways

3.1 Types and structures of TLR

Pattern recognition receptors (PRRs) of the innate immune

system, known as TLRs, play a crucial role. TLRs were first

discovered in fruit flies, and their name originates from the

description of their importance by German scientists (“Toll”

means “amazing” in German) (38). In 1997, the first Toll-like

receptor, TLR4, was identified in mammals, marking the

beginning of a new era in TLR research (39). In humans, 10

TLRs (TLR1 to TLR10) have been identified, while in mice, there

are 12 (TLR1 to TLR9 and TLR11 to TLR13) (40). These receptors

are distributed on immune cells (such as macrophages, dendritic

cells, neutrophils, etc.) and some non-immune cells (such as

endothelial cells, epithelial cells, etc.). They trigger complex

signaling cascades by recognizing specific exogenous or

endogenous molecules (41, 42).

TLRs constitute a group of transmembrane proteins

characterized by a distinct molecular architecture featuring three

components: the extracellular region, the transmembrane segment,

and the intracellular signaling region. The extracellular domain of

TLRs consists of multiple leucine-rich repeats (LRRs), which are

arranged in a horseshoe shape to form specific ligand-binding sites

(43). The extracellular domain configuration of various TLRs

defines the specificity of their ligands (Table 1). For example,

TLR4 exerts anti-Gram-negative bacterial effects by binding to

lipopolysaccharide (LPS) (44). TLR9 recognizes CpG DNA (DNA

sequences rich in unmethylated CpG dinucleotides), which is a

characteristic of bacterial and viral DNA (45). These recognition
Frontiers in Immunology 03
capabilities make TLRs play a key role in anti-infection immunity

and inflammatory responses, and they are also involved in the

pathogenesis of various autoimmune and inflammatory diseases.

The transmembrane domain of TLRs consists of a hydrophobic a-
helical structure embedded in the cell membrane or endosomal

membrane, serving to stabilize the receptor and mediate signal

transduction (46). The transmembrane region not only aids in the

localization of TLRs within the membrane but is also involved in the

dimerization of receptors, a crucial step in the activation of

signaling. The intracellular part of TLRs is called the Toll/IL-1

receptor domain (TIR), which is the core region for signal

transduction (47). After ligand binding, the TIR domain interacts

with specific adaptor proteins (such as MyD88 or TRIF) to activate

downstream signaling pathways (48). The diversity of the TIR

domain also supports the specificity of signal transduction by

different TLRs.
3.2 TLR signaling pathways

The activation of TLR signaling pathways mainly occurs

through two different downstream pathways (Figure 2): the

MyD88-dependent pathway and the MyD88-independent

pathway (49). Most TLRs (except TLR3) activate downstream

signaling molecules through the adaptor protein MyD88 (Myeloid

differentiation primary response 88), this process activates the NF-

kB (nuclear factor kB) and MAPK (mitogen-activated protein

kinase) signaling pathways, leading to an increase in the

production of pro-inflammatory cytokines, including TNF-a and

IL-6 (50). TLR3 and TLR4, on the other hand, can use the adaptor
FIGURE 1

Deep Vein Thrombosis Formation Process(By Figdraw). Endothelial injury caused by inflammation or oxidative stress exposes the subendothelial
matrix (e.g., collagen, vWF) and releases procoagulants like tissue factor (TF). Platelets bind to vWF via GPIb-IX-V, adhere to the site, and release
mediators (ADP, TXA2) to recruit additional platelets, forming aggregates. TF activates the extrinsic coagulation pathway, generating thrombin to
convert fibrinogen into fibrin mesh. Damaged endothelium releases chemokines (IL-8) and adhesion molecules (P/E-selectin), recruiting neutrophils
that release NETs to stabilize thrombi. Monocytes recruited via MCP-1 differentiate into macrophages, secreting pro-inflammatory cytokines (TNF-a,
IL-1b) and TF.
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protein TRIF (TIR-domain-containing adapter-inducing

interferon-b) to activate IRF3 (interferon regulatory factor 3) and

NF-kB, inducing the production of type I interferons (such as IFN-

b) (51). Inside the cell, the activation process of TLR signaling

pathways involves multiple key molecules and steps. First, after

TLRs bind to their ligands, the receptors undergo dimerization or

oligomerization, which then recruits adaptor proteins (such as

MyD88, TRIF, TIRAP/MAL, TRAM) to the TIR domain of the

receptor. These adaptor proteins further recruit downstream

kinases (such as IRAK4, IRAK1) and E3 ubiquitin ligases (such as

TRAF6), forming a signaling complex that promotes the activation

of the IkB kinase (IKK) complex (52). The IKK complex adds

phosphate groups to the IkB protein, resulting in its breakdown and

the subsequent release of the NF-kB transcription factor into the

nucleus, where it prompts the transcription of genes related to

inflammation (53). Moreover, the stimulation of the MAPK

signaling pathway increases the expression of inflammatory

factors and other biological processes, such as cell growth and

differentiation (54). In addition to the classical MyD88-dependent

and -independent pathways, research in recent years has revealed

the complexity and diversity of TLR signaling pathways. For

instance, when LPS is recognized by TLR4, it not only activates

NF-kB via the MyD88-dependent pathway but also triggers the

expression of antiviral genes through the TRIF-dependent pathway,

showcasing its diverse functions in combating infections (55).

Moreover, the regulation of TLR signaling pathways is also

influenced by various negative regulatory mechanisms, including

the endocytosis of receptors, ubiquitination of adaptor proteins, and

the involvement of negative regulatory proteins (such as A20,

SARM). These mechanisms collectively maintain the balance of
Frontiers in Immunology 04
TLR signaling, preventing excessive inflammatory responses and

the occurrence of autoimmune diseases (56, 57).
4 The role of TLR signaling pathways
in DVT

4.1 TLR activation and thrombosis
formation

TLR1 and TLR6 usually form dimers with TLR2, recognizing

bacterial lipopeptides and other bacterial components, activating

the MyD88-dependent signaling pathway, promoting the activation

of NF-kB and MAPK, inducing the expression of inflammatory and

coagulation factors, and thus promoting thrombosis formation (58).

TLR3 mainly recognizes double-stranded RNA through the TRIF-

dependent pathway, activating the IRF3 and NF-kB signaling

pathways, inducing the production of type I interferons and pro-

inflammatory cytokines, and enhancing the inflammatory

environment for thrombosis formation (59).

One of the most thoroughly researched members of the TLR

family is TLR4, which plays a crucial role in DVT and various other

thrombotic conditions. This receptor is capable of identifying

endogenous DAMPs like high-mobility group box 1 (HMGB1) as

well as exogenous PAMPs such as bacterial LPS, activating

downstream signaling through both MyD88-dependent and

TRIF-dependent pathways, inducing the expression of

inflammatory factors (e.g., TNF-a, IL-6) and coagulation factors

(e.g., tissue factor), and promoting thrombus formation and

stabilization (60, 61). Recent studies have shown that the
frontiersin.or
TABLE 1 TLR ligands, sources, and functions.

TLR Ligands Sources Functions

TLR1 Triacyl lipopeptides Gram-positive bacteria, Mycobacteria Enhances TLR2 recognition

TLR2 Lipoproteins, fungal components Gram-positive bacteria, fungi, viruses Broadly recognizes microbial components

TLR3 Double-stranded RNA (dsRNA) Viruses Antiviral immunity

TLR4 Lipopolysaccharides (LPS), viral proteins,
endogenous molecules

Gram-negative bacteria, viruses, damaged cells Initiates strong inflammatory responses

TLR5 Flagellin Flagellated bacteria Recognizes flagellated bacteria

TLR6 Diacyl lipopeptides Gram-positive bacteria, Mycobacteria Enhances TLR2 recognition

TLR7 Single-stranded RNA (ssRNA) Viruses Antiviral immunity

TLR8 Single-stranded RNA (ssRNA) Viruses Initiates inflammatory responses

TLR9 Unmethylated CpG DNA Bacteria, viruses Antimicrobial and antiviral immunity

TLR10 Unknown (possibly synergizes with TLR2) Bacteria, fungi Immune modulation (function not clear)

TLR11 Toxoplasma profilin, uropathogenic E.
coli components

Toxoplasma, uropathogenic E. coli
(mouse-specific)

Antiparasitic and antibacterial immunity

TLR12 Toxoplasma profilin Toxoplasma (mouse-specific) Antiparasitic immunity

TLR13 Bacterial 23S rRNA Gram-positive bacteria (mouse-specific) Antibacterial immunity
g
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activation of TLR4 also involves the interplay between the PI3K/Akt

and MAPK signaling pathways, further enhancing inflammatory

responses and thrombus stability (62–64).

TLR5 mainly recognizes bacterial flagellin, activating NF-kB
and MAPK through the MyD88-dependent pathway, promoting

the expression of inflammatory and coagulation factors, and

thereby promoting thrombosis formation (65, 66). Despite

receiving less attention, TLR7 and TLR8 have been demonstrated

to contribute to the regulation of immune responses and

coagulation processes in DVT. They mainly recognize single-

stranded RNA, participate in inflammation associated with viral

infections, and induce the production of type I interferons and pro-

inflammatory cytokines through the IRF7 and NF-kB signaling

pathways, promoting thrombosis formation (67, 68).

TLR9 recognizes CpG DNA, activating the IRF7 and NF-kB
signaling pathways, inducing the production of type I interferons

and pro-inflammatory cytokines, and further promoting

thrombosis formation (69, 70). TLR10 is considered to have

inhibitory functions in humans, negatively regulating the

signaling pathways of TLR2 and TLR4 to limit excessive
Frontiers in Immunology 05
inflammatory responses and maintain vascular homeostasis (71–

73). TLR11 to TLR13 in mice mainly participate in parasite

infections and autoimmune regulation, and their specific roles in

thrombosis formation require further research (74, 75).
4.2 Cellular sources and targets of TLRs in
thrombosis

The role of TLRs in DVT depends not only on their expression

levels but also on their distribution and functions in different cell

types. The main TLR-expressing cells include endothelial cells,

platelets, monocytes, macrophages and neutrophils.

4.2.1 Endothelial cells
Vascular endothelial cells are crucial for sustaining vascular

balance and managing the process of blood clotting. The activation

of TLR signaling pathways can lead to endothelial cell dysfunction,

promoting thrombosis formation. Specifically, the activation of

TLR4 in endothelial cells induces the expression of inflammatory
FIGURE 2

TLR signaling pathways (By Figdraw). After ligand binding (e.g., LPS for TLR4, dsRNA for TLR3), TLRs dimerize and recruit adaptor proteins such as
MyD88 or TRIF through their TIR domains. The MyD88-dependent pathway activates IRAK and TRAF6, leading to NF-kB and MAPK activation, which
induces pro-inflammatory cytokines. The MyD88-independent Pathway, utilized by TLR3 and TLR4, activates TBK1 and IRF3, promoting the
production of type I interferons. TIRAP, TIR Domain-Containing Adaptor Protein; MyD88, myeloid differentiation factor 88; IRAK1/2/4, interleukin 1
Receptor Associated Kinase 1/2/4; TRAF, tumor necrosis factor receptor-associated factor ; TAB1/2, TGF-beta Activated Kinase 1 Binding Protein 1/2;
TAK1, transforming growth factor activating kinase-1; NF-kB, nuclear factor kappa B; MAPK, mitogen-activated protein kinase; AP-1, Activator
Protein 1; TRAM, TRIF-Related Adaptor Molecule; TRIF, toll receptor-associated interferon activator; RIP1, Receptor-Interacting Protein 1; IKKe, I-kB
kinase e; TBK1, TANK-binding kinase 1; IRF, interferon regulatory factor .
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factors (e.g., IL-6, TNF-a) and adhesion molecules (e.g., VCAM-1,

ICAM-1), enhancing the adhesion and migration of white blood

cells, and promoting the accumulation and activation of

inflammatory cells in the vascular wall (76, 77). Further studies

have revealed that TLR4 regulates the microenvironment of

endothelial cells, inducing oxidative stress and apoptosis,

disrupting the integrity of the vascular endothelium, increasing

the permeability of the vascular wall, and promoting thrombus

formation and expansion (78). Additionally, TLR4 regulates the

metabolic pathways of endothelial cells, promoting lipid

peroxidation and the generation of inflammatory mediators,

further exacerbating endothelial cell dysfunction (79, 80). The

mechanisms of TLR2 and TLR9 in endothelial cells have also

been gradually revealed. TLR2 regulates the proliferation and

migration of endothelial cells through the PI3K/Akt and NF-kB
signaling pathways, promoting vascular remodeling and thrombosis

formation (81). TLR9 affects the ability of endothelial cells to cope

with oxidative stress by regulating their antioxidant defense system,

thereby influencing thrombosis formation (82). Research indicates

that the relationship between TLRs and vascular endothelial cells

extends beyond inflammatory responses, encompassing

mechanisms associated with metabolism, cell viability, and

apoptosis, all of which play a role in the emergence and

progression of DVT.
4.2.2 Platelets
Platelets are not only key participants in hemostasis and

thrombosis formation but also play important roles in immune

regulation and inflammatory responses. Recent research has shown

that platelets regulate thrombo-inflammatory responses in various

pathological conditions through TLR-mediated signaling pathways.

TLR2 and TLR4 regulate platelet function through different

mechanisms: the TLR2 agonist Pam3CSK4 directly induces

platelet aggregation, while the TLR4 agonist LPS enhances platelet

adhesion and glycoprotein Ib-dependent aggregation (83). In

SARS-CoV-2 infection, TLR4 promotes platelet activation and

thrombosis formation by binding to the viral spike protein, a

mechanism of significant importance in COVID-19-related

thrombotic complications (84). Furthermore, in individuals

diagnosed with essential thrombocythemia (ET), there is a

notable increase in the expression levels of TLR2 and TLR4,

which contribute to the activation of platelets and the secretion of

pro-inflammatory mediators through the activation of NF-kB and

MAPK signaling pathways, thereby intensifying thrombo-

inflammatory reactions (85). Calprotectin induces platelet

apoptosis by binding to TLR4 on the platelet surface and

activating the NLRP3 inflammasome, thereby reducing platelet

survival (86). Tyrosyl-tRNA synthetase (YRSACT) induces the

generation of “inflammatory” megakaryocytes and platelets by

activating TLR and type I interferon signaling pathways, and

these platelets exhibit enhanced agonist-induced activation and

pro-coagulant activity (87). Low-grade endotoxemia (LGE)

enhances platelet activation and thrombosis formation through

the TLR4 signaling pathway, a mechanism of significant

importance in cardiovascular diseases (88). Additionally, platelets
Frontiers in Immunology 06
are involved in the pathological mechanisms of hemolytic disorders

by expressing TLR4 and the NLRP3 inflammasome. For instance,

free hemin can stimulate the release of a-granules from platelets

through the activation of the TLR4 signaling pathway, which in turn

activates the production of mitochondrial reactive oxygen species

(mtROS) (89). These results offer novel insights for advancing

therapies aimed at anti-thrombosis and anti-inflammation that

focus on the signaling pathways of platelet TLR.

4.2.3 Monocytes
LPS activates monocytes through TLR4, inducing the transient

expression of TF, which triggers the coagulation cascade (90). Anti-

phospholipid antibodies (aPL) stimulate monocytes and endothelial

cells via TLR2, which activates the NF-kB signaling pathway and

enhances the production of pro-inflammatory cytokines (such as TNF-

a and IL-6). This process highlights the role of TLR2 in mediating

inflammatory responses associated with antiphospholipid syndrome

(APS) (91). Similarly, autoantibodies against b2-glycoprotein I (b2GPI)
induce a pro-inflammatory phenotype in endothelial cells and

monocytes by cross-reacting with TLR4, further elucidating the role

of TLR4 in APS pathology (92). Furthermore, the exosomes found in

body fluids activate monocytes through the TLR2 and TLR4 signaling

pathways, which in turn promotes the secretion of inflammatory

cytokines like IL-6 and TNF-a, underscoring the potential role of

exosomes in inflammatory diseases (93). In addition to the TLR

signaling pathway, the Notch signaling pathway significantly

influences monocyte differentiation and inflammatory responses. The

TLR7-Myd88 pathway and Notch2 together determine the fate of

monocytes. When Notch2 signaling is absent, monocytes may

aberrantly differentiate into dendritic cells and macrophages,

resulting in an excessive elevation of systemic inflammation. This

highlights the crucial role of Notch2 in the differentiation of monocytes

mediated by TLR (94). Functional abnormalities of monocytes in

pathological conditions can lead to severe clinical consequences.

4.2.4 Macrophages
The activation of TLR9 and TLR7/8 has been shown to induce

the formation of multinucleated macrophages, indicating chronic

inflammation and granuloma formation. This suggests that TLR

signaling is central to macrophage activation and the progression of

inflammatory responses (95). Additionally, TLR activation

coordinates the mobilization of arachidonic acid in macrophages,

a process regulated by group IVA and V phospholipases (96). This

mechanism is important for initiating and amplifying inflammatory

responses. The TRIM protein family also plays an important role in

macrophage activation after TLR stimulation, especially after TLR3

and TLR4 activation, contributing to the regulation of immune

responses (97). Moreover, interferon (IFN) has been shown to

enhance the expression of TLR genes in macrophages during viral

infections, thereby amplifying the innate immune response (98). In

addition to pro-inflammatory responses, TLR7 and TLR9 ligands

also shift macrophage function to a long-lived phagocytic state,

characterized by M2-like polarization and reduced antigen-

presenting capacity (99). Chronic signaling through TLR7 and

TLR9 is also associated with driving the differentiation of
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inflammatory hemophagocytic cells, leading to anemia and

thrombocytopenia observed in conditions such as macrophage

activation syndrome (MAS) and malaria (100). These findings

collectively emphasize the key role of TLR signaling in

macrophage function, inflammation, and tissue-specific responses

in various diseases.

4.2.5 Neutrophils
Neutrophils are the first responders in inflammatory reactions,

promoting thrombus formation by releasing reactive oxygen species

(ROS) and neutrophil extracellular traps (NETs), which disrupt the

endothelial cell barrier. NETs are mesh-like structures composed of

chromatin and antimicrobial proteins that can capture platelets and

red blood cells, forming the core structure of thrombi (32, 101). TLR

signaling pathways influence thrombus formation mechanisms by

regulating the formation and stability of NETs. Activation of TLR4

prompts neutrophils to produce NETs, which contain histones and

DNA that subsequently stimulate the TLR4 and TLR9 signaling

pathways. This generates a positive feedback loop that amplifies

inflammatory and coagulation responses, thereby facilitating

thrombus formation (102, 103). Additionally, TLR2 promotes NET

formation by recognizing bacterial lipopeptides, further increasing

thrombus stability (104). Brill et al. (105) demonstrated that NETs

play a key role in DVT in mice. They found that extracellular

chromatin from neutrophils contributes to thrombus formation.

The study further indicated that DNA and histones in NETs are

involved in promoting DVT, providing new insights for DVT

treatment strategies.
4.3 The role of TLR-mediated crosstalk
between platelets and leukocytes in DVT

The pathological mechanisms of DVT involve complex

biological processes including vascular endothelial injury, platelet

activation, and inflammatory cell recruitment, where the cross-talk

between platelets and leukocytes plays a pivotal role in disease

development. The TLR-mediated interactions between platelets and

leukocytes exert critical regulatory effects on DVT pathogenesis.

Activated platelets express surface markers such as P-selectin and

CD40L, enabling them to bind leukocytes via PSGL-1 and integrins,

respectively (106–108). These interactions facilitate the formation

of platelet-leukocyte aggregates, thereby enhancing leukocyte

recruitment, tissue factor expression, and NET release—key

drivers of venous thrombosis (7, 109, 110). In inflammatory

microenvironments triggered by infection or tissue injury,

DAMPs and PAMPs released from necrotic/apoptotic cells

activate TLRs on leukocytes and platelets, establishing a vicious

cycle of prothrombotic and proinflammatory responses (111, 112),

particularly prominent in severe COVID-19, dengue virus infection,

and other inflammatory crises (113, 114). Targeting the TLRs

activation pathways may alleviate thrombotic events and

hyperinflammatory states, thereby breaking the thrombo-

inflammatory vicious cycle.
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In sepsis and cardiovascular diseases, platelet TLRs promote

leukocyte recruitment and create prothrombotic microenvironments

throughMyD88 signaling by inducing proinflammatory factors like IL-

1b and CD40L (115). Human platelets recognize bacterial components

(e.g., Pam3CSK4) via TLR2, activating the PI3-K/Akt pathway to

induce platelet-neutrophil aggregation and oxidative stress,

potentially contributing to thrombosis risk post-bacterial infection

(116). TLR7 activation in platelets triggers p38 MAPK and Akt

phosphorylation, leading to a-granule release (e.g., surface expression
of P-selectin and CD40L) that promotes platelet-leukocyte aggregation

(117). During viral infections, platelets activate TLR-MyD88-IRAK4

cascades through viral particle endocytosis, triggering complement C3

release and platelet-leukocyte aggregation (118). Influenza virus

specifically induces C3 secretion and NET formation via platelet

TLR7 (119), revealing molecular mechanisms of viral-associated

thrombosis. Conversely, histones in NETs activate platelets through

TLR2, TLR4 and NLRP3 inflammasomes, promoting P-selectin

expression and phosphatidylserine (PtdSer) exposure to enhance

coagulation factor binding (120–122). Additionally, extracellular

vesicles (EVs) generated by platelet CLEC2 activation drive

neutrophil NETosis via CLEC5A/TLR2 dual receptors and stimulate

macrophages to secrete IL-6 and TNF-a (123). Platelet-derived

HMGB1 facilitates monocyte migration and inhibits apoptosis

through the RAGE/TLR4 axis (124), while disulfide HMGB1 from

platelets mediates neutrophil recruitment and NET release via RAGE/

TLR2 in experimental DVT, establishing a self-amplifying “thrombo-

inflammatory loop” (125).

Notably, platelets exert homeostatic regulation on leukocyte

functions. TLR2 agonists (e.g., Pam3CSK4 and FSL-1) suppress

neutrophil CD66b expression and elastase release while enhancing

phagocytosis (126). Platelets modulate cytokine secretion in

peripheral blood mononuclear cells (PBMCs) via TLR4 and TLR2

signaling (e.g., reducing IL-6 but increasing IL-10) (127), suggesting

TLRs balance pro- and anti-inflammatory responses through

spatiotemporal signaling. This regulatory pattern may influence

thrombus stability by dynamically modulating local inflammatory

milieus in DVT. Furthermore, aberrant platelet-leukocyte

interactions can induce sterile inflammation and tissue damage,

particularly evident in immune-mediated vascular disorders (128).

Therefore, elucidating TLR-mediated platelet-leukocyte cross-talk

not only advances understanding of DVT pathogenesis but also

provides insights for developing novel therapeutic strategies.
4.4 Interactions between TLRs and the
coagulation system

The interaction between TLR signaling pathways and the

coagulation system is particularly important in the pathophysiology

of DVT. TLR activation promotes coagulation responses through

various mechanisms, enhancing thrombus formation and stability.

The regulation of TF expression is one of the main mechanisms

by which TLR signaling pathways promote coagulation responses.

The activation of TLR4 and TLR2 directly induces TF expression,
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with TF being a key molecule initiating the coagulation cascade. By

binding to coagulation factor VIIa, TF activates thrombin,

promoting fibrin formation and thrombus development (120,

129). Xia et al. (130) found that TLR4 activation significantly

increases TF expression through the NF-kB and AP-1 signaling

pathways, further promoting coagulation responses.

The inhibition of anticoagulant factors is also an important

pathway by which TLR signaling pathways promote a

hypercoagulable state. Activation of TLR4 not only enhances the

production of thrombin but also reduces the expression of

anticoagulant proteins (such as protein C, protein S, and

antithrombin III), resulting in a hypercoagulable environment

that facilitates the formation and stabilization of thrombi (131).

Biswas et al. (132)found that TLR2 senses oxidized phospholipids

binding to CD36 on platelets, activating the MyD88 signaling

pathway, thereby leading to a hypercoagulable state and

accelerating thrombosis formation associated with hyperlipidemia.

Haseeb et al. (133) discovered that TLR9 markedly boosts the

generation of pro-inflammatory and coagulation factors through

the activation of the MAPK and NF-kB signaling pathways, which

in turn facilitates a hypercoagulable condition.

Additionally, TLR9 activation enhances thrombus stability by

inducing the production of type I interferons and regulating

thrombin generation and fibrin stability (134). These multiple

mechanisms collectively indicate that TLR signaling pathways

play an important role in the regulation of the coagulation system

in DVT.
4.5 Downstream effects of TLR signaling
pathways and their specific roles in DVT

The activation of TLR signaling pathways regulates the

occurrence and development of DVT through multiple

downstream effector pathways. The main downstream effector

pathways include the NF-kB, MAPK, and IRF signaling pathways,

which jointly regulate the expression of inflammatory factors and

the enhancement of coagulation responses.

4.5.1 NF-kB signaling pathway
As an essential transcription factor that plays a significant role

in TLR signaling pathways, NF-kB is vital for the development of

DVT. In a rat model featuring femoral fractures, the activation of

TLR2 significantly increased the concentrations of NF-kB, COX-2,
along with inflammatory factors like IL-6 and P-selectin.

Conversely, the inhibition of TLR2 diminished these effects,

underscoring the critical role of the TLR2/NF-kB signaling

pathway in the development of thrombotic disease following deep

vein thrombosis (135). The multiple roles of the NF-kB signaling

pathway in inflammation, immune regulation, and disease have

been widely studied, with its interaction with TLR signaling being

particularly prominent in thrombosis formation (136). In contrast,

cotinine, a substance produced from nicotine metabolism, enhances

the development of DVT and inflammatory responses through the

TLR4/NF-kB signaling pathway, highlighting the essential role of
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NF-kB in thrombosis progression (137). At the molecular level,

TLR signaling activates NF-kB through the myddosome complex,

thereby regulating the expression of inflammatory genes, a

mechanism of significant importance in thrombosis formation

(138). To delve deeper into the function of NF-kB within TLR-

related inflammatory responses, scientists have created a range of

approaches, including the measurement of NF-kB’s movement into

the nucleus using imaging techniques, which offer valuable

resources for investigating its roles in conditions such as

DVT (139).

4.5.2 MAPK signaling pathway
The MAPK signaling pathway serves as a crucial downstream

effector of TLR signaling and is significant in the development of

DVT. Studies have shown that the MAPK signaling pathway

contributes to the development and advancement of DVT by

affecting the expression of inflammatory mediators and various

biological processes, such as cell growth and differentiation. For

instance, the p38 MAPK and JNK components of the MAPK

signaling pathway enhance the production of pro-inflammatory

cytokines such as TNF-a and IL-6 by activating TLR signaling,

which are crucial in the inflammatory responses associated with

DVT (140). Moreover, the MAPK signaling pathway significantly

contributes to inflammation triggered by endoplasmic reticulum

stress and NOD2 activation, as its activation intensifies the secretion

of inflammatory factors in macrophages (141). Within the MAPK

signaling pathway, MAPK-activated protein kinases (MAPKAPKs)

serve as downstream effectors and contribute to the progression of

chronic inflammatory diseases, such as DVT, by influencing the

expression of genes related to inflammation (142). In a mouse

model of DVT, Fisetin markedly decreased the levels of pro-

inflammatory cytokines and oxidative stress through the

inhibition of the MAPK signaling pathway (such as p38 and

JNK), thereby reinforcing the crucial function of the MAPK

pathway in DVT (143). Additionally, UCHL1 plays a role in the

inflammatory response of macrophages stimulated by LPS by

modulating the MAPK and NF-kB pathways, highlighting the

importance of MAPK signaling in inflammation linked to DVT

(144). Finally, the MAPK signaling pathway’s independent

regulation of TLR expression and cytokine production from NF-

kB further emphasizes its central position in DVT inflammatory

responses (145).

4.5.3 IRF signaling pathway
TLR signaling pathways play a key role in immune regulation

and inflammatory responses by activating IRF transcription factors

(e.g., IRF3 and IRF7). The triggering of type I interferon production

(like IFN-b) occurs through TLR signaling, which activates IRF3

and IRF7, thereby regulating both antiviral and inflammatory

responses (146). In particular, in sterile inflammatory diseases

such as DVT, the TLR9-IRF1 signaling pathway affects thrombus

formation and resolution by regulating inflammatory and

coagulation responses (147). Additionally, the TLR3 signaling

pathway induces the expression of type I interferons by activating

IRF3, while certain antipsychotic drugs can inhibit TLR3-mediated
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inflammatory responses by suppressing the PI3K signaling pathway

and inhibiting IRF3 activation (148). The irregular activation of the

IRF signaling pathway is closely linked to inflammatory conditions,

such as DVT. In this context, IRF3 and IRF7 play a crucial role in

the regulation of thrombus formation and its resolution by

modulating inflammatory responses and coagulation processes

(149, 150).
4.6 Cross-regulation and feedback
mechanisms of TLR signaling pathways

The involvement of TLR signaling pathways in DVT is evident

not only through the activation of specific pathways but also

through the interplay and feedback interactions among various

signaling routes. Following the activation of TLR4, it triggers not

only NF-kB and IRF3 via the MyD88 and TRIF pathways but also

plays a role in the immunity and inflammation regulation by

influencing additional signaling pathways, such as PI3K/Akt and

JAK/STAT (151). These cross-regulation mechanisms enhance the

regulatory effects of TLR signaling pathways in DVT and also

provide multiple targets for DVT treatment.

4.6.1 PI3K/Akt signaling pathway
The role of the PI3K/Akt signaling pathway is crucial in the

regulation of inflammation, cell survival, and metabolic activities,

particularly within the framework of TLR signaling. TLR activation

(including TLR2 and TLR4) of PI3K/Akt signaling contributes to

the regulation of pro-inflammatory cytokines. The expression of

TLR4 in macrophages is elevated by hypoxic stress via the PI3K/Akt

signaling pathway, which intensifies inflammation associated with

ischemic conditions (152). The interplay between the PI3K/Akt/

mTOR and TLR/NF-kB signaling pathways is crucial for the

response to streptococcal infections. This suggests that TLR2 and

TLR4 initiate the activation of the PI3K/Akt/mTOR pathway to

control inflammation within mammary epithelial cells (153).

Furthermore, the TLR4/PI3K/Akt pathway regulates LPS-induced

proliferation of vascular smooth muscle cells (VSMCs), linking this

signaling pathway to diseases such as atherosclerosis (154).

Collectively, these investigations emphasize the crucial

involvement of PI3K/Akt in the modulation of inflammation and

immune responses via TLR signaling, indicating possible

therapeutic approaches for addressing inflammation across

different diseases.

4.6.2 JAK/STAT signaling pathway
The JAK/STAT signaling pathway plays a key role in immune

regulation, especially exhibiting important regulatory functions in

its interaction with TLR signaling pathways. STAT1 plays a

significant role in TLR signaling, particularly after TLR4

activation, where STAT1 enhances TLR-mediated inflammatory

responses through interactions with TRAF6 (155). The study

showed that TLR3 stimulation could “pre-activate” macrophages,

thereby enhancing the immune response to subsequent TLR7

stimulation and promoting the synergistic production of
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cytokines through the JAK-STAT pathway (156). The crosstalk

between JAK/STAT, TLR, and ITAM-dependent pathways in

macrophages was also further explored, with the study showing

that IFN-g promotes TLR-mediated immune responses by

modulating the interactions among these signaling pathways

(157). At the same time, the signaling pathways of TLR work in

conjunction with JAK/STAT signaling via cytokines like IFN-g and
IL-10, offering fresh perspectives on the intricate regulatory

network of immune system signaling (158).
4.7 Negative regulatory mechanisms of
TLR signaling pathways

To avoid excessive stimulation of TLR signaling pathways and

mitigate uncontrolled inflammatory responses, the body employs

various negative regulatory mechanisms. These mechanisms inhibit

key nodes of signal transduction, limiting the intensity and duration

of inflammatory responses to maintain immune balance.

4.7.1 A20 protein
A20 (TNFAIP3) functions as an important negative regulator,

playing a significant role in modulating the NF-kB signaling

pathway during immune responses. It regulates the intensity and

duration of inflammatory responses by inhibiting ubiquitination

modifications in TLR signaling pathways through its ubiquitin-

editing functions. A20 directly affects the activation process of NF-

kB through deubiquitination, ensuring the timely termination of

immune responses (159). A20 interacts with E3 ligases such as

TRAF6 to prevent the activation of these signaling molecules in

TLR signaling. For example, Düwel et al. (160) discovered that A20

prevents the prolonged activation of NF-kB through the removal of

K63-linked ubiquitin chains from Malt1, an action essential for the

correct functioning of immune cells. Shembade et al. (161) further

demonstrated that A20 inhibits the excessive activation of

TLR signaling pathways by disrupting the E3 ligase activities

of TRAF6, TRAF2, and cIAP1, thereby avoiding sustained

inflammatory responses.

4.7.2 SOCS family proteins
Emerging evidence has identified Suppressors of Cytokine

Signaling (SOCS) proteins as key regulators of TLR signaling

networks. These cytokine-induced proteins act as molecular

rheostats, maintaining immune homeostasis through negative

feedback mechanisms activated by cytokine receptors and pattern

recognition receptors, including TLRs themselves. Specific SOCS

family members (SOCS1–3 and CIS) differentially regulate TLR

signaling by selectively targeting interferon pathways while

preserving NF-kB activation, enabling precise control of antiviral

responses without compromising inflammatory signaling (162).

SOCS proteins show functional specialization in different immune

cells, with SOCS1 in myeloid cells like monocytes and macrophages

specifically limiting IFN - dependent signaling (163). Recent advances

highlight SOCS1 and SOCS3’s dual-layer regulation of the TLR7

pathway in human plasmacytoid dendritic cells, balancing antiviral
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responses and immune tolerance through IRF7 degradation (164).

This complex regulatory paradigm highlights the context-dependent

nature of SOCS protein functions, where the cellular

microenvironment, receptor crosstalk, and temporal expression

patterns collectively determine their immunomodulatory outcomes.
4.8 The role of TLRs in DVT resolution

Early murine model studies demonstrated that the TLR9

signaling pathway facilitates early thrombus resolution by

regulating sterile inflammatory responses (including inflammatory

cell infiltration, thrombus collagenization, and necrotic pathways),

with TLR9 knockout mice exhibiting significantly increased

thrombus volumes (134). Further investigations revealed that

TLR9 deficiency impairs macrophage function, manifesting as

reduced chemotactic capacity and downregulated fibrinolytic gene

expression, while exogenous transfusion of wild-type macrophages

effectively restored thrombus resolution capability (165). In

neutrophils, TLR9 influences early venous thrombus formation

through modulation of necrotic markers such as uric acid and

NETs (166). Clinical studies showed that although TLR9 mRNA

expression in DVT patients showed no significant correlation with

thrombus remnants, it was markedly elevated in recurrent DVT

cases, suggesting TLR9 may possess a dual regulatory role while also

indicating potential mechanistic differences in TLR9 regulation

between animal models and human clinical samples (167).
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Similar to TLR9’s mechanism, TLR4 deficiency was found to

inhibit thrombus dissolution by reducing neutrophil/macrophage

infiltration and downregulating MMP-9/MCP-1 expression, a

process dependent on the NF-kB signaling pathway, thereby

expanding understanding of TLR family roles in thrombus

clearance (168). Current studies propose a two-phase immune

model of thrombus resolution: an early phase where neutrophils

stabilize thrombus structure through NETs, followed by a

macrophage-dominated fibrotic and endothelialization phase

(169). In summary, TLRs play multifaceted roles in resolving

deep vein thrombosis by modulating inflammation, interacting

with multiple signaling pathways, and influencing immune cell

activities including macrophages. Understanding the mechanisms

by which TLRs promote thrombus dissolution may facilitate

development of novel therapeutic strategies aimed at enhancing

DVT resolution while reducing thromboembolic complication

risks (170).
5 The potential of TLR signaling
pathways as therapeutic targets for
DVT

Therapeutic strategies targeting TLR signaling pathways

primarily focus on suppressing excessive TLR activation or

blocking downstream signaling to mitigate acute-phase
TABLE 2 Drugs associated with TLR signaling pathways.

Drugs Target Mechanism of Action References

C29 Inhibits TLR2 Interfere with the recruitment of adaptor proteins such as MyD88 and Mal (135, 171, 172)

SMU-CX1 Inhibits TLR3 Specifically inhibit the binding of TLR3 with dsRNA (212)

Eritoran Inhibits TLR4 Competitively bind to the TLR4-MD-2 complex, blocking the binding of LPS and the activation of TLR4 (173–175)

Enpatoran Inhibits TLR7 and TLR8 Block the binding of synthetic ligands and natural endogenous RNA ligands to TLR7 and TLR8, thereby
inhibiting the activation of the receptors

(213)

E6446 Inhibits TLR9 Block the activation of TLR9 induced by its ligands (214)

TAK-242 Inhibits TLR4 Specifically inhibit the interaction between TLR4 and its adaptor molecules (such as TIRAP and TRAM) (177)

MiR-149-3p Inhibits TLR4 Targets the 3′ untranslated region (3′UTR) of TLR-4 mRNA (215, 216)

MiR-129-5p Inhibits TLR3 Reduced the expression of IL-1b and TNF-a by inhibiting the HMGB1 and TLR3 (217)

NI-0101 Inhibits TLR4 Inhibiting LPS-induced cytokine release and preventing the increase of C-reactive protein (CRP) (218, 219)

MTS510 Inhibits TLR4 Binding to the TLR4/MD-2 complex, it blocks the interaction between the complex and its ligands (220)

Artesunate Inhibits TLR4 Binds to the TLR4 co-receptor MD2, disrupting its interaction with TLR4 (221)

Flavonoids Inhibits TLR4 Suppress TLR4/MyD88 signaling, reducing IL-6 and VCAM-1 release in endothelial cells exposed
to hypoxia.

(222)

Phillygenin Inhibits TLR4 Inhibiting the TLR4/MyD88/NF-kB signaling pathway (187)

Sinomenine Inhibits TLR4 Inhibiting the TLR4/MyD88/NF-kB signaling pathway (189)

Baicalin Inhibits TLR4 Block the activation of the LPS-induced TLR4/NF-kB p65 signaling pathway and inflammatory response
by inhibiting the expression of CD14.

(210)
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inflammatory and coagulation responses, thereby preventing early-

stage inflammatory thrombus formation (Table 2).
5.1 TLR inhibitors/antagonists

TLR inhibitors/antagonists, by inhibiting TLR activation, may

effectively alleviate the inflammatory response during thrombosis

and reduce the incidence of DVT.

C29, which selectively inhibits TLR2, is able to obstruct the

activation of downstream signaling pathways by preventing TLR2

from binding with its ligands. Research indicates that C29 interferes

with the interaction between TLR2 and its adaptor protein MyD88 by

binding to the BB loop pocket located in the TIR domain of TLR2,

which prevents the activation of downstream signaling pathways

involving MAPK and NF-kB (171). Subsequent investigations

revealed that C29 effectively diminishes the generation of

inflammatory substances by blocking NF-kB activation facilitated

by TLR2/1. When combined with the analog MMG-11, it exhibits a

synergistic effect that further amplifies the suppression of TLR2

signaling (172). Recent research has shown that C29 markedly

decreases the expression of inflammatory markers, including IL-6

and TNF-a, through the inhibition of the TLR2/NF-kB/COX-2
signaling pathway, which helps relieve traumatic deep vein

thrombosis (135). These studies collectively suggest that C29, as a

TLR2 inhibitor, has broad application potential in various diseases

involving inflammation and thrombosis.

Eritoran, which is an artificial antagonist of TLR4, has the

ability to competitively attach to the TLR4-MD-2 complex,

preventing LPS from binding and inhibiting TLR4 activation

(173). However, despite showing significant TLR4 inhibitory

effects in vitro, its clinical application has been limited. A

multicenter randomized controlled trial showed that Eritoran did

not significantly reduce the mortality rate of patients with severe

sepsis, but it had good safety (174). On the other hand, in a mouse

model of influenza virus infection, Eritoran significantly reduced

pulmonary inflammatory responses and viral loads by inhibiting

the TLR4 signaling pathway, indicating its potential application

value in treating influenza-related acute lung injury (175). Recently,

there has been considerable discourse surrounding Eritoran’s

potential in addressing inflammation, infections, and cancer.

Additionally, innovative approaches for regulating TLR4, utilizing

disaccharide lipid A analogs, have been suggested, offering fresh

avenues for enhancing and applying TLR4 antagonists in clinical

settings (176).

TAK-242 (Resatorvid), a small molecule TLR4 inhibitor,

selectively binds to the intracellular TIR domain of TLR4,

blocking downstream signal transduction and thereby reducing

the production of inflammatory factors. Initial research indicated

that TAK-242 had the capability to selectively block the interaction

of TLR4 with its adaptor proteins (including TIRAP and TRAM),

leading to a marked decrease in the synthesis of inflammatory

mediators triggered by LPS (like TNF-a and IL-6) and hindering

the activation of NF-kB (177). Further research found that the

specific inhibitory effect of TAK-242 on TLR4 was independent of
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other TLRs (such as TLR1/2, TLR3, etc.), indicating its high

selectivity (178). Recent studies have shown that TAK-242

significantly reduces the production of inflammatory mediators,

such as IL-1b, IL-6, and TNF-a, in synovial fibroblasts derived from

patients with osteoarthritis. This effect is achieved by inhibiting the

TLR4-NF-kB signaling pathway (179). These studies collectively

suggest that TAK-242, as a TLR4 inhibitor, has broad

application potential.
5.2 MicroRNAs

MicroRNAs (miRNAs) are small non-coding RNAs that serve

important regulatory functions in a range of biological processes. In

recent years, the role of microRNAs in TLR signaling pathways and

DVT has gradually become a research hotspot. MiRNAs influence

TLR signaling by targeting key components of the pathway. For

instance, miR-146a and miR-155 are known to regulate the

expression of proteins involved in TLR signaling, thereby

modulating the immune response (180). A rat model

demonstrated the expression patterns of miRNAs and mRNAs in

DVT, identifying 22 miRNAs and 487 mRNAs that were

significantly different between the DVT group and controls,

primarily associated with endothelial cell activity. This suggests

that miRNAs are crucial in the development of thrombosis through

their regulatory influence on endothelial cells (181). Studies

concerning human hemophi l ia and thrombosis have

demonstrated that miRNAs significantly influence thrombosis

development by regulating the expression of coagulation and

inflammatory mediators, thereby providing a new perspective for

the diagnosis and treatment of thrombotic conditions (182). Recent

studies have discovered that miRNAs significantly influence the

development of DVT by modulating processes like cell growth,

differentiation, the release of inflammatory factors, and vascular

remodeling. This offers a foundational understanding that supports

the use of miRNAs in diagnosing and treating DVT (183).

Understanding the roles of miRNAs in TLR signaling and DVT

not only provides insights into the molecular mechanisms

underlying these conditions but also offers potential targets for

therapeutic interventions.
5.3 Monoclonal antibodies

Monoclonal antibodies targeting TLRs are also an effective

inhibitory approach. Anti-TLR4 monoclonal antibodies, by

specifically blocking the TLR4 signaling pathway, have shown

significant therapeutic potential in various inflammatory and

injury-related diseases. The Fab fragment derived from a

humanized anti-TLR4 monoclonal antibody was discovered to

effectively suppress inflammatory responses induced by LPS

(184). This effect is achieved by preventing the interaction of

TLR4 with its ligand, which leads to a marked decrease in the

activation of both NF-kB and MAPK signaling pathways.

Consequently, this action inhibits the release of cytokines, thereby
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1579113
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Shao et al. 10.3389/fimmu.2025.1579113
offering a theoretical foundation for therapeutic strategies targeting

TLR4 that utilize the Fab fragment. Additionally, anti-TLR4

monoclonal antibodies were found to significantly alleviate

ventilator-induced lung injury (VILI) by inhibiting MyD88 and

NF-kB-dependent signaling pathways, reducing pulmonary

inflammatory cell infiltration and cytokine release, and improving

pathological damage to lung tissue (185). In recent years, the

development of a fully human anti-TLR4 IgG2 antibody has

further expanded research in this area. This antibody

demonstrated a high affinity for TLR4 in vitro, successfully

reducing the levels of TNF-a, IFN-b, and IL-6 that were triggered

by LPS, while simultaneously diminishing the phosphorylation of

the NF-kB, MAPK, and IRF3 signaling cascades. Notably, in animal

studies, the antibody greatly enhanced the survival rate of mice

subjected to an LPS challenge (186). Collectively, these studies

suggest that monoclonal antibodies targeting TLR4 hold

significant potential for application across different disease

models, offering novel insights for the clinical management of

associated ailments.
5.4 Natural products and herbal

Natural products regulate TLR signaling pathways through

various mechanisms and have good anti-inflammatory and

anticoagulant effects. Natural products serve as significant

potential drugs and offer a theoretical foundation for developing

novel strategies to treat DVT.

Phillygenin, a lignan compound derived from the Forsythia

suspensa fruit, exhibits notable anti-inflammatory, antioxidant, and

neuroprotective properties. In recent years, its pharmacological

activities in various disease models have attracted widespread

attention, especially its potential therapeutic value in inflammation-

related diseases and central nervous system diseases. Phillygenin can

effectively inhibit LPS-induced activation and inflammatory response

of LX2 cells by inhibiting the TLR4/MyD88/NF-kB signaling

pathway, indicating its potential therapeutic value in hepatic

fibrosis and related inflammatory diseases (187). In the field of

neuroprotection, Phillygenin can reduce neuroinflammatory

responses after spinal cord injury and promote functional recovery

by inhibiting the TLR4/NF-kB signaling pathway, providing a

scientific basis for its application in central nervous system diseases

(188). These studies collectively reveal the multiple mechanisms of

action of Phillygenin and Forsythia-related components in anti-

inflammatory and neuroprotective effects, laying a theoretical

foundation for their further development into clinical drugs.

Sinomenine (SIN), a alkaloid extracted from the Chinese

medicine Sinomenium acutum, has significant anti-inflammatory,

immunomodulatory, and neuroprotective effects. Recently, there has

been significant interest in its potential use for treating inflammatory

and autoimmune diseases. Studies show that Sinomenine exhibits

significant anti-inflammatory and immunomodulatory effects across

various disease models by influencing the TLR4/NF-kB signaling

pathway (189). The investigation of rheumatoid arthritis (RA)
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revealed that Sinomenine markedly diminished the inflammatory

reaction offibroblast-like synoviocytes (FLS) while also decreasing the

levels of MyD88 and TRAF6 by blocking the TLR4/MyD88/NF-kB
signaling pathway, thereby offering molecular support for the

treatment of RA (190). Recent research indicates that Sinomenine

contributes to the equilibrium between the brain and gut through the

modulation of the cholinergic anti-inflammatory pathway (CAP) and

the inhibition of the TLR4/NF-kB signaling pathway in a mouse

model of Alzheimer’s disease (AD) (191). This results in significant

improvements in cognitive abilities and a decrease in

inflammatory responses.

Baicalin, a flavonoid derived from the roots of Scutellaria

baicalensis, exhibits notable anti-inflammatory, antioxidant, and

immunomodulatory properties. In recent years, its role in

regulating TLR signaling pathways and related inflammatory

diseases has attracted much attention. Research indicates that

baicalin may inhibit the activation of the TLR4/NF-kB p65

signaling pathway triggered by LPS, as well as the related

inflammatory response, through the suppression of CD14

expression (192). Moreover, the findings indicated that baicalin

has the potential to reduce joint inflammation and tissue damage in

a rat model of collagen-induced arthritis (CIA) by modulating the

TLR2/MYD88/NF-kB p65 signaling pathway, thus offering a novel

therapeutic approach for rheumatoid arthritis management (193).

Recent research has expanded the range of applications for baicalin,

showcasing its significant anti-inflammatory and antioxidant effects

in various inflammatory ailments such as hepatitis, rheumatoid

arthritis, obesity, and type 2 diabetes by intervening in the TLR/NF-

kB signaling pathway (194).
5.5 Combination therapy

In recent years, combination therapies have demonstrated

remarkable potential in inflammatory regulation and organ

protection, particularly showing significant advancements in

synergistic suppression of immune signaling pathways (e.g., TLR)

and multi-mechanism interventions. Multiple clinical studies have

confirmed that the combination of antiplatelet therapy (Triflusal)

with moderate-intensity anticoagulation (Acenocoumarol) reduces

vascular event risk by 67% in moderate-to-high risk atrial

fibrillation patients without significantly increasing major

bleeding rates (195). This combined strategy shows greater

efficacy in mechanical heart valve patients, achieving a 35%

relative risk reduction in thrombotic events, though requires

cautious selection in atrial fibrillation populations based on

individual bleeding risks (196). Basic research reveals that the

protease inhibitor Bortezomib (VELCADE) combined with tPA

suppresses the TLR4/IRAK1 pathway in endothelial cells via miR-

146a upregulation, reducing cerebral infarct volume by 46% in rat

stroke models while reversing tPA-induced vascular inflammation

(197). In oncology and surgical fields, the TLR4 inhibitor TAK-242

combined with estrogen antagonist Fulvestrant inhibits non-small

cell lung cancer metastasis (198), while a compound formulation of
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TAK-242 with hyaluronic acid reduces postoperative abdominal

adhesion incidence by 64% in mice through TLR4/ROS signaling

inhibition (199). Notably, the combination of Pentoxifylline (PTX)

and Dexamethasone demonstrates synergistic suppression of TLR4/

7/8 pathways, showing 3.2-fold greater efficacy in neonates than

adults through bidirectional regulation of TNF/IL-10 mRNA

balance (200). Novel drug delivery systems like omeprazole

nanoliposomes achieve targeted inhibition of endosomal TLR3/4/

7/8 signaling in macrophages, validating the translational value of

“nanocarrier + drug repurposing” strategies (201). These findings

align with the critical role of dynamic TLR pathway modulation,

exemplified by TAK-242 combined with G-CSF reducing mortality

from 66% to 0% in ACLF mouse models (202), further highlighting

the broad prospects of combination therapies.
6 Discussion

Although TLR signaling pathways have significant potential as

therapeutic targets for DVT, their clinical application still faces

many challenges. First, the key role of TLR signaling pathways in

immune responses means that their inhibitors may suppress

immune function and increase the risk of infection (9). Therefore,

the development of TLR inhibitors with high selectivity and low

toxicity is one of the current research priorities. Second, the

complexity and diversity of TLR signaling pathways mean that

the inhibition of a single target may not comprehensively suppress

the enhanced inflammatory and coagulation responses, affecting

therapeutic effects (203). Moreover, the polymorphism of TLR

genes and differences in epigenetic regulation among individuals

may also affect the therapeutic effects and safety of TLR inhibitors,

requiring the support of personalized treatment strategies (204).

Finally, regarding the dual role of TLR signaling: TLR activation can

both exacerbate thrombosis (e.g., through pro-inflammatory factor

release) (205, 206) and promote DVT resolution (e.g., by regulating

macrophage polarization) (165, 207), with precise regulatory

strategies remaining to be explored.

TLR signaling pathways play a key role in the inflammatory

response of DVT. In-depth studies of their regulatory mechanisms

provide important directions for the development of new

therapeutic strategies. The development of more specific TLR

inhibitors through high-throughput screening and structural

optimization to precisely regulate inflammatory responses. For

example, studies based on molecular dynamics simulations and

molecular docking have found that the Arg241 residue of TLR4 and

the Tyr102, Ser120, and Lys122 residues of MD2 are key sites for

antagonist ligand binding, providing important information for

structure-based TLR4 inhibitor design (208, 209). TLR signaling

pathways interact with other signaling pathways such as PI3K/Akt

and JAK/STAT, which are involved in the inflammatory response of

DVT (210, 211). However, a thorough assessment of potential

adverse effects (particularly hemorrhagic complications) is

warranted to ensure clinical safety. Therefore, the development of
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multi-target drugs may more effectively treat DVT and reduce the

occurrence of drug resistance. Finally, in-depth studies of the

molecular mechanisms of TLR signaling pathways, especially the

formation and dynamic changes of the myddosome, will help reveal

their role in DVT. For example, recent studies have shown that the

myddosome, as the core platform of TLR signal transduction, is

crucial for the initiation and maintenance of inflammatory

responses through its assembly and functional regulation (138).
7 Conclusion and outlook

In conclusion, the signaling pathways associated with TLR are

crucial in the development of DVT. They facilitate the amplification

of inflammatory and coagulation reactions via multiple

mechanisms, thereby promoting thrombus formation and

stabilization. Members of the TLR family, such as TLR4, TLR2,

and TLR9, induce the expression of inflammatory and coagulation

factors by activating downstream MyD88-dependent and

independent signaling pathways. This process promotes the

engagement and activation of immune cells, consequently

enhancing the development and stability of blood clots.

Moreover, TLR signaling pathways further promote thrombus

formation and expansion through their interaction with vascular

endothelial cells and the coagulation system. The sources of

endogenous and exogenous TLR ligands in DVT provide an

important driving force for the activation of TLR signaling

pathways. Additionally, the negative regulatory mechanisms of

TLR signaling pathways play a crucial role in maintaining

immune balance and limiting inflammatory responses. The

improper regulation of TLR signaling pathways may result in

heightened activation, facilitating the onset and progression

of DVT.

Based on these mechanisms, therapeutic strategies targeting

TLR signaling pathways hold important clinical application

potential. A variety of drugs, including TLR antagonists,

inhibitors, as well as natural products, can effectively inhibit

inflammatory and coagulation responses by regulating key

molecules and steps in TLR signaling pathways, reducing

thrombus formation and stability. Multi-target combined

treatment strategies, by simultaneously regulating multiple key

molecules and steps, further enhance therapeutic effects and

reduce the occurrence of drug resistance, providing new ideas and

methods for the treatment of DVT. However, the complexity and

diversity of TLR signaling pathways, as well as their key role in

immune responses, remain the main challenges for their clinical

application. Future research needs to further explore the distinct

regulatory mechanisms and interrelationships of TLR signaling

pathways, develop highly selective and low-toxicity TLR

inhibitors, formulate personalized treatment strategies, and verify

their safety and effectiveness through clinical trials, in order to

promote the application and translation of TLR signaling pathway-

related therapeutic strategies in DVT.
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