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Editorial on the Research Topic

Improving stemcell transplantation delivery using computationalmodelling
Stem cell transplantation has emerged as a cornerstone of regenerative medicine due to

its ability to differentiate into various cell types and its potential applications in immune

modulation, treating immunological disorders, and hematological malignancies (1).

Among various stem cell types, pluripotent embryonic stem cells (ESCs) and

multipotent adult stem cells (ASCs) have been extensively studied for their

differentiation potential. ESCs possess superior pluripotency, allowing them to generate

any cell type in the human body. However, ethical concerns surrounding their use have led

to a greater focus on alternative sources such as induced pluripotent stem cells (iPSCs) and

ASCs, including mesenchymal stem cells (MSCs), neural stem cells (NSCs), and

hematopoietic stem cells (HSCs). MSCs have shown immunomodulatory effects by

modulating T, B, natural killer (NK), and dendritic cells, making them a promising tool

for autoimmune and inflammatory disorders (2, 3). HSCs from human umbilical cord

blood have been widely used in transplantation therapies for hematopoietic and immune-

related diseases (4). The success of HSC transplantation (HSCT) hinges on homing,

migration, engraftment, self-renewal, and differentiation. These complex processes are

regulated by growth factors, cytokines, and niche interactions. Despite HSCT’s therapeutic

potential, challenges like graft-versus-host disease (GVHD), graft rejection, and variable

patient outcomes persist. Strategies such as immune tolerance induction and genetic, and

therapeutic modifications are being explored to enhance stem cell survival and integration

(5–8). Recent advancements suggest that integrating computational models with

immunological data has opened new avenues to improve stem cell engraftment (9).

Machine learning models enable the identification of key transcription factors and

gene networks involved in self-renewal and lineage specification in regenerative

medicine (10, 11). These approaches also facilitate the comparison of healthy stem cells

and cancer stem cells (CSCs), aiding in the development of targeted therapies for

malignancies (12, 13).

The Frontiers in Immunology Research Topic, “Improving Stem Cell Transplantation

Delivery Using Computational Modelling” exemplifies this interdisciplinary approach and

brings together pioneering studies in a series of compiled articles, contributing unique
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insights into the field. A notable study by Stiehl et al. reported

mechanistic computational simulation models that explore how

variations in stem cell graft characteristics influence clonal

dynamics post-allogeneic HSCT (allo-HSCT). This study suggests

that fewer transplanted HSCs per kilogram of recipient body weight

may increase donor-derived clones’ expansion. Conversely, the dose

of transplanted progenitor cells and post-transplantation cytokine

support appear to have minimal impact on clonal dynamics.

Additionally, the study indicates a correlation between changes in

donor variant allele frequencies prior to donation and clonal

expansion in recipients. These findings underscore the

importance of optimizing graft composition and dosing to

improve transplantation outcomes. Rosenberger et al. conducted a

comprehensive genome-wide association study (GWAS) to identify

genetic factors influencing the success of HSCT. This uncovered

several novel genomic loci significantly correlated with key

transplant outcomes, including GVHD, overall survival rates, and

graft rejection incidents. These findings highlight the genetic

underpinnings affecting HSCT efficacy and pave the way for more

personalized approaches in donor selection and pre-transplant

conditioning regimens. Budeus et al. addressed the critical

challenge of distinguishing MSCs from fibroblasts. Utilizing

computational analysis, Budeus et al. identified unique gene

expression signatures and signaling pathways that reliably

differentiate between MSCs and fibroblasts. This differentiation is

pivotal, as MSCs possess therapeutic potential due to their ability to

home to injury sites and secrete regenerative factors, whereas

fibroblasts lack these properties. The study’s findings enhance the

precision of MSC identification, thereby improving the selection

process for therapeutic applications and advancing the field of

regenerative medicine. Chen et al. explored the application of

artificial intelligence in identifying cancer stem cells (CSCs). Due

to their self-renewal and differentiation capabilities, CSCs

contribute to tumor initiation, relapse, and metastasis (14). This

mini-review discussed various convolutional neural network

(CNN)-based deep learning models developed to automate CSC

recognition in biological images. This advancement enhances

diagnostic precision and potentially informs targeted therapies,

highlighting the transformative potential of combining

computational modeling with immunological research in stem

cell transplantation. Wang et al. conducted a retrospective

analysis of consecutive myelodysplastic syndrome (MDS) patients

who underwent myeloablative allo-HSCT. The research evaluated

the impact of different pre-transplant therapies and the timing of

transplantation on patient outcomes. Findings revealed that

patients receiving supportive care or hypomethylating agents (SC/

HMA) with a transplantation interval of less than six months

exhibited significantly improved overall survival (OS) and

reduced non-relapse mortality (NRM) compared to other groups.

These results suggest that implementing a pre-transplant strategy

involving SC/HMA and proceeding to transplantation within six
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months of diagnosis may enhance survival rates and decrease

transplant-related complications in MDS patients undergoing

myeloablative allo-HSCT. Conclusively, future efforts should

focus on personalized medicine that utilizes patient-specific data

to create individualized models predicting responses to stem cell

therapies. Additionally, the development of computational tools to

monitor stem cell transplantation progress in real time will allow for

timely interventions. The articles within this research topic

exemplify the transformative potential of computational modeling

in stem cell transplantation. By integrating advanced computational

tools with experimental and clinical data, these studies pave the way

for personalized and more effective therapeutic strategies, ultimately

enhancing patient outcomes in stem cell transplantation.
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