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CTHRC1: a key player in
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Qingjie Chen †, Haohao Wang †, Qinghua Liu
and Changjiang Luo*

Department of General Surgery, Lanzhou University Second Hospital, Lanzhou, China
The multifunctional secreted protein, collagen triple helix repeat containing 1

(CTHRC1), has recently emerged as a significant focus within oncology research.

CTHRC1 expression in tumors is governed by a complex interplay of regulatory

signals, including methylation, glycosylation, and notably, non-coding RNAs,

which constitute its predominant regulatory mechanism. Colorectal cancer

(CRC), a highly prevalent epithelial malignancy, sees CTHRC1 influencing

tumor progression and metastasis through its modulation of several

downstream signaling cascades, such as Wnt/PCP, TGF-b/Smad, and MEK/ERK

pathways. Furthermore, CTHRC1 contributes to immune evasion in CRC via

diverse mechanisms. It is intricately associated with macrophage phenotypic

switching within the tumor microenvironment (TME), favoring M2 macrophage

polarization and facilitating the infiltration of T cells and neutrophils. CTHRC1 is

also instrumental in immune escape by driving the remodeling of the

extracellular matrix through interactions with cancer-associated fibroblasts.

Additionally, CTHRC1’s roles extend to the regulation of hypoxia-related

pathways, metabolism of glycolysis and fatty acids, and involvement in tumor

angiogenesis, all of which support tumor immune evasion. Considering its

multifaceted activities, CTHRC1 emerges as a promising therapeutic target in

CRC, with the potential to enhance the outcomes of existing radiotherapeutic

and immunotherapeutic regimens. This review endeavors to delineate the

mechanistic and therapeutic landscapes of CTHRC1 in CRC. Through a

comprehensive discussion of CTHRC1’s diverse functions, we aim to provide

insights that could pave the way for innovative approaches in cancer therapy.
KEYWORDS
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1 Introduction

Collagen triple helix repeat containing 1 (CTHRC1) is a secreted protein first identified in

injured arterial tissues. It plays a critical role in vascular remodeling by reducing collagen

matrix deposition and enhancing cell migration (1). Recent studies have highlighted the

association of CTHRC1 with the progression of various cancers, where it is overexpressed in
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epithelial tumors such as colorectal, gastric, pancreatic,

hepatocellular, breast cancer and lung cancers (2–5). Elevated levels

of CTHRC1 have been linked to angiogenesis and epithelial-

mesenchymal transition (EMT), thereby facilitating tumor

progression through increased cell migration and proliferation (6, 7).

Colorectal cancer (CRC) is the third most common malignancy

worldwide, characterized by a poor prognosis, high recurrence rate,

and second-place ranking in cancer-related mortality (8). Although

there have been significant advancements in the early detection and

treatment of CRC, the molecular mechanisms driving its progression

remain incompletely understood. This knowledge gap poses challenges

to the development of effective CRC therapies and improvements in

patient outcomes (9). Emerging research indicates that CTHRC1 is

abundantly expressed in the serum of CRC patients, serving not only as

a biomarker but also as a factor intricately associated with CRC

progression and unfavorable prognosis (7, 10). The expression of

CTHRC1 is modulated through methylation and glycosylation, as

well as by various transcription factors, including POU2F1 (11–13).

Additionally, non-coding RNAs (ncRNAs) can directly or indirectly

influence CTHRC1 expression and, in turn, impact downstream

signaling pathways (14). In CRC, CTHRC1 regulates key signaling

pathways such as Wnt/PCP, TGF-b/Smad, and MEK/ERK. These

pathways interact and are crucial for CRC progression, contributing to

tumor growth, liver metastasis, and immune evasion (15–17).

While immunotherapy offers promising therapeutic benefits for

CRC patients, its effectiveness appears largely restricted to those

with microsatellite instability (MSI), representing approximately

15% of cases. In contrast, microsatellite stable (MSS) CRC, which

constitutes the majority of cases, often demonstrates resistance to

such treatments. This discrepancy is attributed to an

immunosuppressive tumor microenvironment (TME) that

facilitates immune escape (18). Recent findings suggest that

CTHRC1 plays a pivotal role in modulating immune cell

infiltration and phenotypic transformation within the TME of

CRC. CTHRC1 has been implicated in promoting the

polarization of macrophages from the pro-inflammatory M1 type

to the immunosuppressive M2 phenotype and influencing the

infiltration of additional immune cells, including T-cells and

neutrophils (19). Moreover, CTHRC1’s contribution to immune

escape in CRC is intricately linked to extracellular matrix (ECM)

remodeling in the TME. This remodeling is primarily mediated

through the regulation of cancer-associated fibroblasts (CAFs),

which secrete CTHRC1 and significantly influence the TME (20).

CTHRC1 also interacts with hypoxia-inducible factor 1-alpha (HIF-

1a), a key regulator in hypoxic conditions, thereby modulating

critical metabolic pathways such as glycolysis and fatty acid

metabolism, which further promote tumor immune escape (21).

CTHRC1 has also been shown to facilitate angiogenesis,

predominantly through its interaction with vascular endothelial

growth factor (VEGF) (22). Despite the limited research focused on

CTHRC1 as a therapeutic target, emerging studies in CRC have

demonstrated the potential efficacy of targeting CTHRC1. For

instance, novel therapeutic approaches utilizing a monoclonal

antibody (mAb) against CTHRC1 and the drug Cyclovirobuxine

D (CVB-D) have been successful in inhibiting CRC progression and
Frontiers in Immunology 02
hepatic metastasis by modulating CTHRC1 expression (19, 23).

CTHRC1 has also been implicated in modulating the sensitivity and

resistance of CRC patients to various chemotherapeutic agents,

including gemcitabine and temozolomide (24, 25). Recent

advancements in multi-targeted therapies have significantly

improved CRC treatment outcomes. The recognition of CTHRC1

as a critical factor in immune evasion suggests a promising avenue

for enhancing immunotherapy efficacy and optimizing the

management of CRC. We review the multifaceted role of

CTHRC1 in CRC progression and therapeutic intervention,

highlighting its potential clinical applications. We also provide an

in-depth discussion of the complex regulatory mechanisms

governing CTHRC1, offering insights into its contribution to

CRC pathogenesis and treatment resistance. By elucidating these

pathways, we aim to underscore the therapeutic potential of

targeting CTHRC1 to improve CRC patient outcomes.
2 Structure and function of CTHRC1

2.1 Structure of CTHRC1

The CTHRC1 gene, situated on human chromosome 8q22.3,

encodes for the protein in several isoforms ranging in molecular

weight from approximately 12 to 28 kDa. The predominant

isoforms include the secretory and cellular forms of CTHRC1.

Secretory CTHRC1 mainly exists as dimers, trimers, or

multimeric assemblies, whereas cellular CTHRC1 is primarily

found as dimers and trimers. Consequently, the molecular weight

of secretory CTHRC1 is approximately 30 kDa, while that of

cellular CTHRC1 is about 26 kDa. The additional glycosylation of

secretory CTHRC1 prior to its secretion results in different

migration rates between these forms (1, 26).

CTHRC1 is composed of three distinct structural domains: the

NH2-terminal domain, the collagen triple helix repeat (CTHR)

domain, and the COOH-terminal domain. The NH2-terminal

domain consists of 30 amino acids and is critical for protein

secretion. The CTHR domain, primarily composed of 12 Gly-X-Y

repeats, facilitates the formation of CTHRC1 dimers or trimers,

while the COOH-terminal domain remains highly conserved (1).

Studies have demonstrated that N-glycosidases can cleave CTHRC1

into smaller fragments, which represent the active forms engaged in

signaling processes (12). Conversely, fibrinolytic enzymes can

cleave a putative precursor peptide of CTHRC1, yielding an N-

terminally truncated molecule that regulates procollagen synthesis

(27). Research by Toomey BH et al. (28) further illustrates the

metabolic significance of these cleaved precursor peptides and

shows that their cleavage can be inhibited by protease inhibitors.
2.2 Function of CTHRC1

CTHRC1 plays a crucial role in tissue repair, notably enhancing

the restoration of sweat gland function through vascular network

reconstruction. Osteoclasts secrete CTHRC1, which binds to cell
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surface receptors, facilitating osteoblast development and regulating

bone remodeling. This function is vital for maintaining bone mass

and the trabecular structure (29). CTHRC1 has been shown to

activate the PKCd-ERK signaling pathway by interacting with the

Wnt inhibitory factor WAIF1, thereby stimulating osteoblast

differentiation through the regulation of TAZ (30, 31). In

addition, CTHRC1 accelerates wound healing by promoting

epidermal migration, myofibroblast differentiation, and regulating

ECM deposition (32). In the development of neuronal cells,

CTHRC1 promotes Schwann cell proliferation while inhibiting

myelin formation, an action crucial to maintaining neural

integrity (33). CTHRC1 also exhibits anti-inflammatory

properties. In a mouse model of asthma, CTHRC1 knockdown

exacerbated inflammation and increased the secretion of pro-

inflammatory cytokines IL-4 and IL-5, as induced by IL-13 (34).

These findings underscore CTHRC1’s significant role in anti-

inflammatory processes. Another study demonstrated that

CTHRC1 counteracts the inflammatory effects of Staphylococcus

aureus and contributes to bone tissue repair via the SOX9 and TGF-

b signaling pathways (35). While research suggests a role for

CTHRC1 in inflammation inhibition, the complete signaling

pathways and mechanisms remain incompletely elucidated. Guo

et al. (36) reported that TNF-a upregulates CTHRC1 expression,

and overexpression of CTHRC1 inhibits the activation of p38

MAPK signaling, thereby mitigating inflammatory responses.
3 Role of CTHRC1 in CRC

3.1 Regulation of CTHRC1 expression

3.1.1 Methylation and Glycosylation of CTHRC1
Although mutations in CTHRC1 have been observed in colon

adenocarcinomas, they do not appear to influence the expression

levels of CTHRC1, nor do they impact the overall survival (OS) or

disease-free survival (DFS) of CRC patients (37). Hee Cheol Kim

et al. (38) demonstrated that treating CRC cells with the

demethylating agent 5-aza-dC resulted in a considerable decrease

in methylation at the CpG site in exon 1, alongside a significant

increase in CTHRC1 expression. Similar findings were reported in

gastric cancer cell lines, suggesting that DNA demethylation may be

a potential mechanism underlying the upregulation of CTHRC1

expression (39). CTHRC1 is an N-glycosylated protein, featuring an

N-glycosylation consensus sequence at the C-terminal Asn-188

(12). DPAGT1 encodes a polyterpenes-P-dependent N-

acetylglucosamine-1-phosphate transferase, which initiates the

synthesis of lipid-linked oligosaccharide precursors necessary for

N-glycosylation in the endoplasmic reticulum (40). Liu et al. (11)

identified a correlation between CTHRC1’s N-glycosylation and its

expression levels in oral cancer cells. Further studies indicated

that DPAGT1 enhances both the N-glycosylation and expression

of CTHRC1 by promoting protein turnover, suggesting a

critical role of N-glycosylation in stabilizing and regulating

CTHRC1 expression.
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3.1.2 Non-coding RNA regulation
NcRNAs encompass several subclasses, including microRNAs

(miRNAs), long lncRNAs, and circular RNAs (circRNAs) (41).

miRNAs are endogenous ncRNAs approximately 22 nucleotides in

length that regulate gene expression post-transcriptionally by

binding to complementary sequences within the 3’-UTR of

mRNAs (42). Under normal physiological conditions, miRNAs

are pivotal in cell proliferation, cellular metabolism, and protein

synthesis. However, dysregulation of miRNAs can precipitate

abnormal cell growth and biosynthesis, thereby contributing to

tumor proliferation, invasion, and metastasis (43). Specific

miRNAs, such as miR-30c, miR-101, miR-217, miR-30b, and

miR-335-3p, have been demonstrated to target CTHRC1

expression, thereby influencing the progression of various tumors

(44–47). For instance, Liu et al. (48)employed a luciferase reporter

assay to reveal that miR-155 interacts with the 3′-UTR of CTHRC1.

Their findings indicated that miR-155 targets CTHRC1,

consequently inhibiting CRC proliferation and promoting

apoptosis. This regulatory mechanism negatively affects CTHRC1

expression, subsequently modulating the NF-kB signaling pathway

(49). Li et al. (14) demonstrated that miR-520d-5p can negatively

regulate the expression of CTHRC1. Overexpression of miR-520d-

5p was shown to inhibit CTHRC1 expression, thereby suppressing

the progression of CRC. Additionally, miR-520d-5p was found to

attenuate EMT in CRC by inactivating the phosphorylation of Erk1/

2. The activity of miR-520d-5p is modulated by Specificity Protein 1

(SP1), which binds directly to its promoter and facilitates

transcriptional activation of miR-520d-5p. In recent years,

research examining the regulation of CTHRC1 expression by

circRNAs has been limited. However, studies have identified that

circPPFIA1 can act as a sponge for miR-155-5p, affecting the

phosphorylation of Erk1/2 in CRC. The sponging action of

circPPFIA1 inhibits CRC metastasis by targeting miR-155-5p,

which in turn directly interacts with CTHRC1 to promote

apoptosis in hepatocellular carcinoma HCCLM3 cells and induce

cell cycle arrest at the G1/G0 phase (50, 51).

A growing body of evidence indicates that long non-coding

RNAs (lncRNAs) can act as competitive endogenous RNAs

(ceRNAs) to bind to miRNAs, thereby affecting and regulating

the expression of target genes (52). LncRNAs have been identified

as indirect regulators of CTHRC1 expression, primarily through

interactions with miRNAs. The lncRNA known as metastasis-

associated lung adenocarcinoma transcript 1 (MALAT-1) is

notably upregulated in CRC and is closely linked to its metastatic

behavior. Specifically, the 3’ end of MALAT-1 serves as a critical

biological motif that facilitates CRC cell invasion and metastasis

(53). Studies have shown that miR-101 and miR-217 can negatively

regulate MALAT-1, which in turn suppresses CTHRC1 expression,

thereby arresting the G2/M cell cycle and inhibiting the progression

of esophageal cancer (46). In lung adenocarcinoma cell lines,

diminished MALAT-1 levels do not affect CTHRC1 pre-mRNA

but do lead to decreased levels of mature mRNA, suggesting that

MALAT-1 modulates CTHRC1 expression at the post-

transcriptional level (54). Another lncRNA, HOXA11-AS, has
frontiersin.org
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shown therapeutic potential within CRC models (55). LncRNAs

may also function by acting as molecular sponges for miRNAs,

modulating the expression of CTHRC1. Notably, HOXA11-AS acts

as a molecular sponge for let-7b-5p in the cytoplasm, thereby

mitigating its ability to repress CTHRC1. Moreover, CTHRC1 is

directly targeted by let-7b-5p, and its overexpression activates the b-
catenin/c-Myc pathway. Intriguingly, c-Myc plays a role in the

autoregulatory loop of HOXA11-AS by binding to its promoter

region (56). Additionally, Linc00707 has been shown to impede the

progression of cancer by preventing miR-30c from targeting

CTHRC1. The downregulation of miR-30c is associated with the

advancement of CRC, and Linc00707 facilitates CRC progression by

this mechanism (57–59). LINC00518 can also regulate CTHRC1

expression, miR-335-3p/CTHRC1 axis was intensively possible to

be a critical regulator in the effect of LINC00518 on lung

adenocarcinoma (LUAD) via visual ceRNA network (44). A

summary of the ncRNAs that regulate CTHRC1 expression is

presented in Figure 1.

3.1.3 Regulation by other molecules
In addition to regulation by ncRNAs, CTHRC1 expression is

modulated by various upstream signaling molecules that play

pivotal roles in CRC biology. Notably, the tumor suppressor gene

p53, which is instrumental in the regulation of DNA damage
Frontiers in Immunology 04
response and apoptosis in CRC, directly interacts with the

promoter region of the transcription factor POU2F1 to modulate

its expression. This regulation can lead to altered DNA damage

responses, as evidenced by enhanced ubiquitination contributing to

decreased glucose consumption, reduced intracellular G6P levels,

and diminished G6PD activity, which collectively induce DNA

damage in CRC cell lines such as SW620 (60, 61). Further

insights reveal that POU2F1 serves as a transcription factor that

can directly influence CTHRC1 expression, thereby underscoring

its potential as a regulatory nexus in CRC (13). Moreover, the

oncogene SOX4 has been significantly associated with CRC

progression and prognosis (62). Recent studies suggest that SOX4

interacts with CTHRC1, activating its transcriptional activity and

consequently modulating the DNA damage response in lung

adenocarcinoma cells (63). Furthermore, the protein PRR11 has

been implicated in upregulating CTHRC1 expression, thereby

facilitating CRC progression, potentially via mechanisms

involving its zinc finger domain (17). Another molecule of

interest, ANOS1, acts as a critical regulator in CRC progression

by interacting with CTHRC1 through co-expression (64).

Collectively, these proteins form a crucial regulatory network

influencing CTHRC1 expression, with profound implications for

CRC progression. Continued research is imperative to better

understand the complex interactions between these molecules and
FIGURE 1

SP1 can directly bind to the promoter to activate miR-520d-5p. Both miR-155 and miR-520d-5p can target CTHRC1 to negatively regulate its
expression. Let-7b-5p can negatively regulate the expression of CTHRC1, while HOXA11-AS can inhibit the function of let-7b-5p, thereby
upregulating CTHRC1. Similarly, Linc00707 can negatively regulate miR-30c and can act as a molecular sponge to inhibit the function of miR-30c,
thereby upregulating the expression of CTHRC1. MiR-30b can directly negatively regulate the expression of CTHRC1. LINC00518 upregulates the
expression of CTHRC1 via the miR-335-3p/CTHRC1 axis. MiR-101 and miR-217 can negatively regulate MALAT-1, thereby negatively regulating the
expression of CTHRC1.
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their cumulative impact on CTHRC1 expression and the

pathophysiology of CRC. We have summarized the molecules

that regulate CTHRC1 expression in Table 1.
3.2 CTHRC1 as a promoter of CRC growth
and metastasis

3.2.1 Wnt/PCP signaling pathway
CTHRC1 plays a critical role in promoting CRC progression and

metastasis by enhancing the migratory capacity of cancer cells, such

as ectopic endometrial stromal cells and breast cancer cells (65, 66).

While the canonical Wnt/b-catenin signaling pathway is well-

documented in cancer biology, increasing attention is being

directed towards the non-canonical Wnt signaling pathways,

notably the Wnt/Ca2+ and Wnt/planar cell polarity (PCP)

pathways (67). It has been established that the active form of
Frontiers in Immunology 05
CTHRC1 is an N-glycosylated trimer that anchors to the cell

surface. Moreover, CTHRC1 specifically activates the Wnt/PCP

pathway by stabilizing ligand-receptor interactions through

forming CTHRC1-Wnt-Fzd/Ror2 complexes (12). The Wnt/PCP

pathway significantly contributes to CRC progression by

modulating cell motility, primarily through activating signaling

cascades such as RHOA and nemo-like kinase (NLK) (68). In an

experiment., the luciferase activity of Wnt/b-catenin and Wnt/PCP

reporter plasmids, as well as a recombinant CTHRC1, was analyzed

following transfection into CRC cells. The results demonstrated that

while Wnt/b-catenin signaling remained unaltered, the

recombinant CTHRC1 specifically activated non-canonical Wnt/

PCP signaling (15). Qi et al. (64) have demonstrated that the

regulation of the Wnt signaling pathway by CTHRC1 in CRC

may be linked to its activation by ANOS1. Furthermore, a study

identified CTHRC1 and COL1A1 as key genes involved in the

progression of CRC, with COL1A1 strongly associated with
TABLE 1 Summary of molecules regulating CTHRC1 expression.

Molecules Cancer Source Expression Mechanism Functions Ref.

MiRNAs

miR-520d-5p Colorectal
Cancer

HCT116 Down Interact with the 3′-
UTR of CTHRC1

Inactivatr the phosphorylation of
Erk1/2 and abrogate the EMT

(14)

miR-155 Colorectal
Cancer

HT-29 Down Interact with the 3′-
UTR of CTHRC1

Inhibit cell proliferation (48)

miR-30c Breast cancer BT549 Down Interact with the 3′-
UTR of CTHRC1

Inhibit cell proliferation, invasion
and migration

(45)

miR-101 Esophageal
cancer

KYSE30KYSE150 Down Arrest the G2/M
cell cycle

Inhibit cell proliferation, invasion
and migration

(46)

miR-217 Esophageal
cancer

KYSE30KYSE150 Down Arrest the G2/M
cell cycle

Inhibit cell proliferation, invasion
and migration

(46)

miR-30b Lung cancer A549 Calu-3 Down Interact with the 3′-
UTR of CTHRC1

Inhibit cell migration and invasion (47)

miR-335-3p Lung cancer A549 H1299 Down Interact with the 3′-
UTR of CTHRC1

Inhibit cell proliferation and migratory (44)

LncRNAs

Linc00707 Breast cancer MDA-MB-231 Up MiR-30c/CTHRC1
regulatory loop

Promote cell proliferation
and migration

(57–59)

LINC00518 Lung cancer A549 H1299 Up MiR-335-3p/CTHRC1
regulatory loop

Promote proliferation, migration,
and invasion

(44)

MALAT-1 Esophageal
cancer

KYSE30KYSE150 Up Promote the G2/M
cell cycle

Promote cell proliferation, invasion
and migration

(46)

HOXA11-AS Glioma U87 Up Let-7b-5p/CTHRC1
regulatory loop

Promote the proliferation
and invasion

(56).

Other
molecules

POU2F1 Cervical cancer Caski Ms751 Up Bind to CTHRC1 to
promote

transcriptional activity

Promote proliferation and migration (13, 60)

ANOS1 Colorectal
Cancer

Tissue Up Bind to CTHRC1 to
promote

transcriptional activity

Promote the activation of the Wnt
signaling pathway and

cell proliferation

(64)

PRR11 Colorectal
Cancer

SW480 HCT116 Up Bind to CTHRC1 to
promote

transcriptional activity

Activate the EGFR/ERK/AKT Pathway
and promote cell proliferation

and migration

(17)

SOX4 Lung
adenocarcinoma

A549 Up Promote transcriptional
activity of CTHRC1

Enhance cisplatin resistance (62, 63)
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metastasis (69). Elevated expression of COL1A1 has been

documented in CRC tumor tissues and paired lymph node

tissues. Additionally, COL1A1 has been shown to stimulate the

expression of downstream effectors, such as Rac1-GTP, p-JNK, and

RhoA-GTP, through the Wnt/PCP signaling pathway (70, 71). The

Wnt/PCP pathway plays a pivotal role in cellular processes that are

crucial for cell migration by transmitting signals from cell surface

receptors, including convoluted surface structures and ROR2/RYK

co-receptors, to the nucleus. This signaling cascade involves Rho

GTPase and c-Jun N-terminal kinase (JNK), wherein JNK

orchestrates the rearrangement of the actin cytoskeleton to

regulate cell planar polarity, thereby enhancing tumor invasion

and metastasis. Moreover, JNK can augment the secretion of matrix

metalloproteases (MMPs) in CRC cells, further facilitating

metastatic processes (72). Rho GTPases such as Rac1 and RhoA,

along with JNK, are integral to regulating cell morphology,

adhesion, and metastasis (73). Additionally, research indicates

that CTHRC1 enhances the migration of gastrointestinal

mesenchymal tumor cells via activation of the Wnt/PCP-Rho

signaling pathways (74).

3.2.2 ERK signaling pathway
CTHRC1 is known to regulate the ERK/AKT signaling

pathway, which is crucial for tumor development. Studies have

shown that the hepatitis B virus (HBV) can enhance the expression

of CTHRC1, thereby facilitating the progression of hepatocellular

carcinoma via the ERK signaling pathway (16). In CRC, CTHRC1

also influences the ERK/AKT pathway. For instance, Jiang et al. (23)

utilized RNA interference to knock down CTHRC1 expression in

CRC cells, leading to a decrease in phosphorylated AKT and ERK

levels, as well as a reduction in Snail expression. This suggests that

CTHRC1 plays a role in hepatic metastasis of CRC through the

AKT/ERK pathway. Furthermore, Wang et al. (75)demonstrated

that CTHRC1 knockdown resulted in decreased phosphorylation of

c-RAF, MEK1/2, and ERK1/2, which are integral components of the

classical MAPK pathway. This finding highlights CTHRC1’s

involvement in activating this signaling cascade. Additionally,

CTHRC1 was shown to activate FRA-1 via the MAPK/MEK/ERK

pathway, leading to the upregulation of cyclin D1, a critical protein

for cell cycle progression, thereby enhancing cellular proliferation.

Moreover, FRA-1 has been implicated in facilitating Snail1-

mediated MMP14 activity, which is important for esophageal

cancer cell migration.

In CRC, CTHRC1 has been found to correlate with MMP9

expression. Experimental studies in CRC cell lines indicate that

CTHRC1 upregulates MMP9, thereby promoting tumor

progression. This regulatory effect is linked to the ERK signaling

pathway, as CTHRC1 knockdown reduces ERK phosphorylation,

and the application of MEK inhibitors can block this effect.

Consequently, CTHRC1 enhances MMP9 expression via the MEK/

ERK signaling pathway, increasing CRC invasiveness (38). Further,

He et al. observed that CTHRC1 facilitates metastasis and invasion in

non-small cell lung cancer through a mechanism dependent on

MMP9 and MMP7 (76). Contrastingly, studies in esophageal cancer

reveal no correlation between CTHRC1 and MMP9 expression (75).
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Additionally, Ma et al. (17) reported that CTHRC1 promotes CRC

cell proliferation by activating the EGFR pathway, thereby

influencing the ERK/AKT signaling cascade. In CRC, CTHRC1 is

also involved in the EMT process through the ERK pathway. It is a

direct target of miR-520d-5p, which can inhibit EMT in CRC by

inactivating ERK1/2 (14). Li et al. (77) identified that in CRC cell

lines SW620 and LoVo, CTHRC1 enhances the EMT process via

ERK1/2 activation, an effect associated with poor CRC prognosis.

3.2.3 TGF-b signaling pathway
The TGF-b signaling pathway is a critical cascade regulated by

CTHRC1, significantly influencing cancer progression. CTHRC1

directly binds to TGF-b receptor II and TGF-b receptor III,

resulting in the stabilization of the TGF-b receptor complex. This

interaction activates TGF-b signaling, thereby promoting CRC

metastasis (19). Notably, CTHRC1 facilitates the EMT, a process

where epithelial cells lose their differentiation and acquire a

mesenchymal phenotype. This transition enhances cancer cell

motility and invasiveness and is often associated with treatment

resistance (78). Ni et al. (7)demonstrated that elevated levels of

CTHRC1 in CRC cells lead to morphological changes from a

cuboidal to a mesenchymal shape. This transformation was

accompanied by increased expression of EMT markers, such as

those in DLD-1 cells, signaling a shift from a cuboidal to a fibroblast-

like morphology. The observed downregulation of E-cadherin and

a-catenin, alongside the upregulation of mesenchymal markers such

as fibronectin and vimentin, suggests that CTHRC1 plays a pivotal

role in promoting EMT in CRC cells. Moreover, the activation of

CTHRC1 by TGF-b signaling is mediated through Smad2 and

Smad3. This activation regulates the transcription of mesenchymal

genes, including N-cadherin and vimentin, facilitating the

transformation into a mesenchymal phenotype and, consequently,

advancing the EMT process in CRC. TGF-b signaling plays a critical

role in regulating the expression of CTHRC1, thereby establishing a

feedback loop. Research in gastric cancer cells has demonstrated that

TGF-b1 enhances the mRNA expression of CTHRC1, which

concurrently facilitates the activation of Smad2 and Smad3

proteins (39). Additionally, it has been observed that CTHRC1 can

inhibit the TGF-b signaling pathway in smooth muscle cells (79).

The differential regulatory effects of CTHRC1 on the TGF-b
signaling pathway in normal versus cancerous cells may be due to

cell-type-specific signaling mechanisms or the interaction of

CTHRC1 with other signaling molecules within distinct cellular

environments. A summary of the signaling pathways by which

CTHRC1 regulates CRC progression is provided in Figure 2.
3.3 CTHRC1 facilitates immune evasion
in CRC

3.3.1 Immune cell infiltration and
phenotypic transformation

Immune cell infiltration and phenotypic transformation are

critical in facilitating immune evasion mechanisms in the TME.

These processes are mediated through the secretion of cytokines
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and chemokines, which coordinate with inflammatory mechanisms

to promote tumor progression, immunosuppression, angiogenesis,

and drug resistance (80). Within the TME, M1-type macrophages

exhibit antitumor activity, whereas M2-type macrophages support

tumor progression. M2 macrophages contribute to immune

suppression by releasing diverse cytokines, such as interleukin-10

(IL-10), transforming growth factor-beta (TGF-b), and VEGF, as

well as activating signaling pathways like STAT3 and Akt that

facilitate immune escape (81, 82).

CTHRC1 plays a pivotal role in immune modulation, especially

within the TME, by facilitating immune evasion through promoting

immune cell infiltration and skewing macrophage polarization

towards the M2 phenotype (19). In CRC, CTHRC1 has been

shown to upregulate CCL15 via the TGF-b/Smad signaling

pathway, thereby enhancing the recruitment and infiltration of

tumor-associated macrophages (TAMs) in tumor tissues, thus

promoting CRC progression (83). In a study by Zhang et al. (19),

the injection of empty and CTHRC1-expressing vectors into a

murine model of liver metastasis from CRC revealed an increase

in M2-type anti-inflammatory TAMs, characterized by elevated

CD206 expression, and a decrease in M1-type pro-inflammatory

TAMs, indicated by reduced MHII expression. The predominant

infiltration of M2-type macrophages underscores CTHRC1’s role in

promoting TAM polarization towards the M2 phenotype. Further

investigations indicated that this polarization process is intricately
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linked to the TGF-b signaling pathway. Therefore, it is concluded

that CTHRC1 effectively promotes TAM polarization towards the

M2 phenotype by modulating the TGF-b signaling cascade.

Qin et al. (84) identified that CTHRC1 promotes the polarization

of macrophages to the M2 subtype through the activation of TGF-b/
Smad and Notch signaling pathways. Furthermore, their study

revealed that CTHRC1 enhances CX3CR1 expression in

macrophages via the integrin b3-Akt signaling pathway, thereby

facilitating the recruitment of M2-type macrophages. Notably, M2-

like macrophages have been shown to support hepatic metastasis in

CRC through the CXCL13/CXCR5/NFkB/p65 axis (85). The

involvement of multiple signaling pathways in CTHRC1-mediated

macrophage polarization within the TME highlights its crucial role in

regulating immune evasion. Beyond its association with macrophage

infiltration, CTHRC1 has also been positively correlated with the

infiltration of CD4+ T cells, CD8+ T cells, and neutrophils, along

with various markers linked to these immune cells (86).

3.3.2 Extracellular matrix remodeling
The migration of immune cells within the TME critically

depends on the distribution and interaction of ECM components

(87) . The ECM plays a pivotal role in foster ing an

immunosuppressive TME, thereby facilitating immune escape.

CAFs, which constitute a significant cell population within the

TME, primarily function in ECM production, and their activity is
FIGURE 2

Overexpression of CTHRC1 promotes the proliferation and migration of CRC cells through the Wnt/PCP, MEK/ERK, and TGF-b/Smad
signaling pathways.
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closely associated with poor tumor prognosis and immune evasion

(88). ECM remodeling significantly impairs the migration of

immune cells, thereby contributing to the establishment of an

immunosuppressive TME. CTHRC1 has been identified as a key

contributor to ECM remodeling. A comprehensive analysis of

single-cell and bulk RNA sequencing studies has identified

CTHRC1 as the most prominent gene associated with CAFs in

the TME of CRC (20). Additionally, CTHRC1 is intricately involved

in the regulation of the Wnt signaling pathway (15). Research on

CRC has shown that the Wnt signaling pathway can induce the

formation of myofibroblast-like cancer-associated fibroblasts

(myCAFs), further promoting CRC progression (89). CTHRC1 is

predominantly secreted by CAFs within the TME. This secretion

has been shown to enhance breast cancer cell metastasis through

various autocrine and paracrine mechanisms. Moreover, CTHRC1

facilitates breast cancer progression by activating the Wnt/b-
catenin signaling pathway, highlighting its role in the intricate

interactions between CAFs and breast cancer cells (65). In

pancreatic cancer, the co-presence of CTHRC1-positive

fibroblasts and secreted phosphoprotein 1 (SPP1)-positive

macrophages promotes ECM deposition and EMT (90). This

in t e r a c t i on con t r i bu t e s t o the deve lopmen t o f an

immunosuppressive TME, ultimately leading to poorer prognoses

for patients with pancreatic cancer. The involvement of CTHRC1,

matrix metallopeptidase 13 (MMP13), and periostin (POSTN) in

ECM formation is notable, as these molecules likely interact within

the TME to enhance ECM deposition via the CTHRC1-POSTN-

MMP13 axis (91) Specifically, CTHRC1 has been demonstrated to

activate pancreatic stellate cells, inducing their differentiation into

myCAFs. During this process, CTHRC1-POSTN signaling plays a

key role in ECM remodeling by increasing the production of

collagen I, fibronectin, and periostin in myCAFs (92).

3.3.3 Hypoxia and metabolic reprogramming
Hypoxia is a prevalent characteristic across various TMEs,

where it compromises the efficacy of cytotoxic T cells and

promotes the recruitment of regulatory T cells, ultimately

diminishing tumor immunogenicity (93). Hypoxia-inducible

factor 1 alpha (HIF-1a) serves as the principal regulator of

hypoxia in the TME (94). In gastric cancer cells, overexpression

of CTHRC1 has been shown to elevate HIF-1a levels (4). Further

investigations have elucidated that CTHRC1 associates withWnt5A

and Frizzled 5, leading to the activation of the NF-kB signaling

pathway and a subsequent increase in HIF-1a expression (21).

Additionally, research (95) has suggested that CTHRC1’s

modulation of the HIF-1a axis is linked to NEDD4L-induced

ubiquitylation of b-catenin, warranting further exploration in the

context of CRC. Within the TME, hypoxia has been shown to

significantly upregulate the expression of programmed cell death

ligand 1 (PD-L1) on dendritic cells, macrophages, and tumor cells,

in a HIF-1a-dependent manner (96). PD-L1 is a critical component

in the immunosuppressive architecture of the TME, recognized as a

key immune checkpoint molecule (97). Research by Noman MZ

et al. (98) has demonstrated that HIF-1a can potentiate

immunosuppression within the TME by elevating PD-L1
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expression, thereby enhancing tumor immune evasion. While

there is evidence of a positive correlation between CTHRC1 and

PD-L1 expression, the underlying mechanisms remain to be fully

elucidated (99). It is plausible that CTHRC1 facilitates immune

evasion by modulating the expression of hypoxia-inducible factor

HIF-1a and subsequently influencing PD-L1 expression. Moreover,

metabolic alterations within the TME are integral to the adaptation

of tumor cells to hypoxic conditions. For example, changes in

glycolysis and fatty acid metabolism contribute significantly to

tumor immune evasion (100). Various cancer cells have

developed distinct mechanisms to enhance glycolysis and fatty

acid metabolism, thus conferring a survival advantage. Both

glycolysis and fatty acid metabolism are crucial metabolic

processes in cancer cells (101, 102). CTHRC1 has been identified

as a hormone regulating metabolism, prominently expressed in the

plasma. Its hormonal functions include the regulation of lipid

storage and cellular glycogen levels. In vitro studies have shown

that CTHRC1 inhibits adipogenesis (103, 104). A recent study

demonstrated that CTHRC1 can activate fatty acid metabolism

regulated by HOXB9, leading to a significant increase in enzymes

related to fatty acid metabolism, such as acetyl coenzyme A

carboxylase a (ACC1) and fatty acid synthase (FASN) (6).

Additionally, CTHRC1 has been shown to facilitate glycolysis.

Recent investigations revealed that CTHRC1 enhances glycolysis

to produce ATP at sites of hypoxia. Notably, the cleaved form of

CTHRC1 exhibited a stronger pro-glycolytic effect than the full-

length protein, suggesting that CTHRC1 may play a pivotal role in

the glycolytic pathway across various cancers (28).

3.3.4 Angiogenesis
Angiogenesis within abnormal tumors is primarily propelled by

two mechanisms: the physical obstruction of tumor-killing immune

cells and the inhibition of immune escape through enhanced

adhesion of infiltrating T cells (105). CTHRC1 is identified as a

differential gene between injured and normal arteries, playing a

significant role in angiogenesis. Experimental studies indicate that

CTHRC1 promotes the migration and tubule formation of human

umbilical vein endothelial cells (HUVECs) as well as the sprouting

of aortic rings (106). The role of CTHRC1 in facilitating aberrant

angiogenesis within tumors is becoming increasingly clear. Recent

research has shown that CTHRC1 can influence angiogenesis in

lung adenocarcinoma by activating HOXB9-regulated fatty acid

metabolism (6). Additionally, CTHRC1 has been found to stimulate

glycolysis in endothelial cells, further promoting angiogenesis (28).

There is also the possibility that immune cells contribute to

angiogenesis within the TME. CTHRC1 may enhance

angiogenesis via the Ang-2/Tie2 signaling pathway by

upregulating angiopoietin-2 (Ang-2), a ligand for the Tie2

receptor. This process results in the recruitment of Tie2-

expressing monocytes into the TME of CTHRC1-overexpressing

tumor tissues (107). By analyzing tissue samples from patients with

CRC and measuring the expression levels of VEGF-C and

CTHRC1, YIN et al. (108) investigated their associations with

clinicopathological features and patient prognosis. Their findings

revealed that both VEGF-C and CTHRC1 are positively correlated
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with tumor size, TNM stage, and the degree of tumor

differentiation. Furthermore, the study demonstrated that VEGF-

C and CTHRC1 can synergistically enhance the invasion and

metastasis of human rectal cancer. It was identified that CTHRC1

can activate the NF-kB signaling pathway, leading to the

upregulation of HIF-1a and consequently promoting VEGF

expression (21). Additionally, VEGF-C and VEGF-D have been

shown to interact with other angiogenic factors. For instance, basic

fibroblast growth factor (bFGF) was noted to downregulate

intercellular adhesion molecule 1 (ICAM-1), reducing immune

cell infiltration and adhesion, thereby contributing to the

formation of an immunosuppressive microenvironment (22). The

mechanisms by which CTHRC1 regulates immune evasion are

summarized in Figure 3.
4 The role of CTHRC1 in colorectal
cancer treatment

Although substantial evidence suggests that CTHRC1 is integral to

CRC growth, metastasis, and immune evasion, its potential as a

therapeutic target remains largely unexplored in clinical settings.

Presently, there is a scarcity of pharmacological agents designed

specifically to target CTHRC1. Among the few, CVB-D has been

shown to suppress CRC cell proliferation, migration, and EMT; it also

induces apoptosis and S-phase cell cycle arrest. CVB-D exerts its effects
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by inhibiting CTHRC1 expression and CRC progression through the

CTHRC1/AKT/ERK/Snail signaling pathway (23). Recent

investigation has demonstrated that CVB-D significantly impedes

cancer progression in PDX tumors and reduces inflammation and

adenoma formation in the aforementioned mouse models (109).

Despite these promising findings, there is a notable lack of clinical

trials evaluating the efficacy of CVB-D in cancer treatment. Future

research endeavors, both preclinical and clinical, are warranted to

assess the therapeutic potential of CVB-D in CRC and to investigate the

effects of its combinations with other agents. Cisplatin and gemcitabine

remain two of the most commonly administered chemotherapeutic

drugs in CRC management; however, the development of drug

resistance significantly hampers their clinical efficacy and presents a

daunting challenge in patient care (110, 111). Recent research has

elucidated the involvement of SOX4 inmediating cisplatin resistance in

LUAD cells, primarily by modulating DNA damage repair (DDR)

mechanisms through the activation of CTHRC1 transcriptional activity

(63). In CRC management, gemcitabine (GEM) serves as a preferred

second-line anticancer agent, especially in patients exhibiting resistance

to oxaliplatin (110). A study focusing on gemcitabine resistance

observed a marked upregulation of CTHRC1 expression when

gemcitabine was administered to breast cancer cells. This finding

implies that targeting CTHRC1 may offer a viable strategy to

partially overcome gemcitabine resistance. Moreover, these data

support the potential clinical utility of combining gemcitabine

with CTHRC1 inhibitors in breast cancer treatment protocols
FIGURE 3

CTHRC1 can be secreted by CRC cells and CAFs. In CAFs, CTHRC1 can promote the deposition of ECM in the TME through the CTHRC1-POSTN-
MMP13 axis. CTHRC1 can also promote the phenotype transformation of macrophages to M2 and recruit M2 macrophages through the ITGb3 and
TGF-b/Smad signaling pathways. M2-type macrophages promote tumor progression through the CXCL13/CXCR5/NFkB/p65 axis. Additionally,
CTHRC1 can upregulate PD-L1 expression by regulating the expression of HIF-1a in response to hypoxic signals and modulate fatty acid metabolism
and glycolysis. CTHRC1 can also promote angiogenesis. These roles of CTHRC1 in the TME collectively facilitate immune evasion of tumor cells.
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(24). Additionally, a separate investigation aimed to

discern the relationship between CTHRC1 expression and tumor

responsiveness to adjuvant imatinib therapy. In a cohort of 214

patients with CTHRC1-positive intermediate- to high-risk

gastrointestinal mesenchymal tumors, those receiving imatinib

demonstrated a superior DFS rate compared to patients who

underwent surgery alone at the three-year follow-up mark (74).

These findings suggest promising avenues for enhancing treatment

efficacy in colorectal mesenchymal tumors. Furthermore,

temozolomide chemotherapy has been validated as an effective

intervention for metastatic CRC. One particular study highlighted

that inhibiting CTHRC1 significantly enhances the therapeutic

sensitivity of temozolomide (25), underscoring the potential of

CTHRC1 as a therapeutic target to amplify the efficacy of existing

chemotherapeutic regimens.

Given the crucial role of CTHRC1 in immune evasion, anti-

CTHRC1 therapies offer substantial promise in enhancing the

effectiveness of immunotherapy. Cui XX et al. (112) have developed

a highly specific mAb against CTHRC1, which has successfully

inhibited the progression of cervical cancer. Additionally, research

has demonstrated that the combination of a mAb targeting CTHRC1

with an anti-PD-1 blocking antibody effectively curtails liver

metastasis in CRC (19). CTHRC1 is central to modulating the

sensitivity of various CRC therapeutic agents. Strategies aimed at

targeting CTHRC1, whether used in isolation or in combination with

other therapies, have shown potential to improve treatment outcomes,

especially in cases of metastatic CRC. However, further clinical trials

are needed to precisely determine the efficacy of interventions

targeting CTHRC1. Researchers are also developing small molecule

inhibitors targeting CTHRC1 and its upstream and downstream gene

pathways to thwart CTHRC1-mediated CRC proliferation, migration,

and immune escape. These inhibitors, when combined with antitumor

drugs, may enhance drug sensitivity in CRC treatment. Antibody-drug

conjugates have been extensively examined in the context of CRC

therapy, with recent investigations exploring the potential of

integrating CTHRC1-targeted drugs with CTHRC1 antibodies to

create antibody-drug conjugates. Such innovative approaches could

pave the way for new clinical applications in the future. CTHRC1 has

been shown to facilitate immune infiltration, and utilizing CAR-T cells

to specifically target CTHRC1 offers a promising strategy for CRC

treatment. Additionally, miRNAs such as miR-155 and miR-520d-5p

are known to directly target CTHRC1 and play a role in regulating

CRC progression. These miRNAs present an opportunity for

innovative therapeutic interventions through the design of new drug

delivery pathways. Potential strategies include engineered exosome

delivery systems and miRNA-responsive chimeric DNA receptor

(miRNA-CDR) methods, which could provide effective mechanisms

for miRNA delivery and thus enhance CRC therapy (14, 113, 114).

Nevertheless, the targeting of CTHRC1 for the treatment of CRC still

faces many challenges, and there are no clinical trial results for

CTHRC1-targeted therapies and its efficacy, pharmacokinetics, and

long-term safety are as yet uncharted.CTHRC1 regulates CRC

progression through multiple pathways, such as AKT/ERK/Snail
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(23), and its targeted inhibition may trigger compensatory signaling

activation, and multi-targeted intervention strategies need to be

explored in the future.CTHRC1 has been shown to mediate

cisplatin resistance through the modulation of DNA damage repair,

and gemcitabine treatment has been observed to up-regulate the

expression of CTHRC1, potentially leading to resistance (24, 63).

Further research is required to elucidate the mechanisms by which

these resistances can be effectively reversed. In order to achieve this

objective, it is essential to overcome the technical challenges currently

faced, including the suboptimal delivery efficiency and the inadequate

in vivo stability of the CTHRC1. In conclusion, CTHRC1 is a potential

target for the treatment of CRC, but it also faces many challenges, and

further exploration is required to regulate the expression of CTHRC1

in order to improve the therapeutic efficacy of CRC and to provide a

new direction for the treatment of CRC.
5 Conclusion and outlook

CTHRC1 is overexpressed in CRC cells and tissues, with its

expression being regulated by multiple signaling molecules,

including p53 and ncRNA. CTHRC1 plays a critical role in CRC

progression by promoting processes such as EMT, angiogenesis,

metabolic alterations and ECM formation, primarily through the

regulation of pathways likeWnt/PCP, TGF-b/Smad, andMEK/ERK.

However, CTHRC1 exists in different isoforms and can be cleaved

into fragments, necessitating further research to determine which

isoforms or fragments have a more significant impact on cancer

progression and to elucidate the underlying mechanisms facilitating

tumor advancement. Compared to other epithelial tumors, CTHRC1

may hold greater diagnostic and therapeutic potential in CRC. Ding

et al. (10) indicate that CTHRC1 can be secreted in saliva, blood, and

urine, positioning it as a candidate biomarker for CRC. Moreover,

compounds like CVB-D and monoclonal antibodies targeting

CTHRC1 have been reported to inhibit CRC invasion and

metastasis by affecting downstream signaling pathways regulated

by CTHRC1 (19, 23). Despite the challenge of immune resistance in

most CRC patients, ongoing research is exploring strategies to

overcome this resistance, such as targeting EHMT2 to enhance

immunotherapy sensitivity (115). CTHRC1 is closely related to

immune evasion in CRC and is implicated in the sensitivity to

immune checkpoint inhibitors. Future research should focus on

exploring CTHRC1’s role in the TME and developing novel

CTHRC1-targeted therapies to facilitate the transformation of the

anti-cancer TME, thereby curbing cancer progression.

Additionally, multitarget drugs exhibit potential in CRC

treatment. Dual-target compounds like the benzenesulfonamide-

derived Z10, which targets pyruvate kinase M2 (PKM2) and

pyruvate dehydrogenase kinase 1 (PDK1), have shown efficacy in

inhibiting CRC progression (116). As CTHRC1 can reduce the

sensitivity of various clinical drugs to CRC, leading to drug

resistance, there is an opportunity to develop dual-target agents

that address both common targets and CTHRC1. Furthermore,
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multitarget drugs that modulate molecules regulating CTHRC1

expression, such as P53, POU2F1, and SOX4, could be integrated

into CRC treatment strategies. Novel drug delivery systems could be

designed to enhance the therapeutic delivery of miRNAs targeting

CTHRC1 expression to the TME, increasing their efficacy. However,

it is crucial to acknowledge the numerous challenges that must be

overcome before translating these findings into clinical applications.

Future research should include extensive clinical trials to validate

CTHRC1’s therapeutic potential in CRC and other epithelial tumors.
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