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Background: Cancer-associated fibroblasts (CAFs) are essential components of

the tumor microenvironment (TME), contributing to tumorigenesis, progression,

and resistance to therapy. However, the functional diversity of CAF

subpopulations and their role in tumor progression and patient prognosis

remain poorly understood. This study aims to explore CAF heterogeneity and

their functional roles in the TME using single-cell RNA sequencing (scRNA-seq)

and multi-omics data analysis.

Methods: scRNA-seq data were analyzed to cluster CAF subpopulations in the

TME, with key genes identified through functional annotation. Differentially

expressed genes were analyzed, and prognostic genes were selected via Cox

and LASSO regression. A risk score model (RiskScore) was developed for survival

prediction and immune therapy sensitivity evaluation. Core CAF genes were

examined using siRNA interference, qPCR, and Western blotting. Drug sensitivity

was assessed to explore the clinical relevance of these genes.

Results: Four CAF subpopulations (CAF-0, CAF-1, CAF-2, CAF-3) were identified,

revealing differences in key tumor-associated signaling pathways (e.g., MYC,

WNT, TGF-b). Thirteen core genes related to prognosis were identified, and a

RiskScore model was developed, showing significantly worse survival rates for

high-risk patients (p < 0.001) and features of immune suppression, including

increased M0 macrophage infiltration. Drug sensitivity analysis indicated that

core genes (e.g., KLRB1, MAP1B) were linked to drug sensitivity, suggesting

potential biomarkers for targeted therapy. Experimental validation showed that
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knockdown of the HIP1R gene significantly reduced tumor cell expression,

confirming its critical role in tumor development.

Conclusion: This study offers a comprehensive analysis of CAF heterogeneity

and its impact on TME, patient prognosis, and drug sensitivity. The developed

RiskScore model provides theoretical support for personalized treatment based

on CAF-related genes, offering new insights into CAF-driven tumor progression

and potential targets for precision oncology and immunotherapy.
KEYWORDS

cancer-associated fibroblasts (CAFs), tumor microenvironment (TME), single-cell RNA
sequencing (scRNA-seq), risk score model, immunotherapy, drug sensitivity
1 Introduction

Bladder cancer (Bca) represents a prevalent malignancy

impacting the genitourinary system globally. Epidemiological data

indicate that approximately 430,000 new cases are diagnosed

annually, with over 165,000 fatalities attributed to the disease each

year (1). The pathogenesis and progression of bladder cancer are

intricately linked to genetic and epigenetic modifications within

cancer cells. Furthermore, the tumor microenvironment (TME),

comprising immune cells, stromal components, and a variety of

signaling molecules, significantly contributes to tumor proliferation,

invasion, and therapeutic resistance. A comprehensive understanding

of the complex interactions among these factors is essential for

advancing diagnostic, prognostic, and therapeutic approaches.

TME comprises a complex and dynamic network of tumor cells,

stromal cells, immune cells, and components of the extracellular

matrix (ECM). Among the principal stromal cell types, cancer-

associated fibroblasts (CAFs) are recognized as one of the most

prominent and functionally versatile elements. These cells play a

critical role in promoting tumor growth, invasion, and metastasis

through various mechanisms. CAFs secrete a range of growth factors,

cytokines, and chemokines that stimulate tumor cell proliferation and

invasion (2, 3). Additionally, they actively engage in ECM remodeling

by modifying its structure and biochemical composition, thereby

facilitating tumor cell migration and contributing to the establishment

of a supportive microenvironment for cancer progression. Elucidating

the complex roles of CAFs and their interactions with other TME

components may lead to the development of novel therapeutic

strategies for bladder cancer (4, 5).

Nevertheless, CAFs demonstrate considerable heterogeneity,

complicating a comprehensive understanding of their roles within

the TME. This heterogeneity is evident in variations in their

phenotype, function, and the signaling pathways they engage. As a

result, delineating the precise contributions of CAFs to tumor biology

remains a formidable challenge. Among the various subpopulations

of CAFs, distinct functional differences are observed, with some

subgroups potentially exhibiting opposing roles. While certain CAF
02
subsets facilitate tumor invasion and metastatic progression (6),

others may possess the capacity to suppress tumor advancement

(7). Furthermore, the biological functions of these CAF

subpopulations are intricately influenced by factors such as their

cellular origin, the activation state of specific signaling pathways, and

their interactions with tumor and immune cells (2, 7). The advent of

advanced technologies, notably single-cell RNA sequencing (scRNA-

seq), has furnished a robust methodology for the precise classification

and characterization of CAFs within the TME. This technique has

markedly enhanced our comprehension of the molecular attributes

and functional diversity of CAFs, offering novel insights into their

heterogeneity and prospective roles in cancer therapy.

Previous research has highlighted the substantial influence of

CAFs on tumor progression (6, 8). However, the detailed phenotypic

characteristics and functional distinctions among CAF

subpopulations within various TMEs are not yet fully elucidated.

Specifically, the complex interactions between CAFs, tumor cells, and

immune components, along with their roles in processes such as

tumor invasion, metastasis, and immune evasion, require more

comprehensive study. Furthermore, the prognostic utility and

functional significance of CAF marker genes in predicting patient

outcomes, therapeutic responses, and the regulation of drug

resistance remain incompletely understood. This study aims to

explore the heterogeneous subpopulations of CAFs in both muscle-

invasive and non-muscle-invasive BCa using single-cell analytical

methodologies. The investigation will focus on elucidating the

interactions between CAF subpopulations and the TME, thereby

enhancing our understanding of the functional attributes and

underlying mechanisms of pivotal CAF-associated genes. To

achieve this, advanced bioinformatics techniques and experimental

validations will be employed to dissect the molecular pathways and

interactions that facilitate tumor progression and contribute to

therapy resistanc. Moreover, this study aims to develop a

multidimensional analytical framework by correlating the

molecular characteristics of CAF subpopulations with clinical

outcomes, immune therapy responses, and drug sensitivity in

bladder cancer patients. The anticipated findings are expected to
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yield significant insights and novel methodologies for personalized

treatment strategies and prognostic evaluations in both muscle-

invasive and non-muscle-invasive BCa. Ultimately, this research

has the potential to pave the way for innovative therapeutic

strategies that specifically target distinct CAF subpopulations,

thereby enhancing treatment efficacy and addressing drug resistance.
2 Materials and methods

2.1 Data collection and processing

This study leveraged scRNA-seq data from the GSE130001

dataset in the Gene Expression Omnibus (GEO) (9). Initial filtering

criteria required that each gene be expressed in at least 3 cells, and

each cell express a minimum of 250 genes. The Seurat R package’s

PercentageFeatureSet function was used to assess mitochondrial gene

and rRNA proportions. Further refinement involved setting

thresholds where each cell expressed at least 6,000 genes, with a

unique molecular identifier (UMI) count exceeding 100. After

processing, 7,690 cells were retained for analysis.

For the prognostic analysis, RNA-seq datasets with

comprehensive survival information were obtained from The

Cancer Genome Atlas (TCGA) and GEO via the GDC portal, with

a primary focus on the TCGA-BLCA cohort (n = 408, excluding

normal tissues). Cases lacking survival or outcome data were

excluded, resulting in 408 samples for subsequent investigation.

Standardized gene expression profiles and corresponding clinical

information from the GEO datasets GSE31684 and GSE13507 were

utilized as validation cohorts (10, 11). Furthermore, data on single

nucleotide variants (SNVs) and masked copy number variations

(CNVs) were retrieved from TCGA for integrative analysis.

Based on literature, ten signaling pathways associated with

cancer—cell cycle, HIPPO, MYC, NOTCH, NRF1, PI3K, TGF-b,
RAS, TP53, and WNT—were chosen for further analysis, and gene

expression profiles were evaluated across the datasets.
2.2 Definition of CAFs

Given the heterogeneity and complexity of cancer-associated

fibroblasts (CAFs) within the tumor microenvironment, we

identified CAFs based on well-established marker genes reported

in the literature. Specifically, we selected ACTA2 (a-SMA), FAP,

PDGFRB, and NOTCH3 as the primary markers (7, 12–14). CAFs

were defined as cells expressing at least two of these markers above a

predefined threshold in single-cell RNA sequencing data. Although

POSTN has been reported in certain studies, it was excluded from

our criteria due to insufficient expression in this dataset (15).

As a result, 715 CAFs were identified from a total of 7,690 cells,

and were included in downstream analyses, including clustering,

functional enrichment, and immune-related characterization.

To comprehensively characterize CAFs in bladder cancer, we

reanalyzed scRNA-seq data using the Seurat package (16). Cells

expressing more than 6,000 or fewer than 250 genes were removed,
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and log-normalization was applied to gene expression data. To

correct batch effects across 21 samples, the FindIntegrationAnchors

function was utilized.

Dimensionality reduction was conducted utilizing Uniform

Manifold Approximation and Projection (UMAP), incorporating

15 principal components with a resolution parameter set to 0.2.

Subsequent cell clustering was executed using the FindNeighbors

and FindClusters functions, with dimensions set to 40 and a

resolution of 0.2. Further dimensionality reduction was

implemented through t-distributed stochastic neighbor

embedding (t-SNE) via the RunTSNE function. Fibroblast

populations were identified based on the expression patterns of

four key marker genes: ACTA2, FAP, PDGFRB, and NOTCH3.

Fibroblasts underwent reclustering using the FindNeighbors

and FindClusters functions, with t-SNE employed for reducing

dimensions.Marker gene analysis across fibroblast clusters was

performed using the FindAllMarkers function, applying

thresholds of logFC = 0.5, min.pct = 0.35, and an adjusted p-

value < 0.05 to identify cluster-specific marker genes. KEGG

enrichment analysis was applied to the identified markers

through the clusterProfiler package (17).

Additionally, the CNV characteristics of CAF clusters were

analyzed using the CopyKAT R package (18), facilitating the

differentiation between tumor and normal cells within each sample.
2.3 Identification of core CAF genes

The limma package was used to identify genes that were expressed

differently between tumor and normal tissues, with selection criteria of

a false discovery rate (FDR) < 0.05 and |log2(Fold Change)| > 1.

Correlation analysis between DEGs and CAF clusters was

subsequently conducted, and key CAF-associated genes were selected

based on a p-value < 0.001 and a correlation coefficient (cor) > 0.4.

To identify genes associated with prognosis with a significance

level of p < 0.05, a univariate Cox regression analysis was performed

utilizing the survival package. Subsequently, LASSO Cox regression

analysis was employed to further refine the selection of genes. This was

followed by a multivariate Cox regression analysis using a stepwise

approach. A risk score formula was subsequently derived as follows:

RiskScore = ∑(Expi × bi), where Expi denotes the expression level of

gene i, and bi represents its corresponding coefficient in the

multivariate Cox model. After standardizing the data to have a mean

of zero, patients were categorized into high-risk and low-risk groups.

The predictive performance of the risk score model was evaluated

using receiver operating characteristic (ROC) curve analysis, conducted

with the timeROC package. Similar analyses were performed on the

validation cohort to verify the robustness of the model.
2.4 Immune landscape analysis

The CIBERSORT algorithm (19)was used to assess the

proportion of 22 immune cell subtypes in the TCGA cohort,

which was employed to evaluate immune cell infiltration.
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Additionally, the ESTIMATE algorithm was used to calculate

immune scores and stromal scores to further explore the TME.

Gene Sequence(5'→3')

HIPIR-F CTGAAACCCAAGAGCCTAGATG

HIPIR-R TGGTTCATCATGTCCTCAATCC
2.5 Risk score and nomogram construction

To develop a nomogram for clinical application, both univariate

and multivariate Cox regression analyses were conducted on

clinicopathological features and risk scores. Variables with a p-

value of less than 0.05 from the multivariate Cox model were

included in the nomogram for predicting Bca prognosis, which

was constructed utilizing the rms package (20). The model’s

predictive accuracy was evaluated through calibration curve

analysis, while its clinical utility and reliability were assessed

using decision curve analysis (DCA).
2.6 Immune checkpoint inhibitor
responsiveness

We downloaded transcriptomic data and matched clinical data

from the IMvigor210 cohort, which included bladder cancer

patients treated with the anti-PD-L1 drug (Atezolizumab) (21).

Additionally, the GSE78220 cohort, which contains transcriptomic

data from melanoma patients treated with anti-PD-1 checkpoint

inhibitors (22), was also obtained to assess the potential value of the

risk score in predicting responsiveness to immune checkpoint

blockade (ICB).
2.7 Cell culture

Bladder cancer cell lines RT4 and 5637, as well as normal

bladder epithelial cells SVHUC, were cultured in Dulbecco’s

modified Eagle’s medium (DMEM), McCoy’s 5A, and Ham’s F-

12K (HyClone, Logan, USA) with 10% FBS (Invitrogen, Carlsbad,

CA, USA) at 37°C in a 5% CO2 incubator. U251R cells were

induced by temozolomide at an initial concentration of 5 µM,

with the final concentration increased to 640 µM, maintaining each

concentration for one month. Logarithmically growing cells were

selected for experiments.
2.8 qRT-PCR analysis

Total RNA was extracted from RT4 and 5637 cells utilizing the

TRIzol reagent (Invitrogen), followed by reverse transcription into

complementary DNA (cDNA) in accordance with the protocol

provided by the mRNA reverse transcription kit (Roche).

Quantitative real-time PCR (qRT-PCR) was conducted using the

SYBR Green RNA Kit (Applied Biosystems, USA), strictly following

the manufacturer’s instructions. Detailed PCR conditions and

primer sequences are presented in Table 1. Relative mRNA

expression levels were determined using the 2-DDCq method,

with GAPDH serving as the reference gene.
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2.9 Western blotting analysis

After cell processing according to the outlined steps, cells from

each group were collected, washed twice with PBS, and lysed using

RIPA buffer supplemented with phosphatase inhibitors. Lysates were

incubated on ice for 30 minutes, followed by ultrasonic disruption.

Protein concentrations were quantified using the BCA method.

Proteins that were denatured (60 µg per well) were separated using

SDS-PAGE and then transferred to PVDF membranes. Membranes

were treated with 5% skim milk for two hours and then exposed to

primary antibodies overnight at 4°C. Following three washes with

PBST, the membranes were exposed to secondary antibodies at room

temperature for two hours.Chemiluminescence detection was

conducted using an enhanced chemiluminescence kit following

three additional PBST washes. Protein bands were quantified using

ImageJ software. Details of primary antibodies are provided in

Supplementary Table S2.
2.10 Human Protein Atlas database and
IHC validation

The Human Protein Atlas (HPA) online database (https://

www.proteinatlas.org/) (23) provided data for examining the

expression levels of CAF-related marker genes in bladder

cancer samples.
2.11 Cell transfection

The sequences used in this study are as follows: sh-HIP 5′-
GCTGC TGGATGAACAGTTT-3′, NC-RNAi: 5′-GTGAAACC
GGGTGCTTATT-3′. Cells were cultured in 6-well plates at a

concentration of 3-5 × 10^4 cells/ml at 37°C for 16–24 hours

until they reached 30-50% confluence. Cells were treated with

lentivirus and infection-enhancing solution according to the

manufacturer’s instructions. The medium was replaced after 16

hours to promote further culture.
2.12 Colony formation assay

RT4 and 5637 cells were placed in 6-well plates at a

concentration of 1,000 cells per well and grown under different

experimental conditions for a period of two weeks. Following

incubation, cells were washed with PBS, fixed with methanol, and

stained using 0.1% crystal violet. Colonies containing 50 or more

cells were counted under a microscope.
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2.13 Invasion assay

For invasion testing, 40 mL of BD Matrigel (Corning, USA) was

applied to the insert membranes and incubated at 37°C for 1 hour to

solidify. In the upper chamber of the insert, 50,000 cells were

suspended in 500 mL of serum-free 1640, McCoy’s 5A. The

inserts were placed in 24-well plates containing 750 mL of 1640,

McCoy’s 5A supplemented with FBS. After 24 hours, cells that

passed through the insert were fixed with 4% paraformaldehyde and

stained with 0.05% crystal violet. Invasive cells were quantified

under a microscope.
2.14 Flow cytometry detection of bladder
cancer cell cycle

Cell cycle analysis was performed using PI staining. After

treatment, cells were collected and washed twice with PBS. Cells

were treated with **0.25% trypsin** to generate a single-cell

suspension, fixed overnight with 70% ethanol, then washed and

incubated with PBS solution containing RNase (10 µg/mL) at 37°C

for 30 minutes. Next, PI staining (50 µg/mL) was applied, and cells

were incubated at 4°C in the dark for 30 minutes. Cell cycle

distribution was analyzed using a flow cytometer (BD FACSCanto

II), and the proportions of cells in G0/G1, S, and G2/M phases were

determined. Flow cytometry data were analyzed with FlowJo

software and plotted for apoptosis rates and cell cycle

distributions. Experiments were conducted at least three times,

with the results reported as mean ± SD.Comparisons between

groups were made using the t-test, with p < 0.05 considered

statistically significant.
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2.15 Statistical analysis

All statistical analyses utilized R software, version 3.6.3.

Correlation matrices were derived through Pearson or Spearman

correlation methods. The comparison of the two groups was

conducted using the Wilcoxon test. Survival differences were

analyzed with Kaplan-Meier curves and Log-rank tests. A p-value

of < 0.05 was considered statistically significant.
3 Results

3.1 Screening CAFs in single-cell RNA
sequencing samples

The study’s workflow is illustrated in Figure 1. Following an initial

screening process, 7,690 cells were extracted from the single-cell RNA

sequencing (scRNA-seq) data. Subsequent log normalization and

dimensionality reduction procedures facilitated the identification

of 20 subpopulations (Supplementary Figures S1A, B). Additional

clustering and dimensionality reduction, utilizing four marker genes

(ACTA2, FAP, PDGFRB, and NOTCH3), resulted in the delineation

of four cancer-associated fibroblast (CAF) subpopulations

(Supplementary Figures S1C, D). Figure 2A depicts the distribution

of cells from each sample within the transcriptomic space. The findings

revealed some overlap among samples; however, each sample exhibited

distinct spatial distribution patterns, potentially indicative of gene

expression variability across samples. Further clustering analyses

identified functional states or cell-type differences within samples,

culminating in the identification of four CAF populations for

subsequent analysis (see Figure 2B).
FIGURE 1

The workflow of this study.
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Different clusters displayed specific marker gene expression

profiles, which may be associated with particular functions or states

(Figure 2C). Figure 2D shows that there were significant differences in

the contribution of specific cell populations across samples. As shown

in Figure 2E, distinct differences in functional pathway enrichment

were observed among the cell populations. For example, pathways

like “Protein Digestion and Absorption” and “TGF-beta Signaling

Pathway” were significantly enriched in certain cell populations,

potentially reflecting the specific functions or states of these groups.

Moreover, some pathways were associated with known disease

mechanisms, suggesting the biological importance of these cell

groups. Figure 2F presents a UMAP projection comparing the

distribution of malignant and non-malignant cells, revealing spatial

separation with some degree of overlap. This overlapmay indicate the

transcriptomic heterogeneity of malignant cells while also suggesting

shared gene expression patterns between malignant and non-

malignant cells in specific contexts.
3.2 Expression of cancer-related pathways
in CAFs

To elucidate the relationship between CAF populations and

tumor progression, we analyzed the tumor-related pathway

activities in different CAF subpopulations. The results showed that

malignant cells exhibited higher expression of oncogenes (e.g., MYC,
Frontiers in Immunology 06
WNT, NOTCH1) in CAF subpopulations, while tumor suppressor

genes (e.g., TP53) were significantly downregulated (Figure 3A).

Notably, in the CAF-2 subpopulation, the differences between

malignant and non-malignant cells were most pronounced,

reflecting the complex heterogeneity of CAF subpopulations in

tumor progression (Figure 3B). Furthermore, Figures 3C–F

compare the Gene Set Variation Analysis (GSVA) scores of key

genes across CAF subpopulations. Malignant cells consistently

exhibited higher GSVA scores for MYC, WNT, and NOTCH1

compared to non-malignant cells, with the differences being most

significant in CAF-0 and CAF-2 (p < 0.001). In contrast, some genes

like TP53 showed no significant GSVA score differences across all

subpopulations (ns). These results highlight the heterogeneity of CAF

subpopulations in supporting malignant progression and emphasize

the key roles of specific signaling pathways, such as MYC and WNT,

in driving malignant progression.
3.3 Construction and validation of tumor
risk prediction model based on differential
genes and survival correlation analysis

To construct the risk score model, we initially identified

differentially expressed genes (DEGs) between tumor and normal

tissues, resulting in the identification of 1,622 DEGs, with 769 being

upregulated and 853 downregulated (Figure 4A). Univariate Cox
FIGURE 2

Identification of CAF clusters based on scRNA-seq data from BCa patients. (A) UMAP plot showing the distribution of 31 clusters and the expression
of fibroblast marker genes. (B) UMAP plot displaying the distribution of five fibroblast clusters after reclustering. (C) Bubble plot illustrating the
expression of the top four marker genes in each fibroblast subgroup. (D) Proportional distribution and cell count of fibroblast subgroups in tumor
tissues. (E) KEGG pathway analysis of the four fibroblast subgroups. (F) UMAP plot depicting the distribution of malignant and non-malignant cells.
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regression analysis was subsequently employed to identify genes

significantly associated with patient survival, categorizing them as

either risk or protective genes. Elevated expression of risk genes was

associated with poor survival outcomes, indicating their potential

involvement in critical pathways of tumor progression (Figure 4B).

Further pathway enrichment analysis was conducted to elucidate

the biological processes in which these differential genes may be

involved. Pathways associated with risk genes were predominantly

related to extracellular matrix remodeling, collagen metabolism,

and cell adhesion, all of which are integral to tumor invasion and

metastasis. Conversely, protective genes were linked to immune

response and metabolic regulation pathways, suggesting their

potential roles in maintaining cellular homeostasis and inhibiting

tumor development (Figure 4F).

Additionally, LASSO regression was employed to identify 13

core genes, which were used to construct the final risk score model.

Cross-validation results showed that at the optimal lambda value, the

LASSO model effectively balanced predictive accuracy and model

complexity (Figures 4C, D). The 13 genes were incorporated into the

risk score formula as follows: RiskScore = 0.052 *CNTN1 expression+
Frontiers in Immunology 07
0.063 * CYTL1 expression + 0.183 * EMP1 expression - 0.130 * HIP1R

expression -0.183 *KHDC4expression+0.062 *LAMA2expression+

0.062 * MAP1B expression + 0.085 * MXRA7 expression - 0.110 *

RSRP1 expression + 0.085 * MSX1 expression + 0.242 * PDGFD

expression - 0.401 * KLRB1 expression - 0.215 * RBPMS expression.

Thismodel assigned risk scores to each sample, categorizing them into

high-risk and low-risk groups. Cox regression further validated the

survival prediction potential of these genes, with risk genes showing

positive Cox coefficients, indicating that their elevated expression

significantly increased the risk of mortality, while protective genes

had negat ive coeffic ients , corre lat ing with improved

survival (Figure 4E).

For further systematic validation, Kaplan-Meier survival curves

(Figures 4G, I, K, M) were generated using multiple datasets

(META, TCGA, GSE31684, and GSE13507), confirming the

applicability of the risk model. The results demonstrated that

patients in the high-risk group had significantly lower survival

rates compared to those in the low-risk group (p < 0.0001). The

model exhibited consistent performance across different datasets,

highlighting its stability and robustness in survival prediction.
FIGURE 3

Characteristics of tumor-associated pathways in CAF clusters. (A) Heatmap showing the top 10 tumor-associated pathways enriched in CAF cells.
(B) Proportional distribution of malignant cells across different CAF subgroups. (C-F) Comparison of GSVA scores for key genes in each CAF
subgroup (CAF-0, CAF-1, CAF-2, and CAF-3). (“*” indicates p < 0.05, “**” indicates p < 0.01, “***” indicates p < 0.001, “ns” stands for “not significant”).
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ROC curves (Figures 4H, J, L, N) were employed to evaluate

the predictive performance of the model, yielding AUC) values of

0.77, 0.78, and 0.75. These results further corroborate the model’s

accuracy in forecasting survival outcomes at 3 and 5 years.

Subsequent multivariate Cox regression analysis (Figures 5A, B)

identified T-stage, N-stage, M-stage, and RiskScore as

independent predictors of survival, with N-stage (Hazard Ratio

[HR] = 2.267, p < 0.001) and M-stage (HR = 3.31, p = 0.001)

exerting significant influence on patient mortality risk. The HR for

the RiskScore was 2.718 (p < 0.001), underscoring its pivotal role

in survival prediction. Nomogram models (Figures 5C–E) were

developed by integrating T-stage, N-stage, and RiskScore to

provide predictive tools for 1-year, 3-year, and 5-year survival,

with predicted values demonstrating high concordance with

actual observations, thereby validating the model’s clinical

superiority (AUCs of 0.77, 0.78, and 0.75, Figure 5F). Finally,

time-dependent C-index analysis revealed that the nomogram

model consistently exhibited the highest C-index at each time

point, indicating its moderate to good predictive capability

predictive capability (Figure 5G).

These results provide reliable theoretical support for tumor

prognosis assessment and personalized treatment strategies.
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3.4 Mutation characteristics, signaling
pathway impacts, and copy number
variation analysis of tumor-related genes

We analyzed the SNV mutations of 13 key genes in the risk

score model and found that 17.15% of samples showed mutations in

these genes. Mutation types included missense mutations, nonsense

mutations, frame-shift deletions, and splice site mutations

(Supplementary Figure S2A). LAMA2, MAP1B, and HIP1R were

among the genes with higher mutation frequencies (8%, 6%, and

5%, respectively), suggesting these mutations play a crucial part in

tumor initiation and progression, and these genes could be potential

driver genes or therapeutic targets. Further analysis of the co-

occurrence and mutual exclusivity relationships between gene

mutations revealed synergistic effects between MAP1B and

HIP1R mutations, which might jointly participate in certain

signaling pathways, while MSX1 and TP53 mutations exhibited

mutually exclusive relationships, indicating their independent roles

in different tumor mechanisms (Supplementary Figure S2B).

When analyzing the impact of mutations on core tumor

signaling pathways, we found that classic pathways such as RTK-

RAS, WNT, and PI3K were most significantly affected by mutations
FIGURE 4

Construction of a novel risk signature based on CAF-related genes. (A) Volcano plot showing differentially expressed genes between tumor
and normal samples in the TCGA cohort. (B) Volcano plot of prognosis-associated genes identified through univariate Cox regression analysis.
(C, D) Lambda trajectory and distribution of each independent variable. (E) Cox coefficients of the selected genes. (F) Functional pathway
enrichment analysis. (G-N) Kaplan-Meier survival curves and ROC curves of the risk signature in the META, TCGA, GSE31684, and GSE13507 cohorts.
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(Supplementary Figure S2C). These mutations might promote

tumor cell proliferation and invasion by altering signaling

networks. Further copy number variation (CNV) analysis showed

that most genes had stable copy numbers, but genes like MAP1B

and HIP1R exhibited significant CNV gains or losses in some

samples (Supplementary Figure S2D). These CNVs may enhance

or diminish gene function, impacting tumor progression. Overall,

these results reveal the genetic heterogeneity of tumors and their

potential pathogenic mechanisms, providing an important

molecular foundation for targeted therapy and precision medicine.
3.5 Core genes and their relationship with
immunity

In examining the relationship between tumor-related genes and

signaling pathways, correlation heatmaps revealed significant

positive associations between key genes (such as LAMA2, HPIPR,

and CNTN1) and pathways associated with tumor-invasive

phenotypes, including extracellular matrix remodeling and

collagen formation (Supplementary Figure S3A). Gene expression

heatmaps further indicated heterogeneity in the expression patterns
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of these critical genes across different samples (Supplementary

Figure S3B). An analysis of TME characteristics in high-risk

versus low-risk groups (Figure 6A), encompassing gene

expression, immune cell infiltration, pathway activity, and

metabolic features, demonstrated an enrichment of immune-

suppressive cells (e.g., M0 macrophages) in the high-risk group,

whereas anti-tumor immune cells (e.g., CD8+ T cells) were more

prevalent in the low-risk group (Figure 6B). Additionally, the

assessment of immune, stromal, and ESTIMATE scores revealed

that stromal scores were significantly elevated in the high-risk

group, while immune scores were higher in the low-risk

group (Figure 6C).

Additionally, pathway and metabolic pathway activity analysis

(Figures 6D, E) revealed increased activity of pro-tumor signaling

pathways (e.g., TGF-beta) and elevated redox reactions in the high-

risk group, indicating that these tumor cells support rapid

proliferation through metabolic reprogramming. In contrast, the

low-risk group displayed enhanced anti-tumor pathways (e.g., NK

cell-mediated cytotoxicity) and glycolytic activity. The correlation

analysis of immune cells indicated a positive relationship between

immune-suppressive cells and pro-tumor signaling pathways, while

anti-tumor immune cells were negatively correlated with
FIGURE 5

Development of a novel nomogram integrating the risk signature and multiple clinicopathological features. (A) Multivariate Cox regression analysis
based on risk score and clinicopathological features. (B) Univariate Cox regression analysis based on risk score and clinicopathological features.
(C) Calibration curves for predicting 1-, 3-, and 5-year survival. (D) Decision curve analysis (DCA) assessing the clinical net benefit of the risk score
and nomogram model across different risk thresholds. (E) Nomogram incorporating the risk score and clinical staging. (F) Time-dependent ROC
curves evaluating the predictive performance of the nomogram model. (G) Time-dependent concordance index (C-index) analysis showing the
survival prediction ability of different variables at various time points.
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suppressive signals (Figure 6F). Further investigation revealed that

core genes (e.g., CNTN1, LAMA2) within the high-risk category,

there was a positive correlation with stromal scores and a negative

correlation with immune scores, suggesting that these genes

promote tumor invasion and immune evasion by modulating the

tumor stroma and inhibiting immune cell infiltration (Figure 6G).

These core genes were significantly positively correlated with pro-

tumor pathway genes, highlighting their synergistic role in high-risk

tumor patients (Figure 6H). Overall, the high expression of core

genes was strongly associated with enhanced immune suppression

and stromal activity, suggesting their potential as biomarkers for

poor prognosis in high-risk patients (Figure 6I). These findings

highlight the role of the TME and core genes in tumor progression,

suggesting molecular targets for therapeutic strategies in patients

with high-risk tumors.
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3.6 Risk score model and PD-L1 blockade
immune therapy response

The association between risk scores and responses to PD-L1

immunotherapy was evaluated in the IMvigor210 and GSE78220

cohorts. Within the IMvigor210 cohort, comprising 348 patients,

the administration of the anti-PD-L1 receptor blocker resulted in

a spectrum of responses, including complete response (CR),

partial response (PR), stable disease (SD), and progressive

disease (PD). Kaplan-Meier survival analysis indicated that

patients classified as high-risk experienced significantly reduced

survival rates compared to their low-risk counterparts (p =

0.0034) (Figure 7A). Subsequent analyses (Figures 7B, G)

revealed that patients achieving CR/PR had substantially lower

risk scores than those with PD/SD.
FIGURE 6

Immune infiltration analysis. (A) Heatmap of enriched pathways from DEGs between high- and low-risk groups. (B) Distribution differences of
immune cell infiltration between high- and low-risk groups. (C) Comparison of immune score, stromal score, and ESTIMATE score between high-
and low-risk groups. (D, E) Differences in signaling pathway and metabolic pathway activity between high- and low-risk groups. (F) Correlation
analysis among different immune cells. The genes presented were identified through differential expression analysis between high- and low-risk
groups, and are also constituents of the 13-gene risk score model. (G) Correlation analysis between core genes and immune score, stromal score,
and ESTIMATE score. The genes presented were identified through differential expression analysis between high- and low-risk groups, and are also
constituents of the 13-gene risk score model. (H) Correlation analysis between core genes and pro-tumor pathway genes in the high-risk group.
(I) Correlation between core gene expression and pro-tumor characteristics in the high-risk group. (“*” indicates p < 0.05, “**” indicates p < 0.01,
“***” indicates p < 0.001, “****” indicates p < 0.0001, “ns” stands for “not significant”).
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Furthermore, our analysis revealed a correlation between risk

stratification and treatment response categories. Within the high-

risk cohort, 81% and 69% of responses were classified as PD or SD,

whereas CR or PR constituted only 19% and 31% of the responses,

respectively. Conversely, the low-risk cohort demonstrated a

significantly greater prevalence of CR/PR responses, at 27% and

82%, respectively, while the incidence of PD/SD responses was

reduced to 73% and 18% (Figures 7C, H). The risk score model

underwent additional validation using an independent dataset.

Despite the absence of statistically significant survival differences

between the high-risk and low-risk groups in this dataset (p = 0.48)

(Figure 7D), these findings indicate that the model’s applicability

may be constrained by variations between datasets. Thus, the model

needs to be optimized based on specific patient data and sample

characteristics for clinical application. Finally, we validated the risk

score in specific patient subsets and small sample groups. In these

analyses, patients classified as high-risk had notably lower survival

rates compared to those in the low-risk category (p = 0.00033 and

p = 0.0013) (Figures 7E, F).

These results collectively demonstrate that the risk score can

serve as a reliable prognostic biomarker and offer an effective

reference for personalized therapy. The applicability of the model

and its performance across different patient populations further
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provide robust theoretical support for precision medicine in

clinical practice.
3.7 Correlation analysis of core gene
expression with drug sensitivity

Exploring the connection between gene expression and drug

sensitivity further revealed that genes might regulate drug responses

(Supplementary Figure S4). Our results revealed correlation

patterns between several genes (e.g., KLRB1, RBPMS, MAP1B)

and specific drugs (e.g., Nelarabine, Copanlisib, Tamoxifen). High

expression of some genes significantly enhanced sensitivity to

certain drugs (e.g., KLRB1 was positively correlated with

Nelarabine), while other genes reduced responses to specific drugs

(e.g., MAP1B was negatively correlated with Tamoxifen).

Additionally, RBPMS and MAP1B genes showed consistent

negative correlations or complex positive-negative correlation

patterns with multiple drugs’ sensitivities.

These results` provide valuable clues for exploring the potential

mechanisms of gene-drug responses and suggest that these genes

could serve as biomarkers or targets for drug sensitivity, providing

guidance for personalized treatment strategies.
FIGURE 7

Correlation between risk score and response to PD-L1 immunotherapy. (A) Prognostic differences between risk subgroups in the IMvigor210 cohort.
(B, G) Correlation analysis between risk score and treatment response. (C, H) Association between high- and low-risk groups and treatment
response types. (D) Validation of the risk score model in an independent dataset. (E, F) Validation of the risk score in specific patient subsets and
small sample populations. (“*” indicates p < 0.05, “**” indicates p < 0.01).
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3.8 Validation of model gene HIP1R
expression in target tissues

According to Western blot results, 5637 and RT4 cells exhibited

higher HIP1R protein expression than SV-HUC cells, with RT4

cells expressing lower levels of HIP1R compared to 5637 cells

(Figures 8A, B). Immunohistochemistry results also showed

significant upregulation of HIP1R, RSRP1, KHDC4, and KLRB1

in BCa patient tissues (Figure 8C).
3.9 Impact of HIP1R knockdown on
bladder cancer cell proliferation, migration,
and clonal formation

We transfected HIP1R lentivirus into cells to elucidate its role in

BCa. PCR andWestern blot tests were used to validate the efficiency

of the knockdown (Figures 9A, B). Compared to the control group,

the siRNA-treated group had a higher percentage of cells in the G1

phase, according to flow cytometry analysis, while the S and G2

phases were significantly decreased, suggesting that HIP1R

knockdown interfered with the normal cell cycle process

(Figure 9C).

Subsequent experiments produced significant findings. In the

wound healing assay, knockdown of HIP1R markedly diminished
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the migratory capacity of RT4 and 5637 cells, particularly at 24 and

48 hours, where the wound healing rate in the knockdown group

was significantly lower than that of the control group (Figure 9D).

Additionally, colony formation assays demonstrated a significant

reduction in the clonal formation ability of RT4 and 5637 cells in

the treatment group (Figure 9E), suggesting that HIP1R knockdown

impedes BCa cell clonal formation. In summary, HIP1R is integral

to the proliferation, migration, and clonal formation of BCa cells,

and its knockdown significantly inhibits these processes.
4 Discussion

CAFs play a pivotal role in the TME, where they not only

secrete cytokines, mediate extracellular matrix remodeling, and

engage in direct cell-to-cell interactions to promote tumor cell

proliferation, invasion, and metastasis, but also contribute

significantly to immune evasion, drug resistance, and tumor

recurrence (24). However, CAFs are not a homogeneous cell

population, and their heterogeneity across different tumors and

within the tumor itself complicates the full understanding of their

regulatory mechanisms in tumor progression. Growing evidence

indicates the importance of CAF-secreted factors and gene

signatures linked to CAFs in predicting outcomes for bladder

cancer patients (25). This study focuses on the functional
FIGURE 8

Expression of HIP1R in bladder cancer cell lines and urothelial carcinoma tissues. (A) Western blot analysis of HIP1R expression in normal bladder
epithelial cells (SVHUC) and bladder cancer cell lines (RT4 and 5637). GAPDH was used as a loading control. (B) Quantification of HIP1R protein levels
in SVHUC, RT4, and 5637 cells. Data are presented as mean ± SD, and statistical significance was determined using one-way ANOVA (P < 0.01).
(C) Immunohistochemical (IHC) staining of HIP1R, RSRP1, KHDC4, and KLRB1 in urothelial carcinoma tissues of different grades. Representative images
show positive staining in low-grade (HIP1R and RSRP1) and high-grade (KHDC4 and KLRB1) urothelial carcinoma tissues. (“**” indicates p < 0.01).
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heterogeneity of CAF subpopulations and their interactions with

malignant cells in the TME. Through a systematic classification and

functional analysis of CAFs using single-cell RNA sequencing data,

we successfully identified four distinct CAF subpopulations—CAF-

0, CAF-1, CAF-2, and CAF-3—and confirmed their unique spatial

distribution and functional characteristics within the TME. Our

results revealed significant differences in the distribution of
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malignant cells across the CAF subpopulations, with distinct

heterogeneity in the activity levels of specific pro-cancer signaling

pathways, such as MYC, WNT, TGF-b, and PI3K. For instance, the

CAF-2 subpopulation exhibited the highest pro-cancer signaling

activity, while the related signals in CAF-3 were weaker. The PI3K

signaling pathway has been established as a therapeutic target in

bladder cancer (26) and pathways such as MYC, WNT, TGF-b, and
FIGURE 9

HIP1R knockdown inhibits bladder cancer cell proliferation, migration, and colony formation. (A) qRT-PCR analysis of HIP1R mRNA levels in control
(NC) and HIP1R knockdown cells (HIP1R-siRNA#1 and HIP1R-siRNA#2). Data are presented as mean ± SD, P < 0.01. (B) Western blot analysis of
HIP1R protein expression in control and knockdown groups. broups. was used as a loading control. The quantification of HIP1R protein levels is
shown on the right (P < 0.01). (C) Flow cytometry analysis of cell cycle distribution in NC and HIP1R knockdown groups. HIP1R knockdown
increased the proportion of cells in the S phase while decreasing the G1 phase proportion. (D) Wound healing assay showing cell migration in NC
and HIP1R knockdown groups at 0 h, 24 h, and 48h. The quantification of wound closure percentages is shown on the right. (E) Colony formation
assay demonstrating reduced colony numbers in HIP1R knockdown groups compared to NC. The bar graph represents the quantification of colony
numbers in different groups. (“**” indicates p < 0.01.).
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PI3K have been shown to play critical roles in bladder cancer

progression (27–30). Furthermore, a significant positive correlation

was observed between core genes, such as HPIPR and LAMA2,

within the high-risk group and various pro-tumor pathway genes.

This finding suggests that these core genes may play a pivotal role in

high-risk tumor patients through synergistic interactions.

Meanwhile, to comprehensively elucidate the potential role and

predictive value of characteristic genes in tumor progression and

patient prognosis, we identified 13 core differentially expressed

genes associated with tumor patient prognosis and developed a

risk score model based on these genes. By integrating the risk score

with clinical features (such as T-stage and N-stage), a nomogram

model was created by us to estimate the 1-year, 3-year, and 5-year

patient survival rates. Validation results showed that the predictive

ability of the nomogram model outperformed individual risk scores

or clinical indicators, demonstrating higher accuracy (AUC > 0.7).

Furthermore, the model exhibited consistent results across different

datasets (e.g., META and TCGA), indicating its moderate to good

stability and generalizability.

In the evaluation of immune therapy, the risk score model

demonstrated significant advantages. We observed that in high-risk

tumor patients showed a poorer response to PD-L1 immune checkpoint

inhibitors, while the CR rate was notably higher in the low-risk group.

This suggests that the risk score model can function not only as a

prognostic tool but also as a predictive marker for identifying patients

who are more likely to benefit from immune therapy. Additionally,

patients in the high-risk group exhibited significantly lower survival

rates compared to those in the low-risk group, and the risk score was

strongly correlated with the immune infiltration characteristics of the

TME. Previous studies have shown that the interaction between CAFs

and the tumor immune micro-environment (TIME) plays a crucial role

in tumor progression (31). In our study, core genes in the high-risk

group exhibited significantly higher expression levels, positively

correlating with stromal scores and negatively correlating with

immune scores. This suggests that these genes may promote tumor

invasion and immune evasion by modulating tumor stromal

components and suppressing immune cell infiltration. Further GSVA

analysis revealed the potential roles of different CAF subpopulations in

regulating tumor cell growth, modulating immune responses, and

driving metabolic reprogramming. CAFs have been shown to

enhance tumor cell growth and reduce sensitivity to immune therapy

in various malignant tumors (32–35).

Immune cells present within tumors play a pivotal role in

modulating the anti-tumor immune response within the TME.

CAFs engage with these immune cells to establish an immune-

suppressive TME, thereby facilitating tumor cells’ evasion of

immune surveillance (36). Notably, our study demonstrated a

marked increase in pro-tumor immune cells, such as M0

macrophages, in the high-risk group, whereas anti-tumor

immune cells, including activated CD8+ T cells, were significantly

more prevalent in the low-risk group.

Furthermore, previous studies have demonstrated that tumor-

associated macrophage (TAM) polarization/activation and CAF

induction/recruitment are influenced by tumor-derived molecules,

such as IL-6 (37, 38). The study’s findings shed light on the
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significance of the TME and core genes in tumor development,

pointing to potential molecular targets and clinical strategies for

designing targeted therapies for high-risk tumor patients.

Additionally, the study further integrated drug sensitivity data to

analyze the correlation between core genes and specific drug

sensitivities. The results revealed significant associations between

KLRB1 and MAP1B expression and the sensitivity to several drugs.

High expression of KLRB1 significantly enhanced sensitivity to

Nelarabine and Cytarabine. Similarly, MAP1B exhibited a positive

correlation with Simvastatin and a negative correlation with

Tamoxifen, suggesting that MAP1B may play a regulatory role

through distinct drug-specific mechanisms. Furthermore, the RBPS

gene showed a negative correlation pattern with multiple drugs, such

as Carmustine and Copanlisib. These results indicate that the

expression levels of certain genes may directly affect tumor cell

responses to specific drugs, providing a foundation for exploring

these genes as biomarkers for drug sensitivity or therapeutic targets.

However, despite the important findings, several limitations

remain. First, the heterogeneity of data sources could affect the

generalizability of the model. For example, differences in patient

characteristics and clinical treatment regimens across various

databases may lead to inconsistencies in model predictions. Second,

the experimental validation covered only a subset of the core genes

(e.g., HIP1R, KLRB1, and MAP1B), and the function of other key

genes still requires further investigation. Lastly, while the drug

sensitivity analysis identified some gene-drug correlations, the

underlying mechanisms remain unclear. Future research should

focus on expanding the sample size, integrating data from multiple

centers, and enhancing the clinical relevance of the model.

Additionally, further investigation into the molecular mechanisms

of core genes within the TME, particularly their roles in immune

regulation and metabolic reprogramming, will provide deeper

insights to support the development of novel targeted therapies and

personalized treatment strategies. By integrating multi-omics data

and functional validation, further advancement of CAF-related gene

research will contribute to the clinical translation of these findings.
5 Conclusion

This study identifies the heterogeneity of CAFs and their roles in the

TME, revealing four CAF subpopulations and 13 core genes for

predicting patient prognosis and treatment sensitivity. The risk score

model and experimental validation show that CAF core genes are closely

linked to survival, immune micro-environment, and may serve as

biomarkers for drug sensitivity and potential therapeutic targets. These

findings provide crucial insights for understanding CAF mechanisms in

tumors and their application in personalized treatment strategies.
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SUPPLEMENTARY FIGURE 1

UMAP clustering and marker gene expression in single-cell RNA sequencing
analysis. (A) UMAP visualization of single-cell transcriptomic data, with cells

grouped into 20 clusters and colored accordingly. Each cluster represents a
distinct cell population within the tumor micro-environment. (B) Expression
patterns of marker genes ACTA2, FAP, PDGFRB, and NOTCH3 across different
cell clusters. The color intensity represents the expression level, highlighting

specific cell populations. (C) Refined clustering of cells into four major groups

(0-3) based on UMAP representation. (D) Marker gene expression in the
refined cell clusters, showing distinct expression patterns of ACTA2, FAP,

PDGFRB, and NOTCH3, indicating functional specialization within the tumor
micro-environment.

SUPPLEMENTARY FIGURE 2

SNV mutation landscape of the 13 genes in the risk score model. (A)Mutation

profile based on the TCGA cohort. (B) Analysis of co-occurrence and mutual
exclusivity relationships among key gene mutations. (C) Impact of mutations

on core tumor signaling pathways. (D) CNV characteristics of key genes.

SUPPLEMENTARY FIGURE 3

Gene-pathway correlation and hierarchical clustering analysis of gene

expression in tumor samples. (A) Heatmap showing the correlation

between key genes (HIP1R, KHDC4, RBPMS, MAP1B, etc.) and various
biological pathways. The color gradient represents correlation values, with

red indicating positive correlation and blue indicating negative correlation.
Asterisks denote statistical significance (*P < 0.05, **P < 0.01, **P < 0.001). (B)
Hierarchical clustering heatmap illustrating gene expression patterns across
different samples. Each row represents a KEGG pathway, and each column

represents a sample. The color scale indicates the expression level, with red

representing high expression and blue representing low expression. Genes
such as HIP1R, KHDC4, RSRP1, and LAMA2 show differential expression

across samples, suggesting potential involvement in tumor progression.

SUPPLEMENTARY FIGURE 4

Correlation analysis between gene expression and drug sensitivity.
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