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Novel insights and an updated
review of metabolic syndrome in
immune-mediated organ
transplant rejection
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Yanglin Hao, Xiaohan Li, Kexiao Zheng, Jie Wu, Jiahong Xia,
Yang Zhao*, Yongjun Wang* and Xi Zhang*

Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University
of Science and Technology, Wuhan, China
Metabolic syndrome (MetS) is a group of symptoms that are characterized by

abnormal changes in metabolic substances such as glucose, lipids, proteins, and

bile acids. MetS is a common complication after organ transplantation and can

further affect the survival and physiological function of the graft by reprograming

the patient’s immune environment. Additionally, MetS can influence the

occurrence of post-transplant complications, such as infections. In recent

years, research into the epidemiology and mechanisms of MetS has grown

significantly. In this review, we summarize the mechanisms of MetS after

transplantation and the mechanisms of hyperglycemia, insulin resistance,

hyperlipidemia, abnormal bile acids, and abnormal amino acids on the body’s

immune cells as related to the effect of metabolic disorders on immune rejection

after liver, kidney, heart, skin and other organ transplantation. Finally, we provide

an overview of current treatment strategies and offer insights into potential future

therapies for managing MetS in transplant recipients.
KEYWORDS

metabolic syndrome, organ transplantation, transplant rejection, immune system,
metabolites and immune cell
1 Introduction

Metabolic syndrome (MetS) was first proposed in 1988 and is characterized by

dyslipidemia, hypertension, and insulin resistance (IR) in a hypertriglyceride-low HDL-

cholesterol state; with the development of this research, the scope of metabolic abnormalities

has gradually increased (1). Organ transplantation is still the best method for the treatment of

end-stage organ failure. In recent years, due to improvements in surgical techniques and

postoperative management, the survival rate of transplant patients has significantly increased

(2). However, metabolic abnormalities, such as blood glucose, blood lipids, and amino acids,

that often occur after transplantation strongly affect the survival of grafts and the quality of
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life of patients. Among the latest diagnostic indicators of metabolic

syndrome, waist circumference is usually used as an indicator of

abdominal obesity to establish a rough estimation. Comprehensive

evaluations of fasting serum triglyceride, high-density lipoprotein,

and cholesterol levels; blood pressure; fasting blood glucose; and

other indicators are needed to further determine risks (1, 3). Current

studies have shown that stress caused by transplantation surgery,

drug and lifestyle changes after transplantation, and a series of

metabolic abnormalities that occur before and after transplantation

have regulatory effects on the immune system, which alters the

normal immune environment in different ways and affects the

immune tolerance and tolerance of the graft. The result is reduced

graft survival time, cardiovascular disease risk, infection, cancer,

hypertension and other complications (Figure 1) (3).

In this review, we summarize the current impacts of MetS on

transplant immune rejection. Starting with the pathophysiological

mechanism of MetS, we first discuss the impact of the abnormal

metabolism of lipids, sugars, bile acids, and amino acids in MetS on

immune cells and immune signaling pathways in the immune

system. Then, we discuss the relationship between organ

transplant rejection and MetS. Finally, current management

strategies and prospects for transplantation are discussed.
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2 Pathophysiological mechanisms
of MetS

2.1 Mechanisms of insulin resistance

Insulin is a peptide hormone secreted by pancreatic beta cells in

response to elevated blood glucose. Its main role is to promote the

ability of effector cells to store glucose as glycogen in the liver and

skeletal muscle and to convert glucose into fatty acids and lipids,

ultimately resulting in decreased blood glucose (4). As a result of

surgical stress and the side effects of immunosuppressive drugs, the

reduced insulin sensitivity and insulin secretion of effector cells

often leads to insulin transplantation resistance and posttransplant

diabetes (5). When insulin resistance occurs in skeletal muscle, the

inhibition of insulin-mediated lipolysis is reduced, the oxidative

breakdown of fatty acids is increased, and the increase in free fatty

acids (FFAs) further inhibits the function of PI3 kinase and GLUT-

4 in the insulin transport pathway and exacerbates insulin

resistance (6–8). Increased FFAs also cause cholesterol and

triglyceride (TG) levels to increase, which further causes

TG levels to shift from vLDL to HDL and reduces HDL
FIGURE 1

Etiology and adverse effects of MetS. Obesity caused by a high-sugar and high-fat diet is the cause of metabolic syndrome in most people, and the
application of some drugs, such as steroid hormones, can also lead to drug-induced MetS. Stress after surgery and postoperative nutritional
supplementation are also important causes of MetS. Organ transplant recipients are at a high risk of MetS due to drug and lifestyle changes after
surgery, which results in a high incidence of MetS. These metabolic abnormalities are more likely to lead to cardiovascular and cerebrovascular
accidents and infections and tumors caused by immune disorders.
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concentrations (9). Abnormal blood lipid changes can lead to the

activation of macrophages and the deposition of cholesterol in

blood vessels, which leads to pathological changes in atherosclerosis

in MetS patients (10). Moreover, an increase in FFAs leads to a

decrease in brachial artery dilatation function and hypertension in

MetS patients (11); additionally, insulin resistance in MetS patients

increases blood viscosity (12).
2.2 Secretory mechanisms in adipose tissue

Adipose tissue is a tissue with endocrine properties and its

dysfunction is one of the main causes and pathogenic mechanisms

of MetS. A variety of cytokines and hormones, such as TNF-a, IL-6,
and IL-8, as well as plasmid proactivator inhibitor-1, angiotensin-II,

adiponectin, and leptin, are secreted (13).

Generally, adipose tissue plays a key role in MetS. The role of

leptin is related to the inhibition of food intake and increasing

energy expenditure (14) and it has also been linked to the activation

of immune function and cardiovascular and cerebrovascular

diseases (15, 16). In chronic hyperleptinemia and leptin

resistance, continuous stimulation of the sympathetic nerve by

leptin leads to vasospasm and hypertension, and leptin can

further change sympathetic nerve excitability by regulating renal

Na excretion. Additionally, in chronic hyperleptinemia, it can

indirectly influence the occurrence of heart disease by enhancing

platelet aggregation and fibrinolytic injury and promote

angiogenesis (16) and it has become a key molecule linking

obesity, MetS and cardiovascular injury. Adiponectin is another

important molecule that is secreted by adipose tissue and plays

important antiapoptotic, insulin sensitivity, anti-inflammatory and

antifibrotic roles (17). Some studies have shown that its deletion

may lead to MetS in mice (18). Another adipokine secreted by

adipocytes, chemerin, has been implicated in inflammation,

adipogenesis, angiogenesis, and energy metabolism in individuals

with MetS (19). Small cohort studies have shown that the level of

chemerin is greater in individuals with de novoMetS (20–22), which

suggests that chemerin may be involved in the development

of MetS.
2.3 Other relevant molecular mechanisms

As a widely studied cytokine, IL-6 can be secreted by a variety of

cells, such as adipocytes and lymphocytes, in MetS (23, 24). Studies

have shown that IL-6 has a steroid-like effect, which can affect lipid

metabolism by affecting macrophage recruitment, improving

insulin resistance (25), and enhancing adrenal function (26).

Moreover, it also acts on the circulatory system and can affect

mitochondrial function, which can lead to atherosclerosis (27).

TNF-a can be secreted by adipose tissue (23), and macrophages

that accumulate in adipose tissue are an important source of TNF-a
release (28). The increased release of TNF-a (29), which can affect

insulin action through the NF-kB, IKK-b and JNK systems (30, 31),

serine phosphorylation, and loss of downstream receptor molecules
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(32), has been reported in obese and insulin-resistant patients. The

proinflammatory effects of TNF-a on the arterial wall suggest that it

also plays a key role in atherosclerosis (31). Moreover, with

increasing intracellular cAmp, intracellular fatty acid breakdown

and the concentration of FFAs increase (33).

As a secreted protein, Fetuin-A is involved in a variety of

metabolic processes and its association with MetS has attracted

increasing attention (34). Increased secretion of Fetuin-A has been

observed in adipose tissue and the viscera of obese patients (35, 36)

and has been shown to induce insulin resistance by interfering with

GLUT-4 and activating Akt (37).
2.4 Mechanisms of gut microbiota
metabolism

In recent years, the mechanisms underlying the relationship

between gut microbiota and the development of MetS

have garnered significant attention. Gut microbiota can induce

and exacerbate MetS through multiple pathways, including

influencing nutrient absorption, promoting chronic inflammation,

and disrupting bile acid homeostasis. The balance between

pathogenic and beneficial microbiota is fundamental to

maintaining metabolic stability; however, this equilibrium is often

disrupted in MetS (38–40). One of the consequences of dysbiosis in

gut microbiota is chronic inflammation. Under the combined effects

of external factors and inflammation, the integrity of the intestinal

barrier is compromised, allowing endotoxins produced by

pathogenic bacteria to enter the systemic circulation more easily,

thereby inducing low-grade systemic inflammation (41, 42). When

external factors lead to gut microbiota dysbiosis, the expression of

LPS increases, driving Toll-like receptor (TLR) signaling, degrading

the mucosal layer, and triggering endotoxemia. This process

promotes the production of trimethylamine (TMA), a pro-

atherogenic metabolite, ultimately contributing to metabolic

dysregulation (43, 44).

Bile acids, as endocrine signaling molecules, exert critical

regulatory roles in glucose and lipid metabolism through nuclear

farnesoid X receptor (FXR) and membrane-bound G protein-

coupled receptor 5 (TGR5). Beyond facilitating the absorption of

lipid-soluble nutrients, they orchestrate multiple metabolic

processes including glucose homeostasis, lipid regulation, and

energy balance. Dysregulation of bile acid metabolism

significantly contributes to the pathogenesis and progression of

MetS (45). Bile acid biosynthesis is mediated via two primary

enzymatic pathways: cholesterol 7a-hydroxylase (CYP7A1) and

sterol 27-hydroxylase (CYP27A1), whose expression is modulated

by microbial activity (46, 47). Emerging evidence indicates that gut

microbial communities enriched in bile salt hydrolase (BSH)-

producing species hydrolyze conjugated bile acids into diverse

secondary forms, thereby establishing an expanded bile acid pool

with enhanced functional complexity (48, 49).

Dietary interventions modulate gut microbial composition,

subsequently reshaping bile acid metabolism. Specific microbiota

subpopulations eliminate endogenous FXR antagonists such as
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tauro-b-muricholic acid (TbMCA), thereby potentiating FXR

signaling. Concurrently, these microbial consortia generate

secondary bile acids (e.g., deoxycholic acid and lithocholic acid)

that act as potent ligands for TGR5 (50). Mechanistically, TGR5

activation enhances energy expenditure via thermogenesis in brown

adipose tissue and skeletal muscle, while concurrently stimulating

glucagon-like peptide-1 (GLP-1) secretion from intestinal L cells.

Notably, L cells co-express FXR, which transcriptionally regulates

GLP-1 synthesis, establishing a synergistic crosstalk between FXR

and TGR5 signaling in metabolic regulation (47, 51).
2.5 Etiology and mechanisms of MetS after
transplantation

The main cause of dyslipidemia after transplantation is the use

of immunosuppressive drugs; for example, the use of corticosteroids

can lead to hyperlipidemia through increased appetite, insulin

resistance, and increased synthesis of triglycerides and cholesterol.

Calcineurin inhibitors cause hyperlipidemia by reducing bile acid

excretion, inhibiting insulin secretion and increasing FFAs. The side

effects of mTOR inhibitors on the development of hyperlipidemia

are greater than those of calcineurin inhibitors. The application of

mTOR inhibitors mainly leads to an increase in triglycerides and

leads to an increase in FFAs, which is associated with the inhibition

of LPL, decreased catabolism of apolipoprotein B-100-containing

lipoproteins, and excessive production of VLDL-C (52–54).

The incidence of post-transplantation diabetes mellitus (PTDM)

is associated with obesity, insulin resistance and race. Specifically,

certain races may be more sensitive to immunosuppressive agents.

Older age, higher blood lipid levels, and an inflammatory state are

also important factors for the development of PTDM in African

American patients (55). The immunosuppressive drugs that are

calcineurin inhibitors, cyclosporine and tacrolimus, can also cause

PTDM through glucose transporter 4 (GLUT4), changes to

glucokinase function that induces b-cell apoptosis, and blockage of

the nuclear factor of activated T cells (NFATc) and other mechanisms

(2). The contribution of tacrolimus to the development of insulin

resistance is relatively high because it binds to the high level of

FK506-binding protein in pancreatic b cells and inhibits insulin

secretion (53). Steroids decrease the sensitivity of the liver to

insulin, which leads to increased gluconeogenesis so that even

when the pancreas releases insulin, the liver continues to release

glucose, leading to increased appetite, fluid retention, and weight gain

(56). Genetic studies have shown that peroxisome proliferator-

activated receptor a (PPARa) is an important regulator of glucose

and lipid metabolism and donor PPARa gene polymorphisms affect

susceptibility to metabolic disorders after liver transplantation (57). A

persistent graft–host immune response and immunosuppression-

mediated infection, which induce islet b-cell apoptosis, are also

involved in the pathogenesis of PTDM (58, 59).

Obesity not only causes the induction of PTDM before

transplantation but is also a common complication after

transplantation. Obesity can affect carbohydrate metabolism or

aggravate diabetes by increasing insulin resistance after
Frontiers in Immunology 04
transplantation, and obesity is more likely to cause postoperative

atherosclerosis (60). Increased visceral fat in obese individuals can

lead to metabolic abnormalities through the secretion of

inflammatory adipokines and thereby increase the risk of

cardiovascular accidents (61). Weight gain before transplantation

increases the rate of transplant failure, prolongs the duration of

transplant surgery, and leads to proteinuria after transplantation,

which eventually leads to obesity-related chronic kidney disease

(Figure 2) (62).
3 Effects of MetS on the
immune system

The proliferation, differentiation, and functional activity of

immune cells are fundamentally regulated by the dynamic

equilibrium of the immune microenvironment (63, 64). MetS

perturbs this equilibrium through dysregulation of metabolites and

signaling molecules via the aforementioned pathophysiological

pathways. Notably, MetS significantly alerts the critical metabolic

components within the immune microenvironment, including

insulin signaling, carbohydrate homeostasis, lipid profiles, bile acid

dynamics, and amino acid availability (1). These metabolites

orchestrate immune cell differentiation and function, inducing

bidirectional regulation in immune cell phenotypes toward pro-

inflammatory and anti-inflammatory states (Table 1).

Previous research has predominantly focused on the incidence

of post-transplant metabolic syndrome (PTMS) in relation to

patient survival, complications, and graft functional outcomes

(65, 66). However, the impact of PTMS on immune cell dynamics

and the immune microenvironment remains underexplored.

Emerging evidence indicates that PTMS induces sustained

immune system activation, characterized by elevated and

persistent chronic inflammatory burden, which correlates with

adverse clinical prognoses (67). Concurrently, PTMS-driven

metabolic dysregulation promotes hyperactivation and tissue

infiltration of immune cells, a phenomenon mechanistically

linked to vasculopathy and hepatic complications in transplant

recipients (68–71).
3.1 Effects of hyperglycemia and
hyperinsulinemia on immunity

3.1.1 Effects of hyperglycemia on T cells
Diabetes is a common complication after transplantation (72).

Although hyperinsulinemia enhances the ability of memory CD8 T

cells to regulate GLUT-1 and promote glucose uptake, the direct effect

of hyperglycemia on memory T-cell function is predominant in

diabetes. Furthermore, it can reduce the secretion of cytokines

without reducing the proliferation of memory T cells or the

function of memory T cells (73). Hyperinsulinemia activates

effector CD8+ T cells and insulin signals through PI3K, and in this

process, insulin stimulation enhances the costimulatory effect of

CD28, which further enhances effector T-cell action (74, 75). In
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patients with insulin resistance, the downstream pathway of insulin

receptor (INSR) signaling may be depleted and insulin-stimulated

AKT signaling may be reduced, which may be related to a decrease in

T-cell immunity (76). In hyperglycemia, increased activation of the

MAPK pathway in T cells leads to enhanced cytokine production,

proliferative phenotypes and chromatin decondensation (77).

3.1.2 Effects of hyperglycemia on B cells
Under the influence of diabetes, the B-cell repertoire is altered,

which leads to immune confusion (78). B cells present a more

proinflammatory phenotype, IL-6 and TNF-a are increased, and

IL-10 secretion is decreased. However, the antibody reactivity of B

cells is decreased, which is not consistent with the proinflammatory

phenotype of B cells (79). Another study revealed elevated levels of

IgA, IgM, and total antibodies produced by B cells in the vitreous of

the eye (80). Other studies have reported that insulin resistance can

damage the metabolic phenotype of B cells, increase the volume of

mitochondria in cells, change the structure of the cristae, and reduce

the mitochondrial respiratory function of B cells. The result is that

the production of plasma cells is inhibited, and B-cell immunity is

reduced (81).
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3.1.3 Effects of hyperglycemia on macrophages
Macrophages are divided into proinflammatory M1

macrophages and anti-inflammatory M2 macrophages. Under

conditions of high blood glucose, macrophages are more prone to

M1 polarization. The decreased release of protective inflammatory

factors, such as Arg-1 and CD206, and increased expression of

proinflammatory markers, such as IL-6, iNOS, and TNF-a, as well
as metabolites like the a-dicarbonyl and AGER pathways (82–84),

have been reported. Hyperglycemia promotes the expression of

proinflammatory M1-associated Il-6, which increases the immune

capacity of macrophages. This effect is associated with metabolic

changes driven by epigenetic reprogramming, which may be caused

by epigenetic changes in multiple genes caused by lactic acid (82,

85). It is also possible that the expression of histone

methyltransferases SMYD3 and SET7/9 upregulates the epigenetic

regulation of S100A12 to upregulate the expression of S100A9 and

induce an activated histone code at the corresponding gene

promoters in M1 macrophages. Enhanced macrophage responses

to Toll-like receptor (TLR) ligands include palmar folate (PA),

lipopolysaccharide (LPS), and proinflammatory stimuli (86). In a

study comparing diabetic and nondiabetic macrophages,
FIGURE 2

The main mechanism of MetS after transplantation. The application of immunosuppressants is one of the most important reasons for MetS. The
application of steroid hormones, cyclosporine, and calcineurin inhibitors can cause abnormal lipid metabolism, increased appetite, and insulin
resistance. Islets are affected by FFAs in MetS, and signals related to glucose transport are downregulated, which results in insulin production effects
and hemodynamic alterations. Alterations in adipokines secreted by adipocytes further lead to vascular damage and changes in hormone sensitivity.
The secretion of some cytokines can cause persistent inflammation and accelerated lipolysis. This series of changes eventually leads to adverse
effects such as vasculopathy, PTDM, chronic kidney disease, and infection after transplantation.
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Effector cells Subsets of cells Mechanism

macrophages Amino acids affect mitochondria and then affect the
differentiation of macrophages into M2 type

Abnormal metabolism of
bile acids

T cells Th17 cells 3-oxoLCA inhibited Th17 differentiation

Treg cells 3-oxoLCA enhances Treg differentiation

The intestinal BA pool affects Treg cells responses

isoalloLCA enhances iTreg cells differentiation

CD3 + CD8 + T cells TCA inhibited CD3 + CD8 + T cells activity

CD8 cytotoxic T cells DCA reduced CD8 cytotoxic T cells function

UDCA affects the transcription and antigen presentation
T cells

CDCA increased the expression of FXR, and DCA inhib
the expression of FXR, which affected the activation of
T cells

CBA and Mdr1 induce immune equilibrium

Th1 LCA inhibits Th1

macrophages TCA induced the transformation of macrophages into
M2 type

CDCA inhibited the transformation of macrophages
into M2

UDCA induced the transformation of macrophages
into M2

DCA and CDCA promoted macrophage
M1 transformation

Multiple bile acids activate TGR5 to promote
M2 transformation

NK cells TCA inhibited NK cells activation

TLC inhibited NK cells migration
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researchers reported that the autophagy proteins, LC3b and Beclin-

1, which maintain mitochondrial homeostasis in normal

macrophages, were downregulated in diabetic macrophages. This

phenomenon suggests that macrophages may adapt to long-term

hyperglycemia and that its downregulation may reduce

mitochondrial homeostasis, which is closely related to the

increase in reactive oxygen species (ROS) in hyperglycemic

conditions (87, 88). A study on the promotion of inflammation in

macrophages by hyperglycemia revealed that macrophages take up

CD163, which inhibits the uptake of Hb-Hp1-1 and Hb-Hp2-2 by

macrophages and thus produces a vascular protective effect (89).

Simultaneously, Arg1 and Mrc1 gene induction and subsequent

STAT3 and STAT6 signaling activation are reduced (90). Another

study revealed that the transcription of Acsl1 mRNAwas induced in

macrophages and hyperglycemia alleviated the repression of

CHREBP, which further promotes Acsl1 transcription and leads

to a proinflammatory response (91). Moreover, hyperglycemia can

lead to the upregulation of Notch, which further promotes M1

transformation and exacerbates inflammatory injury (92). High

blood glucose can induce the activation of Raw264.7 macrophages,

participates in the activation of the MAPK pathway, and increases

the secretion of TNF-a and macrophage adhesion (93). The

activation of LPS involved in phagocytosis under high-glucose

conditions led to a slight increase in the expression of the CD36

gene under normoxia and normoglycemia, and the expression of

inflammatory factor-related genes was upregulated (94).

Furthermore, it promoted the inflammatory phenotype of

macrophages by attenuating FOXO1-activated IL-10 expression

(95). M2 cells are limited in their ability to differentiate because

of the inhibition of CCL18 production (96). These changes in

metabolic pathways lead to the transition of macrophages to the

M1 type. Researchers have shown that high glucose stimulates

mTORC1 activation and ser-ulk1-757 activation, which induces

pyroptosis, but these changes have no effect on macrophage

activation (97). High-glucose conditions induce macrophage

senescence and SASP factor secretion through NLRC4

phosphorylation, which further stimulates the NF-kB/Caspase-1
cascade through an IRF8-dependent pathway (98). Similarly, LPS

enhances Acsl1 promoter activity through NF-kappa B, CHREBP

and p65/RELA to promote inflammation (91). Studies have shown

that the mechanical sensitivity of macrophages to high glucose is

also increased. With increasing substrate stiffness, the expression of

the related proinflammatory genes TLR4/LPS also increases, and

the secretion of TNF-a increases (99).
3.2 Effects of hyperlipidemia on immunity

3.2.1 Effects of hyperlipidemia on T cells
Cholesterol plays a major role in the composition and fluidity of

the cell membrane and affects the differentiation and function of

immune cells (100). Cholesterol metabolism is associated with T-cell

proliferation (101), and sterol response element binding protein

(SREBP) on the ER membrane of T cells is a sensor for T cells to

sense lipids. Under low-fat conditions, it binds to SREBP cleavage
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activator protein (SCAP) and enters the nucleus, where it increases

the expression of synthetic-related enzymes, such as

hydroxymethylglutaryl (HMG)-CoA reductase (HMGCoR) and

low-density lipoprotein receptor (LDLR), and also enhances

endogenous cholesterol uptake. Under high-fat conditions, the

insulin-inducible gene protein (INSIG) present in the ER

membrane colonizes SREBP-SCAP to the ER. When the level of

intracellular cholesterol is too high, liver X receptors are activated,

which inhibit enzymes related to cholesterol synthesis and reduce

exogenous cholesterol uptake (102, 103). After organ transplantation,

normal cholesterol homeostasis is disrupted and serum cholesterol

levels are elevated (104, 105). Several human and mouse studies have

shown that increased serum cholesterol disrupts cholesterol

metabolic homeostasis and enhances TCR activity, Treg cells

development, and T-cell proliferation (106, 107). An appropriate

reduction in cholesterol leads to a decrease in the proliferation and

function of T cells and the secretion of IL-10 and IL-12 (108). It also

changes Th1 cells to Th2/Th3 cells and increases TGF-b1 in

circulation, the spleen and lesions (109). Previous studies have

shown that the expression of FOXP3 in splenic Treg cells is

upregulated under the influence of high cholesterol, but the

proliferation of Treg cells does not inhibit the inflammation caused

by T-cell activation. A likely reason is that the suppressive effect of

Treg cells is limited by preactivated effector cells (106, 110, 111).

However, depletion of FOXP3+ Tregs further aggravates

hyperlipidemia and atherogenic inflammation (112). In contrast to

previous findings, a recent study suggests that hypercholesterolemia

mediates the inhibition of iTreg (inducible) cell differentiation in vitro

by activating HIF-1a to inhibit Foxp3 and target it for proteasomal

degradation. Cholesterol triggers mtROS and inhibits degradation,

which strongly induces HIF-1a. This activation mode impairs the

inhibitory activity of nTregs by inducing mitochondrial oxidative

stress, damaging the mitochondrial structure, and inhibiting the

differentiation of nTreg cells (113).

The protein levels of ABCG1 and ABCA1 are increased in cells

in high-cholesterol environments, and cholesterol inhibits the

degradation of these two proteins through the ubiquitin–

proteasome pathway, which leads to their continuous increase in

cellular content (114). These two proteins are involved in the

reverse transport of intracellular cholesterol to the liver. The

upregulation of the ABCG1 protein is suggested to be the cause

of Treg cells suppression according to some studies. If the

expression of cellular ABCG1 is too high, it leads to the

downregulation of the p-STAT5/Foxp3 pathway in thymic Treg

cells and the inhibition of Treg cells proliferation (115).

The functional activation of thymic TCRs and altered

thymocyte differentiation, as well as Treg cells proliferation, have

been observed in several studies with genotypes lacking the

encoding ABCG1. This deficiency inhibits mTOR signaling and

atherosclerosis (116, 117). Additionally, in the case of TCR

stimulation, the loss of ABCG1 in CD4 T cells leads to excessive

proliferation in vitro, which may cause a severe immune response

(117). These results may explain why, in the context of

hyperlipidemia, the activation of Treg cells was promoted but did

not significantly suppress the inflammatory response.
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LXR, a type a and b transcription factor, regulates T-cell

proliferation and TCR activity by synthesizing oxysterols and

activating the LXR transcriptional network to drive cholesterol

efflux and reduce cholesterol influx and synthesis (101, 118).

Current studies have shown that high cholesterol conditions

increase the expression of LXR in T cells and that the activation

of LXR leads to reverse cholesterol transport and inhibits the

proliferation and cell cycle progression of T cells; additionally,

LXR regulates T-cell activation through the ABCG1 pathway

(101). In another study, overexpression of LXR a and LXR b led

to a decrease in IL-17, which in turn led to a decrease in Th17.

Specifically, LXR activated Srebp-1a and Srebp-1c, and srebp-1

activation affected Th17 differentiation through physical

interactions with Ahr and suppressed the expression of related

genes. In general, depletion of these cells effectively inhibited EAE

development (119, 120). Other studies have shown that LXR

activation can stimulate the transcription of the CD4+ T

glycosphingolipid biosynthetic enzyme UGCG and enhance the

lipid raft profile of the T plasma membrane, but additional related

signaling pathways are also worth exploring (118). It has also been

reported that LXR b activation inhibits GSK3b phosphorylation,

downregulates TCF-1 in CD4+ T cells, inhibits Tfh cells

differentiation, and attenuates the GC response and antigen-

specific IgG production (121).

Triglycerides can stimulate the proliferation of CD4 T cells, the

expression of IL-17 and IFN-g, and the differentiation of Th1 and

Th17 cells in vitro (122). Furthermore, vLDL in hyperlipidemic

patients may induce atypical Th1 pathway activation through the

CD36 pathway (123).

3.2.2 Effects of hyperlipidemia on B cells
Previous studies have shown that diets high in cholesterol

reduce B cell-mediated humoral immunity. Under high

cholesterol conditions, 25-HC production is increased, and 25-

HC can reduce the ability of B cells to differentiate into plasma cells

by inhibiting SREBP2 gene expression and protein activation

followed by entry into the Golgi apparatus to function (124). A

cohort study revealed a strong inverse association between HDL

cholesterol and IgD expression in B cells including naive B cells

(125). Some studies have also shown that the expression of Tfr and

Tfh cells is increased under a high cholesterol diet, whereas B cells

are dependent on Trf to induce the expansion of Breg cells in the

presence of Tfh cells (126). A high cholesterol diet leads to an

increased risk of autoimmune diseases and the expansion of B cells.

The loss of LXRa and LXRb expression in CD11c+ APC could

facilitate this process by increasing Baff and April in the TNF family

because of a high-cholesterol diet, which leads to increased B-cell

proliferation (127). Additionally, high cholesterol disrupts the SDF-

1: CXCR4 axis in BM and promotes B-cell mobilization (128).

Under high-fat loading conditions, high-fat exposure and

inflammatory stimuli induce CD53 in vivo in the liver and

isolated primary hepatocytes. The transmembrane tetraspanins

CD53/TSPAN25/MOX44 mediate B-cell development and

lymphocyte migration to lymph nodes (129).
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3.2.3 Effects of hyperlipidemia on NK cells
In mice fed a high-cholesterol diet, the number of NK cells is

increased, and the expression of molecules related to NK cells

activation receptors, cytokines and effector molecules that play

cytotoxic roles is increased (130). Another study reported that lipid

accumulation inhibited the killing of NK cells by reducing c-Myc/

P300 and H3K27ac (131). In hyperlipidemic conditions, especially

hypertriglyceridemia, the expression of CD36 onNK cells is increased

and the PI3K-Akt-mTOR/FOXO1 signal transduction axis is

downregulated. Low mTOR activity represents low glycolysis/FAS

and reduced cell growth and function. Moreover, lipids express PD-

L1, TGF-b1, and NKG2D ligands to reduce NK activity (132).

3.2.4 Effects of hyperlipidemia on macrophages
Macrophages are important cells in hyperlipidemia and affect

atherosclerosis. They are also sensitive to different lipids and

differentially release inflammatory factors (133). Hyperlipidemia can

lead to an increase in the M1 proinflammatory phenotype and a

decrease in the M2 anti-inflammatory phenotype (134). Recent studies

have further addressed the effects of hyperlipidemia on macrophages.

One study suggested that excess intracellular cholesterol decreased

ABCA1 expression and the upregulation of ABCA5was themain cause

of cholesterol efflux (135). Another study reported that hyperlipidemia

can promote the restriction of PKCd isoform activation in

macrophages, which reduces its number and inflammatory response

in the arterial wall (136). Among the coactivated isoforms, PKCd
activation has a proapoptotic effect on monocytes/macrophages (137).

Hyperlipidemia promotes the activation of CD80+ macrophages,

which further promotes the development of NKT cells by increasing

CDd expression and accelerating early atherosclerosis (138). CD36

expression is increased in hyperlipidemic patients and can affect lipid

metabolism in macrophages (136). One possible mechanism is that

PCSK9 expression and CD36 expression increase inflammation (139),

but further studies are needed to investigate the role and mechanism

(140). Under hyperlipidemic conditions, the expression of

macrophage-activating ApoE can be initiated by miR-146-a-5p

vesicles, and miR-142-a-3p controls the transcription axis and

thereby inhibits inflammation (141). Recent studies on macrophage

immunity in hyperlipidemic heart failure have revealed that genes

associated with lipid transport are downregulated and glycolysis

and fatty acid synthesis are upregulated in myocardial resident

macrophages in hyperlipidemic heart failure models. Bmp2,

Cx3cl1 and Tlr6 were also found to be upregulated, which is

consistent with the activation of the NF-kB signaling cascade

according to GSEA. In contrast to previous studies, Car3 was

significantly downregulated in the cardiac macrophages of HFD-fed

mice (142). Under high-lipid conditions, ER stress induces IRE1a
activation, inhibits M2 polarization and enhances M1 polarization

(143). Furthermore, lipid overload is mediated through the

endoplasmic reticulum stress pathway. Studies on the macrophage–

cardiomyocyte regulatory axis reveal the potential effects of a variety of

inflammatory cytokines secreted by macrophages on cardiomyocytes,

especially on pathways such as hypertrophy, fibrosis, and

autophagy (144).
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3.2.5 Effect of hyperlipidemia on neutrophils
Hypercholesterolemia can induce an increase in neutrophils,

which is possibly due to stimulation of granulopoiesis, enhanced

bone marrow mobilization, and reduced peripheral clearance.

Increased numbers of neutrophils adhere to arteries via the

chemokines CCR1, CCR2, CCR5 and CXCR2 and cause early

atherosclerotic lesions (145). CXCR2 in hyperlipidemic patients

can aggravate brain damage caused by neutrophils after cerebral

ischemia (146). One study showed that high-fat conditioning can

stimulate splenic NOD1 and activate neutrophil recruitment,

activation and function (147). Other studies have shown that high

cholesterol disrupts the SDF-1:CXCR4 axis in the BM and

accelerates neutrophil mobilization (128).

3.2.6 Effects of hyperlipidemia on dendritic cells
Hyperlipidemia can induce the expression of PD-L1, TGF-b1

and NKG2D ligands in lipid-loaded DCs, which is related to NK cell

activation (132). In addition, hyperlipidemia can increase ox-LDL

and then activate retinoid X receptor a (RXRa) and IL-1b to

attenuate TSLP expression in cultured thymic epithelial cells

(TECs). This activation results in the suppression of LAP and

PD-L1 expression in DCs, which leads to defective Treg function

(148). Under hyperlipidemic conditions, an increase in ox-LDL can

lead to the activation of the TLR4/MyD88-NF-kB signaling

pathway in DCs and enhance their migration, maturation and

secretion of inflammatory cytokines (149). Hypercholesterolemia

causes rapid changes in DCS in the bone marrow, and unlike PDCS,

the spleen and lymph node cDC2 subsets accumulate lipids.

Although lipid-loaded cDC2s increase costimulatory molecule

expression and cytokine production, their ability to initiate naive

CD4 T cells is significantly impaired (150). Dyslipidemia inhibits

Toll-like receptor (TLR)-induced DC activation and related

inflammatory cytokine production, mainly because oxLDL

upregulation inhibits TLR-induced IL-12p40 production in

CD8a− DC subsets. Inhibition of this subset results in impaired

Th1 and enhanced Th2 responses (151). It has also been suggested

that the enhancement of CD11c+ dendritic cells is beneficial to the

function of CD4+ T cells under hyperlipidemic conditions (152).
3.3 Effects of amino acid metabolism on
immunity

Amino acid metabolism can regulate T-cell function by

regulating the mTOR signaling pathway. A variety of amino acids

can regulate mTOR activity and selectively activate mTORC1 and

mTORC2 to regulate T-cell differentiation. However, the general

control nonsuppressor 2 (GCN2) signaling pathway regulates T-cell

differentiation in a manner independent of amino acid activation

(153, 154). The same amino acids can also affect the immune

response through the PD-1/PD-L1 pathway. Glutathione can

activate PD-L1 in tumor cells to inhibit T-cell activity, and the

loss of PD-1 can induce immune tolerance (155, 156). In

tryptophan metabolism, dendritic cells expressing IDO can

increase the function of Treg cells through the tryptophan
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metabolism pathway (157). Amino acid metabolism disorders are

related to the occurrence of elevated uric acid. Studies have shown

that exposure to bacterial amino acid metabolism disorders can lead

to elevated uric acid, which in turn leads to gout. This metabolic

disorder leads to immune abnormalities in intestinal T cells through

the mTOR signaling pathway (158). Moreover, CD8-positive

memory T cells can clear ammonia and promote memory cell

development through urea and citrulline cycles (159). Studies on

cancer and psoriasis have revealed that the activation of GLS1,

which is the GLS isoform, enhances the Il17a promoter, promotes

the proliferation of Th17 cells, and leads to immune inflammation

and psoriasis. GLS loss is the cause of tumor immunosuppression

(160, 161). Homoarginine strongly regulates the actin cytoskeleton

of T cells by inhibiting myosin heavy chain 9 (Myh9) and thereby

affects the function of CD4 T cells. Homoarginine also inhibits the

proliferation of T cells and the migration of related chemokines

(162). In macrophages, the metabolism of some amino acids also

leads to the differentiation of M2 macrophages through the

influence of mitochondria (163).
3.4 Effects of bile acids on immunity

3.4.1 Effects of bile acid metabolism on T cells
Bile acids play an important role in metabolic homeostasis. The

Fxr, Shp, Lxr and Srebp1c genes, which are related to bile acid

metabolism, are closely related to inflammation and immune

hyperexcitability (164). 3-oxoLCA inhibits Th17 cell differentiation

by direct physical binding to its key transcription factor, retinol-related

orphan receptor gt (RORgt), while isoalloLCA enhances Treg

differentiation by producing mitochondrial reactive oxygen species

(mitoROS), which leads to increased FoxP3 expression. Isoallolca-

mediated Treg enhancement requires an intron-based FoxP3 enhancer,

the conserved noncoding sequence 3 (CNS3), which is a distinct mode

of action compared to previously identified Treg-enhancing

metabolites that require CNS1 (165). Microbial metabolites in the

gut can affect the systemic immune environment. Primary bile acids in

the gut are metabolized by microorganisms into secondary bile acids.

Deoxycholic acid (DCA) is the most abundant secondary bile acid in

the human body and largely reduces the proportion of CD8 cytotoxic T

cells and IFN-g-producing cells. The mechanism involves DCA

enhancing PMCA-mediated Ca efflux and reduces the intracellular

Ca concentration, whereas low intracellular Ca inhibits NFAT2 signal

transduction and inhibits CD8 T cell effector function (166). Dietary

and microbial factors can affect the composition of the intestinal BA

pool, affect the BA-VDR axis and regulate the expression of the

transcription factor RORg in colonic FOXP3 regulatory T cells

(Tregs). RORg+ Tregs play a role in anti-inflammatory effects and

inhibit excessive immune responses during the inflammatory response

(167). GVHD also alters the BA pool and shows a decrease in most bile

acids and an increase in ursodeoxycholic acid (UDCA) and intestinal

Nr1h4 mRNA (encoding FXR) but a decrease in Gpbar1 (encoding

TGR5). These changes affect the transcription and antigen presentation

capacity of intestinal T cells. However, the effect on systemic T-cell

expansion is not clear (168). T cell-induced inflammation reduces the
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abundance of microbial-derived bile saline hydrolase (BSH) genes and

increases the expression of FXR. This effect on the BA pool leads to an

increase in bile acids, such as chenodeoxycholic acid (CDCA), which

promote FXR receptor activation and a decrease in DCA that inhibits

FXR activation. In this study, ursodeoxycholic acid (UDCA) was found

to reduce FXR activation, effector T-cell activation and graft-versus-

host disease (59, 169). UDCA and DCA disrupt the intracellular Ca

concentration through mechanisms that inhibit Ca uptake by

mitochondria and increase cytosolic Ca, which leads to STIM1 and

ORAI1 uncoupling and impairing store-operated Ca+ entry. This

process is essential for NFAT signaling and T-cell activation, which

in turn decreases T-cell activation (170). Studies have shown that the

loss of MDR1 (ABCB1) function in the inflammatory response

indirectly leads to the upregulation of Teff cells, which secrete

cytokines and aggravate the inflammatory response. Mdr1 functions

in the presence of conjugated bile acid (CBA), which alleviates

oxidative stress and maintains immune balance in Teff cells (171).

Unconjugated glycocholic acid (LCA) can block the activation of Th1

cells. The mechanism may involve the activation of the vitamin D

receptor (VDR) after increasing the LCA concentration, after which the

phosphorylation of ERK-1/2 is inhibited to reduce the activation of Th1

cells (172). IsoalloLCA is an isoform of LCA that is transformed in

intestinal bacteria. It can induce the mitochondrial production of

mtROS and then induce NR4A1 recruitment to the Foxp3 gene

promoter to stimulate Foxp3 gene expression and enhance iTreg cell

differentiation (173). TCA can inhibit the activity of CD3+CD8+ T

cells and reduce their number both in vitro and in vivo, but the specific

mechanism still needs to be explored (174). While 3-oxoLCA and

isoLCA inhibited Th17 cell differentiation in vitro, DCA and LCA

inhibited Th17 cell differentiation only in vivo (175).
3.4.2 Effects of bile acid metabolism on
macrophages

SIRT5 is an important metabolic regulator. Recent studies have

shown that the absence of SIRT5 leads to an increase in bile acids,

mainly taurocholate (TCA), in hepatocytes and increased TCA

leads to the M2-type transformation of macrophages (176).

Chenodeoxycholic acid (CDCA) was determined to inhibit

macrophage M2 transformation in an allograft model (177). In

another study, the anti-inflammatory effect of ursodeoxycholic acid

(UDCA) was partially mediated through FXR activation and NF-kB
inhibition, which led to macrophage transformation from M1 to

M2 (178). During the process of macrophage activation, taurine

cholate (TLC) downregulates several genes related to early

macrophage activation and upregulates several genes that

suppress immunity and stabilize macrophages. These findings

indicate that TLC has multiple effects on macrophages and its

effect on macrophages needs further study (179). DCA and CDCA

can significantly increase the level of NLRP3 in macrophages. This

activation is dependent on calcium influx into the mitochondria,

which in turn promotes the transformation of macrophages to an

inflammatory type. However, overexpression of FXR inhibited

NLRP3 expression, which contradicts the activation of NLRP3 by

FXR ligands (180). Moreover, previous studies have suggested that

the activation of FXR can aggravate the immune response (59),
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which suggests that the role of FXR needs to be further studied. It

has also been reported that LCA, DCA, 3-oxoLCA and isoLCA can

activate TGR5 and promote the transformation of M2

macrophages, which inhibits the activation of Th17 cells and the

inflammatory response (175).

3.4.3 Effects of bile acid metabolism on NK cells
Taurocholic acid (TCA) reduces the activity and number of NK

cells in vivo and in vitro and thereby inhibits their response to TNF-

a; however, the specific mechanism, which may be related to

NKG2D expression, still deserves further study (174). The

presence of TLC has been found to inhibit the gene expression of

chemokines involved in NK cell migration, which also requires

macrophage activation (179).
4 Effects of MetS on organ transplant
rejection

After transplantation and due to a high-energy diet, that

supplies needed macronutrients for recovery, side effects of

immunosuppressive drugs, and reasons for reduced consumption,

the incidence of obesity, nonalcoholic liver cirrhosis and metabolic

disorders is significantly greater than that in the general population.

Hyperlipemia, diabetes mellitus, and abnormal amino acid

metabolism occur in most patients, and MetS is considered an

important factor affecting the prognosis of transplant patients (53,

181, 182). Previous studies have demonstrated that patients

developing MetS fol lowing cardiac, hepatic , or renal

transplantation exhibit elevated inflammatory markers compared

to non-MetS recipients. This systemic chronic inflammation,

intrinsically linked to allograft rejection, mediates endothelial

injury and exacerbates oxidative stress. Consequently, these

pathophysiological alterations result in an elevated risk of

cardiovascular events and accelerated allograft injury (Figure 3)

(183–186).
4.1 Lipid metabolism and effects of
transplantation

The most important effect of lipid metabolism after

transplantation is an increase in cardiovascular disease (CVD)

risk, and hyperlipidemia after transplantation is more likely to

lead to coronary atherosclerosis (54). This particular vasculopathy

is characterized by progressive narrowing of the graft vessel, which

occurs after endothelial transplantation-related injury. Owing to the

chronic immune response, the activation and interaction of related

immune cell cascades leads to endothelial cell remodeling.

Hyperlipidemia can also aggravate vascular stenosis by affecting

endothelial cell function through a reduction in nitric oxide (NO)

availability (187). The high incidence and serious consequences of

CVD after liver transplantation make it a high concern among

postoperative complications. Hyperlipidemia after a liver transplant

is caused mainly by immunosuppressants (188). The relationship
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between hyperlipidemia and atherosclerosis has been established by

many studies (136, 145), and the current consensus is to protect the

cardiovascular system and reduce CVD by lowering lipids (189). In

a study of heart transplantation, the levels of triglycerides and

ceramides in heart tissue (at the level of cardiomyocytes) increased

after transplantation, and lipid accumulation in cardiomyocytes led

to a reduction in both systolic and diastolic heart function (190).

Current studies on effects of hyperlipidemia on immune

mechanisms have shown that high cholesterol promotes the

proliferation of effector immune cells and enhances inflammation

and rejection after transplantation (100, 106, 107, 128).

Additionally, the pathways by which helper T cells and Treg cells

control inflammation and proliferation are inhibited (113, 115,

117). This effect is achieved mainly through the activation or

inhibition of LXR, ABCG, CD36, PCSK9 and other pathways

under hyperlipidemic conditions (101, 115, 119, 123, 139, 140).

Upon rejection, the induced lipid antigen-presenting CD1 protein

and specific T cells that are predicted to recognize CD1b and CD1c

proliferate vigorously and infiltrate the graft (191). Hyperlipidemia

exacerbates allograft rejection by promoting macrophage

polarization toward the pro-inflammatory M1 phenotype while
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suppressing M2 differentiation, mediated through endoplasmic

reticulum stress and downregulation of ABCA receptor

expression (135, 139, 143). Concurrently, upregulated CD36

expression directly enhances macrophage cytotoxic activity,

further amplifying rejection (139). Conversely, dendritic cell-

mediated immune rejection is potentiated by elevated ox-LDL

levels and increased CD11c+ dendritic cell populations, which act

via both direct and indirect mechanisms (148, 152). This dendritic

cell activation cascade drives B cell proliferation, thereby

intensifying immune-mediated graft injury (127). This series of

studies revealed that the influence of lipids on immune rejection is

significant and that their related targets constitute future research

directions for novel immunosuppressants.
4.2 Effects of glucose metabolism on
transplantation

The incidence of diabetes after liver transplantation can be as high

as 30%. Early hyperglycemia can be caused by stress due to surgery,

postoperative infection, or steroid hormone use. Abnormal glucose
FIGURE 3

Transplantation, metabolism and immunity interact in different ways in the body. (A) The presence of the graft introduces alloantigens to the recipient
immune system, which allows the immune system to specifically recognize and kill the graft cells. Suppression of the host's immune destruction of the graft
is the most important problem in the late stage of transplantation. (B) The activated immune system increases the release of the cytokines TNF alpha, IL-6,
and IFN-gamma; these cytokines cause immune system disorders and increase the number of inflammatory cells. This inflammation affects the molecular
pathways related to metabolism and promotes the occurrence of metabolic disorders. These metabolic abnormalities further induce inflammatory changes
in the immune system, disrupt the immune balance and affect the basic functions of the immune system. (C) Stress, immunosuppressive drugs and diet after
transplantation directly or indirectly lead to the abnormal metabolism of lipids, sugars, amino acids and bile acids. This metabolic abnormality in turn affects
the survival of transplant patients through cellular lipid accumulation, chronic inflammation, and endothelial remodeling.
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metabolism for more than 45 days is considered new-onset diabetes,

which is related to the use of immunosuppressive agents and is also

known to lead to CVD (188, 192). A clinical study revealed that

posttransplant diabetes mellitus (PTDM) does not affect graft survival,

whereas PTDM damages the kidney, reduces the renal function of the

transplant recipient, increases blood lipids, and affects blood pressure,

which affects the long-term survival of patients (55). Post-transplant

diabetes abnormalities are also associated with CVD, and the presence

of PTDM increases the relative risk of death from CVD in transplant

patients by 1.5-3 times (193). Systemic insulin resistance, which is

caused by immunosuppressive agents, occurs after transplantation (2).

PTDM can lead to lipid accumulation in cardiomyocytes and then to

the development of cardiomyopathy before coronary heart disease;

however, this abnormal metabolism can be alleviated by metformin

treatment (190). In addition, an increase in the level of macrophage-

activated soluble CD163 (sCD163) was detected after transplantation.

An increase in this marker implies disordered carbohydrate and lipid

metabolism and increased inflammation, which is associated with the

progression of MetS after transplantation and affects the survival of

transplant patients (194). The occurrence of PTDM increases the

infection rate of hospitalized patients, especially the CMV infection

rate, which is significantly higher than that of transplant patients with

stable blood glucose. Diabetes is a strong predictor of donor cardiac

rejection and death, but other diabetes-related complications, such as

microangiopathy after PTDM, are comparable to those of

nontransplant diabetes (195). Current studies on diabetes and

transplantation have shown that hyperglycemia not only promotes

or inhibits immune cells in general but also has different effects on

immune cells under different conditions. For example, hyperglycemia

reduces the function of memory T cells under certain conditions (73),

downregulates T-cell immunity (76), and both promotes and inhibits B

cells (79, 81). Hyperglycemia exacerbates transplant rejection by

augmenting cytokine production in T cells through upregulation of

the MAPK signaling pathway (77). However, studies on macrophages

have generally shown that hyperglycemia promotes macrophage

transformation to the M1 phenotype, which is a proinflammatory

response (82–84). Research pathways have focused mainly on PI3K/

AKT, CD28, MAPK, STAT, NF-kB and epigenetics. Mechanistically,

hyperglycemia drives macrophage phenotypic switching via

coordinated upregulation of Notch, SMYD3, MAPK, and IRF8

pathways coupled with downregulation of Arg1 and Mrc1 pathways.

This transcriptional reprogramming enhances macrophage activation

within the allograft microenvironment, potentiating their pro-

inflammatory and cytotoxic functions to aggravate immune-

mediated graft injury (74, 75, 82, 85, 91, 93, 98). Contact-related

research on blood sugar and transplant rejection is also limited, and

research on the immunosuppressive mechanism is not clear.
4.3 Effects of amino acid metabolism on
transplantation

In a renal transplant study, the concentrations of BCAA

(leucine, isoleucine, and valine) in patients who developed PTDM

were consistently greater than those in posttransplant non-PTDM
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subjects, and the concentrations of branch-chain amino acids and

tyrosine in posttransplant subjects were greater than those in

pretransplant subjects. The elevation of these amino acids was

highly correlated with the development of posttransplant diabetes.

This finding also indicates the possibility of insulin resistance but

the related mechanism needs further study (196). Other studies

have shown that the low amino acid content after transplantation is

the cause of transplantation stress. The main reason is that the

activation of ERK and AKT promotes the activation of mTORC1

and the consumption of amino acids in serum, whereas the

inhibition of this pathway stabilizes stress after transplantation

(197). Pretransplant sarcopenia predicts a decrease in amino acid

levels after transplantation, which leads to a poor outcome after

transplantation and suggests that protein and amino acid

supplementation after transplantation is an important nutritional

requirement (198–200).

The direct effect of amino acids on the immune system through

the PD-1/PD-L1 pathway is also a major research direction of

transplant rejection. Determining whether deficiency or an increase

in related amino acids has a protective or destructive effect on

transplant patients needs to be further studied. However, according

to current studies, a stable serum amino acid balance still has a

protective effect on transplantation (155–157, 163, 197).
4.4 Effects of bile acid metabolism on
transplantation

Disorders in bile acid levels after transplantation are another

important factor affecting survival time after organ transplantation.

The inflammatory response after transplantation disrupts the

balance of bile acids, increases the content of bile acids that

promote immune rejection, and exacerbates the rejection of

transplantation (59, 169). Prophylactic bile acid therapy was

found to reduce the severity of acute graft-versus-host disease and

inhibit intestinal cell apoptosis (168). In nonalcoholic

steatohepatitis studies, dysregulation of bile acids was found to

lead to hepatocyte apoptosis via DR5. Deoxyursodeoxycholic acid

(NorUDCA) stabilizes this metabolic disorder and improves

symptoms by downregulating the FXR receptor (201). The

content of fecal bile acids after transplantation is related to the

prognosis of patients, especially the risk of future infection. The type

and content of bile acids can determine the mucosal immune

capacity and resistance of pathogens to antibiotics (202).

In bile acid metabolism, the presence of secondary bile acids,

such as 3-oxoLCA, DCA, and CDCA, reduces inflammation and

rejection (165, 166). However, it is not known whether the resulting

immunosuppression is specific and whether such use may aggravate

posttransplant infections or further aggravate disorders of

carbohydrate and lipid metabolism. However, the role of the

related receptor FXR and its ligands in immunity is still

controversial, which also makes bile acid metabolism a hot topic

in the research of posttransplantation metabolism.

Current studies have shown that the main response caused by

bile acid pool disorders in MetS patients after transplantation is to
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1580369
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Tao et al. 10.3389/fimmu.2025.1580369
promote immunity, and the treatment of bile acid disorders

improves GVHD (59, 168, 169); however, studies in which

ursodeoxycholic acid and NorUDCA are used to improve this

disorder of bile acid metabolism still have limitations (59, 201).

Disruption of the BA pool reduces BSH abundance and upregulates

FXR expression, thereby promoting T cell expansion and driving a

pro-rejection phenotypic shift (59, 169). Concurrently, loss of

MDR1 function amplifies oxidative stress in effector T cells,

exacerbating immune-mediated rejection (171). Furthermore,

elevated levels of CDCA and DCA, coupled with reduced UDCA,

suppress M2 macrophage polarization while promoting M1

polarization. This phenotypic reprogramming enhances

macrophage-mediated pro-inflammatory activity, thereby

aggravating allograft injury (178). In the future, more research is

needed to s tab i l i z e b i l e ac id di sorders and reduce

transplant rejection.
5 Management of MetS after
transplantation

5.1 The impact of immunosuppressants on
MetS

5.1.1 corticosteroids
Glucocorticoids exert the most profoundmetabolic impact in post-

transplant patients, primarily through direct impairment of

postprandial tissue glucose uptake, promotion of lipolysis, and

elevation of serum triglycerides and free fatty acids. These

mechanisms collectively exacerbate insulin resistance, leading to

glucose intolerance and dyslipidemia (203). Furthermore, chronic

glucocorticoid administration induces hypertension via fluid

retention and endothelial dysfunction. Notably, while discontinuation

mitigates metabolic disturbances, it concomitantly elevates rejection

risk due to rebound immune activation (204).

5.1.2 Mammalian target of rapamycin inhibitors
Mammalian target of rapamycin inhibitors (mTOR inhibitors)

predominantly disrupt lipid metabolism in post-transplant patients

by elevating circulating triglycerides and free fatty acids. This

metabolic perturbation is mediated through impaired APOB100

degradation, leading to elevated triglyceride accumulation (205).

Furthermore, mTOR inhibitor administration contributes to insulin

resistance and diabetes pathogenesis, primarily mediated through

dual mechanisms: interference with insulin signaling transduction

pathways such as the IRS-1/PI3K/Akt cascade and suppression of

pancreatic b-cell insulin secretory capacity (206–208).

5.1.3 Calcineurin inhibitors
Calcineurin inhibitors (CNIs), such as cyclosporine,

predominantly disrupt l ipid metabolism by inducing

hyperlipidemia, marked by significant elevation of total

cholesterol, low-density lipoprotein cholesterol (LDL-C), and

triglycerides (209). In contrast, tacrolimus exhibits a higher

diabetogenic propensity, primarily attributable to elevated FK506-
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binding protein 12 (FKBP12) levels in pancreatic b-cells, which
directly suppresses insulin secretion (210, 211).

5.1.4 Strategies for immunosuppressants
adjustment

In the context of glucose dysregulation induced by

immunosuppressive agents, glucocorticoid therapy is recognized to

promote hyperglycemia; however, steroid withdrawal has not been

shown to reduce the risk of PTDM (212). Studies indicate that

maintenance therapy combining CNIs with glucocorticoids achieves

an optimal balance between PTDM risk and acute rejection prevention.

Notably, switching from tacrolimus to cyclosporine within CNI

regimens significantly improves glycemic control without increasing

acute rejection rates (213). Furthermore, concomitant use of mTOR

inhibitors with CNIs does not elevate PTDM risk. mTOR inhibitor co-

administration allows CNI dose reduction, thereby ameliorating

glucose metabolism disturbances (214).

In transplant recipients exhibiting persistent hypercholesterolemia

under CNI therapy, studies demonstrate that substituting cyclosporine

with tacrolimus represents an effective therapeutic strategy (215).

Hyperlipidemia induced by mTOR inhibitor administration is highly

prevalent. If lipid levels remain suboptimal despite lipid-lowering

agents, dose reduction of mTOR inhibitors and/or substitution with

CNIs or alternative immunosuppressants is clinically warranted (188).
5.2 Diet and medication management

The evaluation of different risk factors in patients with MetS

should achieve different goals with different strategies (216).

Presently, the treatment of MetS is based on two main

approaches as follows: drug management and diet management.

Traditional dietary management models mainly include Med DIET,

DASH, vegetarian, low-fat, low-carbohydrate and other models,

and exercise can reduce the incidence of MetS after transplantation

(Table 2). This comprehensive management helps maintain

metabolic stability in patients with MetS (213, 217). The second

type of drug management involves the use of statins, insulin, and

oral antidiabetic drugs to control MetS (Table 3) (218).

5.2.1 Glycemic management
PTDM requires individualized therapy with a combination of

diet, insulin, and oral hypoglycemic agents. Metformin stands out

as an oral drug because it does not bind to proteins and remains

stable in terms of excretion. When GLP-1 receptor agonists are

used, their interaction with immunosuppressive agents should be

considered. Studies have shown that the use of vildagliptin is safer

after transplantation and that GLP-1 inhibitors are more suitable

for obese patients. Insulin is more suitable for oral drugs when

blood glucose cannot be controlled (53, 185, 213). The replacement

of immunosuppressive agents is not the first choice for PTDM.

Current studies have shown that the effect of replacing

immunosuppressive agents is limited, and more long-term and

comprehensive studies are needed. This therapy should be

considered only for severe drug-induced PTDM reactions (213).
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1580369
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Tao et al. 10.3389/fimmu.2025.1580369

Frontiers in Immunology 17
5.2.2 Management of hyperlipidemia
Statins have been shown to be effective and well tolerated,

fibrates are effective but partially nephrotoxic, and ezetimibe has

been shown to be safe in liver transplant recipients (185). However,

statins are metabolized mostly by cytochrome P450-3A4 and so

calcineurin inhibitors may be reduced. For persistent

hyperlipidemia, a change in the use of immunosuppressive

agents, such as cyclosporine, to tacrolimus or a reduction in the

dose of mTOR should be considered (188, 219). Fish oil omega-3

fatty acids are partially effective in lowering blood lipids in isolated

hypertriglyceridemia, and cholesterol levels should be monitored

continuously during treatment with fish oil (185, 188).
5.2.3 Weight management
Weight management advocates a combination of diet and

exercise rather than the use of drugs because weight-loss drugs can

antagonize immunosuppressive agents in certain pathways.

Bariatric surgery should be considered in special cases when it is

difficult to reduce weight with diet and exercise. Overall,

weight loss significantly reduces the mortality of transplant

patients (53, 220).
TABLE 2 Dietary management of MetS.

Dietary
patterns

Specific
measures

Expected
Results

References

Mediterranean
Diet

• 35%-45% from fat,
mainly unsaturated
fatty acids; 35%-
45% water and
15%-18% protein

• Reduce the
incidence of
cardiovascular
disease and
T2DM; reduce the
blood pressure

(217, 222)

The
DASH Diet

• 27% from fat, 55%
from carbohydrate,
18% from protein,
and some dietary
cholesterol intake

• Reduce blood
pressure, reduce
the incidence of
T2DM, and
protect the heart

Ketogenic Diet • 20% to 30% from
protein, <50%
carbohydrate intake,
and 30% to 70%
fatty acid intake

• Decrease LDL
and triglyceride;
Increase HDL

Plant-
based Diet

• Eat plant-based
foods and reduce
animal-based foods

• Reduce blood
pressure; reduce
the incidence of
coronary
heart disease
TABLE 3 Pharmacologic management of MetS.

Type Management
style

Drugs Advantages Disadvantages References

Blood glucose
management
after transplantation

Recommended level of control:Hba1c <7% (53 mmol/mol); no retinopathy or proteinuria;

Hypoglycemic Agents Insulin • Early control
• Intravenous injection followed
by subcutaneous injection

(185, 220,
223, 224)

GLP-1 • More suitable for patients with
hyperglycemia and obesity
• helps to reduce body weight

Metformin • Adverse effects were mild • Caution in patients with
renal failure

Sulfonylureas • High safety • drug interactions;
• Cause low blood sugar

Glinides • High safety

SGLT-2 inhibitors • Causes hypovolemia
• Increases the risk of
genitourinary infections

Thiazolidinediones • High safety

Replacement of
immunosuppressive
drugs

Cyclosporine
replace Tacrolimus

• Reduce the incidence of PTDM • Not as first-line treatment
• It may affect
immunosuppression and
should only be considered
in severe cases

mTOR inhibitor
replace Tacrolimus

Lipid management
after transplantation

Recommended level of control: LDL-C<100 mg/dL and triglyceride concentration <250 mg/dL

Lipid-lowering Agents Statins • Well tolerated and effective • Muscle toxicity and
liver toxicity

(185, 219,
225, 226)

(Continued)
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5.3 Significance of MetS management

The benefits of effective management of MetS are unequivocal

in both mitigating immune-mediated rejection and sustaining

metabolic homeostasis. Maintaining circulating glucose, lipids,

and amino acids within optimal ranges in transplant recipients

reduces the proliferative and differentiation capacity of immune

cells, stabilizes the immune microenvironment, and attenuates

chronic inflammatory responses. Furthermore, these sustained

beneficial effects may reduce the immunosuppressive burden and

improve long-term quality of life by preventing metabolic toxicity-

induced complications.
6 Conclusions and perspectives

The mechanisms underlying the relationship between

metabolic syndrome (MetS) after transplantation and immune

tolerance remain unclear, and its impact on immune system

function has yet to be definitively confirmed by many studies.

Current immunotherapy regimens have notable limitations. Low

doses are often ineffective, while high doses may lead to

complications such as tumors, infections, and MetS. As a result,

the search continues for treatments that not only promote

metabolic stability and reduce complications but also induce

immune tolerance and improve long-term quality of life for
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transplant recipients (221). One promising approach is the use

of the new generation of lipid-lowering drugs, such as PCSK9

inhibitors, which have been shown to reduce blood lipids

while simultaneously inhibiting immune rejection in heart

transplantation (139). Additionally, PD-1 has been identified as

a key player in both graft rejection and amino acid regulation (155,

156). Several new nanomaterials targeting metabolic pathways

are being developed to address post-transplant complications,

and innovative 3D printing materials are emerging as potential

tools in the management of graft rejection (221). Furthermore, the

role of microRNAs in MetS and graft rejection represents an

exciting avenue for future research. Therapeutic strategies

aimed at balancing bile acids and amino acids to alleviate

systemic stress are still under investigation, and their potential

applications could offer significant benefits for transplant patients

in the future.
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et al. Virus-induced interferon-g Causes insulin resistance in skeletal muscle and derails
glycemic control in obesity. Immunity. (2018) 49:164–77.e6. doi: 10.1016/
j.immuni.2018.05.005

76. Tsai S, Clemente-Casares X, Zhou AC, Lei H, Ahn JJ, Chan YT, et al. Insulin
receptor-mediated stimulation boosts T cell immunity during inflammation and
infection. Cell Metab. (2018) 28:922–34.e4. doi: 10.1016/j.cmet.2018.08.003

77. Martinez N, Vallerskog T, West K, Nunes-Alves C, Lee J, Martens GW, et al.
Chromatin decondensation and T cell hyperresponsiveness in diabetes-associated
hyperglycemia. J Immunol. (2014) 193:4457–68. doi: 10.4049/jimmunol.1401125
frontiersin.org

https://doi.org/10.1172/JCI117936
https://doi.org/10.1038/nm1166
https://doi.org/10.1038/nature01137
https://doi.org/10.1073/pnas.91.11.4854
https://doi.org/10.2337/diabetes.51.10.2929
https://doi.org/10.2174/187221411799015372
https://doi.org/10.2174/187221411799015372
https://doi.org/10.1016/j.atherosclerosis.2015.04.814
https://doi.org/10.1016/j.atherosclerosis.2015.04.814
https://doi.org/10.1007/s12020-016-1132-1
https://doi.org/10.3390/jcm8122033
https://doi.org/10.1016/j.cmet.2010.04.012
https://doi.org/10.1080/19490976.2024.2345134
https://doi.org/10.1177/0192623313508481
https://doi.org/10.1001/jama.286.3.327
https://doi.org/10.1038/nature21363
https://doi.org/10.1038/nri3446
https://doi.org/10.1161/CIRCULATIONAHA.118.033714
https://doi.org/10.1161/CIRCULATIONAHA.118.033714
https://doi.org/10.1016/j.tem.2017.11.002
https://doi.org/10.1038/nrd2619
https://doi.org/10.1016/j.cmet.2013.01.003
https://doi.org/10.1073/pnas.0804437105
https://doi.org/10.1073/pnas.0804437105
https://doi.org/10.1016/j.cmet.2016.05.005
https://doi.org/10.1038/nature12820
https://doi.org/10.1038/ncomms8629
https://doi.org/10.1016/j.jacl.2019.01.011
https://doi.org/10.1016/j.trre.2013.12.004
https://doi.org/10.1093/ndt/gfy151
https://doi.org/10.3390/nu16101520
https://doi.org/10.3390/biology12091185
https://doi.org/10.1097/MD.0000000000001421
https://doi.org/10.21873/invivo.12197
https://doi.org/10.1038/s41564-024-01617-w
https://doi.org/10.1016/j.jhep.2010.01.040
https://doi.org/10.1111/j.1365-2796.2010.02288.x
https://doi.org/10.1186/s12887-022-03344-9
https://doi.org/10.3389/fnut.2025.1508767
https://doi.org/10.1038/s41577-020-00478-8
https://doi.org/10.1053/j.ajkd.2006.04.078
https://doi.org/10.1016/j.healun.2006.06.012
https://doi.org/10.1016/j.healun.2007.01.020
https://doi.org/10.1097/TP.0b013e3182398058
https://doi.org/10.1016/j.smim.2011.08.017
https://doi.org/10.1111/hepr.12642
https://doi.org/10.1016/j.cmet.2006.10.002
https://doi.org/10.1210/er.2015-1084
https://doi.org/10.1210/er.2015-1084
https://doi.org/10.2337/db21-0209
https://doi.org/10.2337/db21-0209
https://doi.org/10.4049/jimmunol.180.7.4476
https://doi.org/10.4049/jimmunol.180.7.4476
https://doi.org/10.1016/j.immuni.2018.05.005
https://doi.org/10.1016/j.immuni.2018.05.005
https://doi.org/10.1016/j.cmet.2018.08.003
https://doi.org/10.4049/jimmunol.1401125
https://doi.org/10.3389/fimmu.2025.1580369
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Tao et al. 10.3389/fimmu.2025.1580369
78. Pham TD, Chng MHY, Roskin KM, Jackson KJL, Nguyen KD, Glanville J, et al.
High-fat diet induces systemic B-cell repertoire changes associated with insulin
resistance. Mucosal Immunol. (2017) 10:1468–79. doi: 10.1038/mi.2017.25

79. Zhai X, Qian G, Wang Y, Chen X, Lu J, Zhang Y, et al. Elevated B cell activation
is associated with type 2 diabetes development in obese subjects. Cell Physiol Biochem.
(2016) 38:1257–66. doi: 10.1159/000443073

80. Liu B, Hu Y, Wu Q, Zeng Y, Xiao Y, Zeng X, et al. Qualitative and quantitative
analysis of B-cell-produced antibodies in vitreous humor of type 2 diabetic patients
with diabetic retinopathy. J Diabetes Res. (2020) 2020:4631290. doi: 10.1155/2020/
4631290

81. Pal A, Lin CT, Boykov I, Benson E, Kidd G, Fisher-Wellman KH, et al. High fat
diet-induced obesity dysregulates splenic B cell mitochondrial activity. Nutrients.
(2023) 15(22):4807. doi: 10.3390/nu15224807

82. Edgar L, Akbar N, Braithwaite AT, Krausgruber T, Gallart-Ayala H, Bailey J,
et al. Hyperglycemia induces trained immunity in macrophages and their precursors
and promotes atherosclerosis. Circulation. (2021) 144:961–82. doi: 10.1161/
CIRCULATIONAHA.120.046464

83. Torres-Castro I, Arroyo-Camarena ÚD, Martıńez-Reyes CP, Gómez-Arauz AY,
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147. Fernández-Garcıá V, González-Ramos S, Avendaño-Ortiz J, Martıń-Sanz P,
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