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Background:Mitophagy has been implicated in the pathogenesis of acutemyeloid

leukemia (AML), yet its precise molecular mechanisms remain poorly understood.

Understanding the roles of mitophagy-related genes (MRGs) may provide new

insights into AML classification, prognosis, and therapeutic response.

Methods: We analyzed 72 MRGs using three independent AML datasets (TCGA-

LAML, GSE24395, and GSE146173). Consensus clustering based on MRG

expression was used to identify AML molecular subtypes. Differentially expressed

genes (DEGs) common toAML subtypes andGSE24395were identified. Prognostic

genes were screened using univariate Cox regression and least absolute shrinkage

and selection operator (Lasso) regression analyses. A prognostic risk model was

constructed and validated. Functional enrichment, immune infiltration, and drug

sensitivity analyses were conducted to explore the biological relevance of the

model. In addition, regulatory elements including microRNAs, lncRNAs, and

transcription factors targeting model genes were predicted.

Results: Twenty-six overlapping DEGs were identified between AML subtypes

and GSE24395. Five MRG-associated genes (ITGB2, VIP, PTK2, FHL2, BAG3) were

selected to construct a prognostic model that stratified patients into high- and

low-risk groups with significantly different overall survival. Multivariate Cox

analysis confirmed that risk score, age, and treatment status were independent

prognostic indicators. Gene set enrichment analysis (GSEA) revealed 731

significantly enriched pathways, including mononuclear cell migration.

Immune cell infiltration analysis showed a positive correlation between risk

score and monocytes, and negative correlations with plasma B cells and

activated mast cells. Drug sensitivity prediction identified 84 compounds with

differential responses between risk groups. Regulatory network prediction

highlighted hsa-miR-135b-5p, FTX, and SOX11 as potential upstream regulators

of the prognostic genes.

Conclusion: This study identified five mitophagy-related genes as prognostic

biomarkers in AML and developed a robust riskmodel that correlates with survival

outcome, immune infiltration, and drug sensitivity. These findings offer new

insights into mitophagy-related mechanisms in AML and may guide personalized

therapeutic strategies.
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1 Introduction

Acute myeloid leukemia (AML), one of the most prevalent

forms of acute leukemia in adults, is a malignant clonal disorder

originating from hematopoietic stem cells (1). Characteristic

features of AML include uncontrolled proliferation of leukemia

stem cells (LSCs), impaired generation of functionally mature

hematopoietic cells, bone marrow infiltration, and epigenetic

dysregulation (2). The resultant suppression of normal

erythrocyte, leukocyte, and platelet production leads to hallmark

clinical symptoms such as hemorrhage, fever, and bone pain (3). In

2020, AML accounted for 2.5% of new cancer diagnoses and 3.1% of

cancer-related deaths globally, ranking among the leading causes of

cancer mortality (4). Prognosis remains poor, with some patients

developing central nervous system involvement, further

exacerbating disease severity and life-threatening complications

(5). Standard therapy involves intensive induction chemotherapy

followed by consolidation or allogeneic stem cell transplantation.

Despite high initial response rates, relapse is common, and the 5-

year survival rate remains at only 29.3% (6). Consequently,

molecularly targeted therapies are garnering increasing attention.

Small molecule inhibitors targeting key proteins and signaling

pathways—such as FLT3, IDH, and BCL2—have shown clinical

promise but often yield suboptimal and transient responses,

contributing to therapeutic failure (7–9). Elucidating the

molecular mechanisms underlying AML pathogenesis is therefore

critical for advancing more effective treatment strategies.

Autophagy, a cellular degradation pathway, facilitates the removal

of dysfunctional, damaged, or senescent cells, organelles, and proteins

via lysosomal transport. Since the elucidation of its mechanism in 2016

(10), various autophagy subtypes—macroautophagy, chaperone-

mediated autophagy, microautophagy, and selective autophagy—have

garnered substantial research interest. Mitophagy, a mitochondria-

specific form of autophagy, plays a pivotal role in maintaining

mitochondrial quality control and cellular homeostasis while

mitigating oxidative stress (11, 12). Hypoxia-induced mitophagy,

mediated by receptors such as BNIP3, NIX, and FUNDC1, is

notably upregulated under low-oxygen conditions (13). Both

mitochondrial respiration and mitophagy are critically involved in

the maintenance of LSCs (14–16). Experimental evidence indicates that

disruption of mitochondrial homeostasis heightens the sensitivity of

functional LSCs and hypoxic AML progenitors to autophagy inhibition

(17). Moreover, elevated expression of the mitophagy receptor

optineurin (OPTN) has been shown to suppress AML cell

proliferation (18).

This study aims to investigate the role of mitophagy-related

genes (MRGs) in the pathogenesis and progression of AML, offering

valuable insights into early diagnosis and prognosis. A set of

mitophagy-associated biomarkers was identified through

integrated bioinformatics approaches, including differential gene

expression analysis and machine learning, followed by the

construction of a risk prediction model. Functional enrichment

analysis, immune infiltration profiling, tumor mutational burden

(TMB) assessment, and drug sensitivity evaluation were further

conducted to elucidate the biological relevance and therapeutic
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potential of these biomarkers. The findings provide a foundation for

the development of more stable, efficacious, and safer therapeutic

targets, offering novel clinical guidance for AML treatment.
2 Materials and methods

2.1 Data source

The AML-related dataset TCGA-LAML, comprising gene

expression matrices and clinical data for 132 patients, was retrieved

from the University of California, Santa Cruz (UCSC) Xena platform

(https://xenabrowser.net/datapages/). Additionally, two gene

expression profiles, GSE24395 (platform GPL610) and

GSE146173 (platform GPL18460), were obtained from the Gene

Expression Omnibus (GEO) database (https://www.ncbi.

nlm.nih.gov/gds). The GSE24395 dataset contained 12 control

and 5 AML patient samples, which were sequenced on the

GPL6106 platform. Transcriptome raw counts were downloaded,

and the mapping relationship between probe IDs and gene symbols

was extracted according to the annotation file of the sequencing

platform. The probe with the highest mean expression value for

each gene symbol was retained, and data were processed using a

75th percentile shift normalization algorithm. The GSE146173

dataset included 202 AML patient samples, which were sequenced

on the GPL18460 platform. After downloading the raw counts,

ENSEMBL IDs were converted to gene symbols using the

org.Hs.eg.db package (v 3.16.0) (19). Gene lengths were then

obtained from the GPL18460 annotation file to calculate reads

per kilobase (RPK). Further, fragments per kilobase of transcript

per million mapped reads (FPKM) was computed, and log2
transformation (log2

(FPKM + 1)) was applied to the FPKM values

to stabilize variance and facilitate subsequent analyses. Based on the

October 16, 2023 version of the Kyoto Encyclopedia of Genes and

Genomes (KEGG) human gene set (kegg_hsa.gmt), genes explicitly

annotated to the “hsa04137_Mitophagy” pathway were screened.

After removing duplicates, 72 mitophagy-related genes (MRGs)

were obtained (Supplementary Table S1).
2.2 Consensus clustering analysis and
differential expression analysis

To identify prognostically relevant MRGs, their expression

profiles were extracted from the TCGA-LAML dataset and

subjected to univariate Cox regression analysis (P < 0.05). Genes

meeting this threshold were designated as prognostic MRGs. Using

these genes, consensus clustering was performed on TCGA-LAML

samples with the ConsensusClusterPlus package (v1.62.0) (20) to

stratify molecular subtypes. The optimal number of clusters was

determined based on the cumulative distribution function (CDF)

curves and the delta area index. To assess survival differences

among these subtypes, Kaplan-Meier (K-M) survival curves were

constructed based on overall survival (OS) using the TCGA-LAML

cohort. To further refine the analysis, differentially expressed genes
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(DEGs) were identified in two comparisons: (1) between patients

with AML and healthy controls in GSE24395 (denoted DEGs1), and

(2) between the identified molecular subtypes within TCGA-LAML

(denoted DEGs2). The limma (v1.38.0) and DESeq2 (v1.38.0)

packages were applied for DEG analysis (21, 22), with thresholds

of |log2FC| > 1.5 and adjusted P-value < 0.05. The top 10

upregulated and downregulated genes from each comparison

were visualized using volcano plots and heatmaps generated with

the ggplot2 package (v3.4.1) (23).
2.3 Acquisition and functional enrichment
analysis of candidate genes

Candidate genes were identified by intersecting DEGs1 and

DEGs2. Functional interpretation of these candidates was

conducted through Gene Ontology (GO) and KEGG pathway

enrichment analyses using the clusterProfiler package (v4.7.1.3)

(24), applying a significance cutoff of P < 0.05. Additionally,

protein-protein interaction (PPI) networks for the candidate

genes were constructed using the STRING database, with a

minimum interaction confidence score set at 0.15.
2.4 Establishment and verification of risk
model

The expression profiles of candidate genes in the TCGA-LAML

dataset were first analyzed through univariate Cox regression (P <

0.05) to identify genes with prognostic significance. Subsequently,

the least absolute shrinkage and selection operator (LASSO)

regression was performed using the glmnet package (v4.1.4) to

further refine the biomarker selection for constructing a prognostic

risk model in the TCGA-LAML dataset (25).

A risk score was then computed for each patient with AML in the

TCGA-LAML dataset based on the expression levels of selected

biomarkers. Patients were stratified into high- and low-risk groups

using the median risk score as a cutoff. Risk score distribution plots

were generated to illustrate the separation between these two groups.

K-M survival curves were constructed using the survminer package

(v0.4.9) to evaluate differences in OS between the high- and low-risk

cohorts (26). The predictive performance of the risk model was

further assessed by time-dependent receiver operating characteristic

(ROC) curves, plotted using the survivalROC package (27). In

addition, the risk model was validated using risk scores, KM

survival analysis, and ROC curve evaluation in the GSE146173

dataset. What’s more, to further validate the reliability of a risk

model as a clinical predictive tool for AML patients.
2.5 Independent prognostic analysis and
nomogram construction

To assess the clinical utility of the model, TCGA-LAML

samples were further categorized based on clinical variables
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including age (≤ 60/>60), gender (male/female), race (Asian/Black

or African American/White), cytogenetic risk category (favorable/

intermediate or normal/poor), treatment history (yes/no), and

French-American-British (FAB) classification (M0–M7). Stratified

K-M survival analyses were conducted for each subgroup using the

survival package (v 3.5.3) (28). To identify independent prognostic

indicators, both risk scores and clinical features were subjected to

univariate Cox regression analysis. Variables meeting the

significance threshold (P < 0.05) were subsequently tested for

proportional hazards (PH) assumptions (P > 0.05) before

inclusion in multivariate Cox regression, through which

independent predictors of survival were identified.

A prognostic nomogram was then developed using the rms

package based on the independently validated prognostic factors,

allowing for the prediction of 1-, 3-, and 5-year OS in patients with

AML (26). The predictive accuracy and calibration of the

nomogram were validated using calibration plots generated with

the rms package (v6.7.1) and time-dependent ROC curves plotted

via the timeROC package (26, 29).

Finally, to investigate the relationship between risk stratification

and clinical features, clinical annotations from TCGA-LAML were

analyzed. Chi-square tests were used to assess statistical differences

in clinical characteristics and survival outcomes between high- and

low-risk groups (30).
2.6 Gene set enrichment analysis of
different risk groups

In this study, differential gene expression analysis between high-

and low-risk groups was conducted using the DESeq2 package

(v1.38.0) (22). Genes were ranked by log2FC, sorted in descending

order to prioritize those with the most significant expression

differences. To elucidate the biological processes associated with

these differences, GSEA was performed using the clusterProfiler

package (v4.7.1.3) (24), referencing the GO Biological Process

( GO - B P ) c a t e g o r y f r om t h e M S i g D B d a t a b a s e

(c5.go.bp.v2023.1.Hs.symbols.gmt; https://www.gsea-msigdb.org/).

Pathways meeting the criteria |normalized enrichment score

(NES)| > 1 and P < 0.05 were considered significant, and the top

five enriched pathways were selected for visualization.
2.7 Immune infiltration analysis

To characterize the immune landscape within the AML samples

from the TCGA-LAML dataset, the CIBERSORT algorithm was

applied to estimate the relative abundance of 22 immune cell types

(31). Differences in immune cell infiltration between risk groups

were evaluated using the Wilcoxon signed-rank test (P < 0.05).

Additionally, Spearman correlation analysis was employed to

explore associations between immune cell proportions and risk

scores, with results considered significant when |r| > 0.4 and P <

0.05. Immune checkpoint gene expression analysis was also

performed by extracting the expression levels of eight key
frontiersin.org

https://www.gsea-msigdb.org/
https://doi.org/10.3389/fimmu.2025.1580597
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Xuan et al. 10.3389/fimmu.2025.1580597
immune regulatory genes—CD274, LAG3, TGFB1, TNFSF13, CD4,

CD40, CD80, and CD276—from the TCGA-LAML dataset. Group-

wise comparisons of these genes were conducted using the

Wilcoxon test (P < 0.05), and their correlation with risk scores

was visualized via scatter plots. To further elucidate the

interaction between key biomarkers and the tumor immune

microenvironment, relevant immune cell reporter genes and

immune regulatory genes were retrieved from the TISIDB

database (http://cis.hku.hk/TISIDB/). Spearman correlation

analysis was then conducted between selected biomarkers and

these immune-related genes, with |r| > 0.4 and P < 0.05

indicating statistically significant associations.
2.8 Drug sensitivity analysis

To explore the association between biomarkers and

chemotherapeutic response, half-maximal inhibitory concentration

(IC50) values for 138 commonly used chemotherapeutic agents were

estimated using the pRRophetic package (v0.5) (32) across all TCGA-

LAML samples, followed by comparative analysis between risk groups.

In addition, the corrplot package (v 0.92) (33) was used to evaluate the

correlations between the top 20 drugs with significant differences in

IC50 between the high-risk and low-risk groups and the 5 biomarkers

through Spearman correlation analysis (|r| > 0.4 and P < 0.05).
2.9 Molecular regulatory network
construction

To elucidate potential regulatory mechanisms of the identified

biomarkers in AML, upstream elements were predicted. miRNAs

targeting the biomarkers were identified via miRDB (https://

mirdb.org/) and miRanda (http://www.microrna.org/microrna/

home.do). miRNAs common to both databases were then used to

predict interacting long non-coding RNAs (lncRNAs) through the

starBase platform (http://starbase.sysu.edu.cn/). Transcription

factors (TFs) potentially regulating the biomarkers were inferred

from the ChEA3 database (https://maayanlab.cloud/chea3). The

lncRNA–miRNA–mRNA and mRNA–TF regulatory networks

were visualized using Cytoscape (v3.10.2).
2.10 Validation of biomarker expression

Expression levels of the biomarkers were examined in theGSE24395

dataset, with statistical significance defined at P < 0.05. Validation of

biomarker expression was further conducted via quantitative reverse

transcription PCR (qRT-PCR). Whole blood samples from fifteen

patients with AML and fifteen healthy donors, collected at the Second

Hospital of Hebei Medical University, were used for qRT-PCR analysis.

All participants provided written informed consent, and the study was

approved by the institutional ethics committee.

Total RNA was extracted from frozen samples using TRIzol

reagent (Ambion, China). Equal amounts of mRNA were
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reverse-transcribed to synthesize cDNA. qPCR was conducted

using the 2 × Universal Blue SYBR Green qPCR Master Mix kit

(Servicebio, China), following standard protocols. Gene expression

levels were quantified using the 2–DDCT method. Primer sequences

are listed in Supplementary Table S2.
2.11 Statistical analysis

All bioinformatics analyses were performed using R software

(v4.2.2), with P < 0.05 considered statistically significant.
3 Results

3.1 Consensus clustering analysis among
patients with AML

Expression profiling of 72 MRGs in the TCGA-LAML dataset

identified 15 prognostic MRGs through univariate Cox regression

analysis, which were subsequently used for consensus clustering

(Figure 1a). Based on the CDF curves and delta area index, the

optimal number of clusters was determined as k=2, and the samples

in the TCGA-LAML dataset were divided into two subtypes,

namely subtype 1 and subtype 2 (Figure 1b)—with their

distribution visualized via t-SNE dimensionality reduction

(Figure 1c). K-M survival analysis revealed a statistically

significant difference in OS between the subtypes, with subtype 1

associated with a poorer prognosis (Figure 1d).
3.2 A total of 26 genes were identified as
candidate genes

Differential expression analysis was conducted to identify

disease- and subtype-specific transcriptomic alterations. A total of

294 DEGs1, including 223 upregulated and 71 downregulated

genes, were identified between AML samples and controls in the

GSE24395 dataset (Figures 2a, b). In parallel, a total of 819 DEGs2

(205 upregulated and 614 downregulated) were identified between

subtype 1 and subtype 2 in the TCGA-LAML dataset (Figures 2c, d).

The intersection of DEGs1 and DEGs2 yielded 26 candidate genes

for further analysis (Figure 2e, Supplementary Table S3). These 26

genes were subjected to functional enrichment analysis. GO analysis

revealed enrichment in 348 terms, comprising 277 biological

processes (BPs), 36 cellular components (CCs), and 35 molecular

functions (MFs). The top five enriched terms were predominantly

related to neutrophil activation, focal adhesion, and phosphoric

diester hydrolase activity, among others (Figure 2f). KEGG pathway

analysis identified 15 significantly enriched signaling pathways,

with the top five including regulation of the actin cytoskeleton

and rheumatoid arthritis (Figure 2g). Furthermore, PPI network

analysis highlighted 24 interacting genes, forming key interaction

axes such as PTK2–ITGB2 , PTK2–BAG3 , and BAG3–

FHL2 (Figure 2h).
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3.3 ITGB2, VIP, PTK2, FHL2, and BAG3 were
identified as biomarkers for constructing
risk models

Lasso regression analysis was conducted on six genes (ITGB2,

VIP, PTK2, FHL2, BAG3, EPB41L3) previously identified via

univariate Cox regression (Figure 3a). The analysis retained five

genes—ITGB2, VIP, PTK2, FHL2, and BAG3—with non-zero

regression coefficients, which were subsequently selected as

biomarkers for constructing the prognostic risk model

(Figures 3b, c). The risk score was calculated using the following

formula: Risk score = 0.22405735 × ITGB2 expression + 0.07079774

× VIP expression + 0.03667777 × PTK2 expression + 0.12551123 ×
Frontiers in Immunology 05
FHL2 expression + 0.19284549 × BAG3 expression. Based on the

median risk score, patients with AML were stratified into high- and

low-risk groups (n = 66 per group). A clear positive association

between risk score and mortality was observed (Figures 3d, e). K-M

survival analysis demonstrated significantly reduced OS in the high-

risk group (Figure 3f). ROC curve analysis revealed areas under the

curve (AUCs) of 0.71, 0.69, and 0.77 for 1-, 3-, and 5-year survival,

respectively, indicating robust predictive performance of the

model (Figure 3g).

The model’s predictive validity was externally verified using the

GSE146173 dataset. Similar trends were observed, with high-risk

patients exhibiting reduced survival (Supplementary Figures S1a–

c). AUC values consistently exceeded 0.6, aligning well with results
FIGURE 1

The consensus clustering analysis among AML patients. (a) The forest plot of MRG associated with prognosis in AML patients. The figure showed the
names of MRGs, P-values, HR values, and 95% CIs. An HR value greater than 1 was indicated to be a risk factor for AML, while an HR value less than
1 was indicated to be a protective factor. (b, c) The consensus cluster analysis of prognosis-related MRGs in AML patients.AML patients were
classified into two subtypes based on MRGs. (d) The K-M curve of different subtypes. Red represents subtype 2, and blue represents subtype 1.
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FIGURE 2

The identification of differential genes among subtypes. (a, b) The volcano and heat maps of differential genes in the training set. In the volcano plot,
red dots and green dots represent up - regulated and down-regulated genes respectively, while gray dots represent genes with no significant
difference. In the heatmap, red and green represent up - regulated and down-regulated genes respectively. (c, d) The volcano and heat maps of
differential genes between subtype 1/2. (e) The venn diagram of DEGs1 genes and DEGs2 genes. (f) The results of GO enrichment analysis of
differential genes. (g) The results of KEGG enrichment analysis of differential genes. (h) The construction of PPI networks for candidate genes. Nodes
represent proteins, and lines represent interactions.
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from the TCGA-LAML cohort (Supplementary Figure S1d),

confirming the model’s reliability and generalizability as a clinical

prognostic tool for AML.
3.4 The risk score, age, and treatment were
independent prognostic factors for AML

Analysis of clinical parameters revealed that age, health status,

treatment regimen, and FAB classification significantly influenced the

outcomes of patients with AML. In particular, patients aged ≤60 years,

with favorable health, no prior treatment, or FAB classification M3,

showed markedly improved survival (Supplementary Figures S2a–f).

Univariate Cox regression analysis confirmed the prognostic

significance of risk score, age, health status, and treatment,

with consistency across PH assumption testing (Figure 4a).
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Multivariate Cox regression further identified risk score, age, and

treatment as independent prognostic factors (Figure 4b). A

prognostic nomogram incorporating these independent variables was

developed to estimate individualized survival probabilities for patients

with AML (Figure 4c). The calibration curve demonstrated strong

concordance between predicted and observed survival outcomes

(Figure 4d). ROC curve analysis of the nomogram yielded AUC

values exceeding 0.6 at 1, 3, and 5 years, supporting its high

predictive accuracy (Figure 4e).

Comparative analysis of clinical characteristics between high- and

low-risk groups indicated significant differences in age, health status,

FAB classification, and OS (Supplementary Figure S3a). Additionally,

GSEA identified 731 significantly enriched functional terms between

risk groups, with the top five—including mononuclear cell migration

and cellular response to biotic stimulus—highlighted in the

visualization (Supplementary Figure S3b).
FIGURE 3

The identification of biomarkers. (a) The forest map of prognosis-related candidate genes. It shows the P-values, HR, and 95% CIs for multiple
genes, which are used to evaluate the impact of each gene on AML risk. (b, c) The LASSO regression coefficient graph and cross-validation graph
based on penalty term. (d) The risk curves of the TCGA-LAML sample. The red line represents the high-risk group, and the blue line represents the
low-risk group. (e) The survival status distributions for the TCGA-LAML sample. Red dots represent deceased patients, while blue dots represent
surviving patients. (f) The TCGA-AML K-M curves for high and low risk groups. Red represents the high-risk group, and blue represents the low-risk
group. (g) The ROC curve of the model in TCGA-AML. An AUC value greater than 0.6 indicates that the model has certain predictive performance.
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FIGURE 4

Nomogram model construction and evaluation. (a) The results of univariate Cox analysis. It shows the P-values, HR values, and 95% CI values for
different variables. (b) The results of multivariate Cox regression analysis. (c) The construction of nomogram. In the variable “age”, values greater than
65 years are coded as 1, and those less than 65 years are coded as 0. In the variable “treatment”, patients who received treatment are coded as 2,
while those who did not receive treatment are coded as 1. In the “risk score”, the values ranging from 2.6 to 0.6 correspond to the risk values of the
samples. Each variable is assigned a score, and the total score is calculated based on the scores of all variables to predict the 1-year, 3-year, and 5-
year survival probabilities of AML. (d) The calibration curve showed that the accuracy of the nomogram was relatively high and validated the model
performance of AML. (e) The ROC curve indicates that the nomogram model has an excellent predictive value for AML (AUC>0.6).
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3.5 Seven immune cells differed
significantly by risk group

Immune cell infiltration was assessed using the CIBERSORT

algorithm, which estimated the relative abundance of 22 immune

cell types (Figure 5a). Significant differences in immune infiltration

were observed between risk groups for seven cell types. Specifically,

five immune cells—naive B cells, plasma B cells, eosinophils,

activated mast cells, and memory-resting CD4+ T cells—exhibited

significantly reduced infiltration in the high-risk group. In contrast,

monocytes and memory-activated CD4+ T cells showed no

significant decline (Figure 5b). Correlation analysis revealed a

strong positive association between monocyte infiltration and risk

scores (r > 0.4, P < 0.05), while plasma B cells and activated mast

cells were negatively correlated with risk scores (r < -0.4, P < 0.05)

(Figure 5c). Among eight examined immune checkpoints, seven

(CD274, LAG3, TGFB1, TNFSF13, CD4, CD40, and CD276) were

significantly overexpressed in the high-risk group, with CD80 as the

only exception (Figure 5d). Risk scores exhibited positive

correlations with the expression levels of all eight immune

checkpoints (Figure 5e). Additionally, a total of 315 cell reporter

genes and 65 immune regulatory genes showed significant

associations with the biomarkers, as depicted in heatmaps

(Figures 5f, g).
3.6 A total of 84 drugs were sensitive to
AML

Drug sensitivity analysis identified 84 compounds with

significantly different IC50 values between the two risk groups.

Notable examples included AS601245, BIBW2992, and Bleomycin

(Supplementary Figures S4a, b), suggesting distinct therapeutic

vulnerabilities associated with molecular risk stratification.

Furthermore, AS601245, BIBW2992, and Bleomycin all showed

strong negative correlations with the 5 biomarkers (r < -0.3)

(Supplementary Figure S4c).
3.7 Various regulatory elements of ITGB2,
VIP, PTK2, FHL2 and BAG3

Regulatory elements of ITGB2, VIP, PTK2, FHL2, and BAG3

were systematically predicted. The constructed lncRNA–miRNA–

mRNA regulatory network included miRNAs such as hsa-miR-

135b-5p, hsa-miR-452-5p, and hsa-miR-543, which target the

biomarkers, and upstream lncRNAs including FTX, HCG11, and

PURPL that regulate these miRNAs (Figure 6a). TFs were also

predicted: SOX11 targeting ITGB2 and PTK2, TLX2 regulating VIP,

AKAP8L acting on FHL2, and SIX2 targeting BAG3 (Figure 6b).

These regulatory elements are critical for elucidating the

mechanistic roles of MRGs in AML progression.
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3.8 The expression of biomarkers

Expression validation using the GSE24395 dataset indicated

significant downregulation of VIP, PTK2, FHL2, and BAG3 in AML

samples, while ITGB2 was upregulated (Figure 7a). These findings

were further corroborated by qRT-PCR, which confirmed reduced

expression of PTK2, FHL2, VIP, and BAG3, and elevated expression

of ITGB2 in AML samples (Figure 7b).
4 Discussion

AML, a group of highly heterogeneous hematologic

malignancies, is characterized by poor therapeutic outcomes and

short survival durations, particularly among patients with

intermediate- to high-risk disease or refractory/relapsed forms.

This clinical challenge underscores an urgent need to expand

therapeutic strategies for AML. Although the role of mitophagy

and mitochondrial homeostasis in cancer has been increasingly

recognized (34–36), including the established function of SQSTM1

in leukemia progression (14), the specific mechanisms by which

MRGs drive AML heterogeneity remain incompletely defined.

In this study, we conducted univariate Cox regression analysis

to screen 15 prognostically related MRGs for concordance cluster

analysis. Ultimately, AML patients were divided into two distinct

subtypes, namely subtype 1 and subtype 2. Cluster analysis based on

MRGs uncovered significant molecular heterogeneity within the

AML patient population (37). The marked survival differences

between the subtypes imply potential discrepancies in sensitivity

to existing treatments. This suggests that clinicians could

personalize treatment strategies according to the subtype -

specific characteristics (38). The lower survival rates observed in

subtype 1 patients indicate that this subtype might be associated

with a more active aberrant mitophagy process or accompanied by

other molecular events linked to poor prognosis. These

abnormalities may contribute to the unfavorable prognosis of

subtype 1 patients by potentially accelerating leukemia cell

proliferation, inducing drug resistance, or facilitating immune

surveillance evasion (18, 39). Furthermore, subtype classification

can aid in patient stratification during clinical trials, thereby

enhancing the accuracy and effectiveness of novel therapy

evaluation (40).

In this study, 26 candidate genes were obtained by intersection

analysis of 294 DEGs1 from between AML and control groups and

819 DEGs2 from between different subtypes. Subsequent univariate

Cox and Lasso regression analyses identified five key biomarkers—

ITGB2, VIP, PTK2, FHL2, and BAG3—for constructing a

prognostic risk model. Among them, ITGB2, encoding the CD18

integrin subunit, was initially identified in leukocytes, where it

mediates adhesion to endothelial cel ls and facil itates

transendothelial migration. Prior research has implicated ITGB2

in drug resistance mechanisms to mitoxantrone and idarubicin in
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AML (41, 42). Notably, ITGB2 is significantly overexpressed in

AML and positively correlates with poor prognosis, potentially via

interaction with STK10 (43). Collectively, these findings position

ITGB2 as a clinically relevant biomarker for AML diagnosis and
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prognosis. Mechanistically, ITGB2 may influence mitophagy

through its role in cell adhesion and stress response signaling.

Studies suggest that integrin-mediated adhesion pathways can

modulate mitochondrial homeostasis under cellular stress,
FIGURE 5

Immune infiltration analysis. (a) The heatmap of immune infiltrating cell profiles in high and low risk groups. (b) The differences in immune infiltrating
cell abundance between diseased healthy groups. (c) The correlation analysis of risk scores and differential immune infiltrating cells. (d) The
significantly different immune checkpoints in high and low risk groups. (e) The immunization checkpoints correlate with risk scores. (f) The heatmap
of risk model genes correlating with cell report genes. (g) The heatmap of risk model genes correlating with Immune regulators genes. *P < 0.05,
**P< 0.01, ***P < 0.001, ****P < 0.0001.
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potentially linking ITGB2 to dysregulated mitophagy in AML

progression. VIP (vasoactive intestinal peptide), a 28-amino acid

neuropeptide initially isolated from porcine duodenum, is widely

distributed across multiple physiological systems including the

nervous, reproductive, and respiratory systems (44). Although

VIP has been shown to mitigate bleomycin-induced pulmonary

fibrosis by restoring autophagy in alveolar epithelial cells (45), its

role in hematologic malignancies remains unexplored. Notably, VIP

may regulate mitochondrial function via the cAMP/PKA pathway,
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which is implicated in coordinating energy metabolism and

mitophagy. This pathway could contribute to mitochondrial

quality control in leukemia cells, offering a potential mechanistic

link between VIP and mitophagy in AML (46–48). PTK2 (protein

tyrosine kinase 2), also known as focal adhesion kinase (FAK),

functions as a non-receptor tyrosine kinase regulating integrin and

growth factor receptor signaling (49). Elevated expression of PTK2

has been documented in various malignancies such as lung cancer,

hepatocellular carcinoma, and lymphocytic leukemia (50, 51).
FIGURE 6

The molecular regulatory network of biomarkers. (a) The lncRNA-miRNA-mRNA regulatory network. Orange represents biomarkers, blue represents
lncRNAs, and green represents miRNAs. (b) The TFs-mRNA regulatory network. The pink represents biomarkers, blue represents TFs, and orange
represents shared TFs.
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Furthermore, PTK2 has been identified as an independent

prognostic factor in AML, particularly in intermediate-risk

cohorts. PTK2 may further influence mitophagy through its

modulation of mitochondrial membrane potential and ROS

production. Crosstalk between focal adhesion kinase signaling

and autophagy pathways could disrupt mitochondrial quality

control, promoting survival of leukemic stem cells (52–54). It also

serves as a prognostic discriminator among patients harboring

unfavorable FLT3/NPM1 mutations with concurrent low PTK2B

or LYN expression (55). The FHL2 protein is localized in adhesion

plaques, the cytoplasm, and the nucleus, where it interacts with a

broad array of TFs and tumor-associated proteins (56, 57). Its

expression is markedly elevated in gastric cancer tissues compared
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to chronic gastritis, with overexpression closely linked to gastric

tumorigenesis (58). Emerging evidence also implicates FHL2 in

leukemogenesis (59). Beyond its oncogenic potential, FHL2 plays a

pivotal role in regulating the survival of hematopoietic stem cells

under both homeostatic and stress conditions. While not directly

linked to mitophagy, this role in mitochondrial dynamics provides a

novel angle to explore its contribution to mitophagic flux in AML

(60). BAG3 (Bcl-2-associated athanogene 3), a member of the BAG

protein family, exerts its biological functions by interacting with

target proteins via multiple structural motifs, including the BAG

domain, WW domain, and PXXP motif. It is involved in a range of

cellular processes such as autophagy, apoptosis, embryogenesis,

cytoskeletal reorganization, and cell migration (61, 62). BAG3 is
FIGURE 7

The expression levels of biomarkers. (a) In the GSE24395 dataset, the expression levels of biomarkers between AML and control groups. (b) The
qRT-PCR of biomarkers. *P < 0.05, **P< 0.01, ***P < 0.001, ****P < 0.0001.
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aberrantly expressed in several solid tumors and germ cell

leukemias (62, 63), and has been proposed as a potential

therapeutic target in cancers including glioma, pancreatic cancer,

and ovarian carcinoma. Additionally, BAG3 is upregulated in

response to various cellular stressors, facilitating selective

autophagy to maintain intracellular homeostasis (64–68). As a co-

chaperone, BAG3 directly interacts with HSP70 via its BAG domain

to facilitate selective autophagy of damaged organelles, including

mitochondria (69, 70). This HSP70-BAG3 complex recruits LC3 to

ubiquitinated substrates, positioning BAG3 as a critical regulator of

mitophagic clearance in cancer cells (71). Its overexpression may

thus confer a survival advantage to AML blasts by enhancing

mitochondrial turnover. In summary, five biomarkers—ITGB2,

VIP, PTK2, FHL2, and BAG3—were identified in this study as

being associated with AML. These genes appear to be functionally

relevant to AML pathogenesis and may serve as valuable molecular

targets for future diagnostic and therapeutic strategies.

The results of this study showed that in the TCGA-LAML data

set, the risk score was significantly positively correlated with patient

mortality. The difference in survival between high- and low-risk

groups was statistically significant, and the 5-year ROC curve AUC

value was 0.77. These results are highly consistent with the range of

performance of AML prognostic models reported in previous

studies (72). Furthermore, the consistency between the results and

the external validation set (GSE146173) fully reflects the reliability

and universality of the model in predicting long-term prognosis.

Additionally, from the association analysis of clinical characteristics

and prognosis, patients aged ≤60 years, in good health, untreated, or

FAB-typed as M3 had a significantly higher survival rate. This

finding is consistent with the clinical perception that younger

patients are in better physical condition and that M3 AML

patients are sensitive to targeted therapies (73). The nomogram

model integrates independent prognostic factors such as risk score,

age, and treatment type. Its predictive accuracy was verified by

calibration curve and ROC analysis, providing a visual decision-

making tool for clinical practice (74). For example, in elderly

patients with a high-risk score and comorbidities, the model may

suggest a poor prognosis and the need to prioritize intensive

supportive care or novel therapies (75). Younger patients with a

lower risk score may benefit more from standard care (76). GSEA

enrichment results in high- and low-risk groups (monocyte

migration, biostimulatory response pathways) revealed that the

risk model may be associated with immune microenvironment

heterogeneity or abnormal regulation of inflammation in AML

(77). The activation of monocyte migration-related pathways may

be associated with leukemia cell infiltration or immune escape

mechanisms. This provides directions for further exploration of

AML pathogenesis and the development of therapeutic strategies

targeting immune checkpoints or inflammatory signaling

pathways (78).

Immunotherapy based on immune checkpoint inhibitors (ICIs)

has garnered increasing attention for its efficacy in treating

advanced, metastatic, and recurrent malignancies. By disrupting

inhibitory checkpoint signaling, ICIs restore anti-tumor immune
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responses. Clinical success has been demonstrated in cancers such

as melanoma, lung, and prostate cancer (79–82). APRIL/TNFSF13,

an immune checkpoint molecule, is overexpressed in colorectal and

glioma tissues and has been linked to adverse pathological features

and poor prognosis, suggesting its potential as a therapeutic target

(83, 84). In addition, the therapeutic relevance of tumor-infiltrating

B cells has been established in colorectal cancer (85).

Although immune checkpoint and immune infiltration analyses

have significantly contributed to predictive modeling and drug

sensitivity profiling in solid tumors, similar investigations in AML

remain limited. The present analysis highlights monocytes, plasma

B cells, and activated mast cells as key immune populations

associated with risk stratification in AML. Moreover, targeting

immune checkpoints such as TGFB1, TNFSF13, CD4, and CD40

may enhance immunotherapeutic efficacy in AML. Nonetheless,

further mechanistic studies are required to elucidate the specific

roles of these immune cells and immune checkpoints within the

AML microenvironment.

Accumulating evidence highlights the pivotal role of

mitophagy in the pathogenesis of AML, with its modulation

offering potential to enhance therapeutic efficacy and overcome

drug resistance. Elucidating specific molecular mechanisms and

identifying precise regulatory targets thus represent promising

strategies for advancing AML treatment. In the present study,

MRGs were associated with AML through differential expression

analysis, consensus clustering, univariate Cox regression,

LASSO modeling, and related computational approaches. Five

prognostic biomarkers were identified and incorporated into a

risk prediction model, providing a theoretical framework for

further exploration of MRGs in AML. Nevertheless, the clinical

utility of these biomarkers remains constrained by limited

sample size, and additional mechanistic studies and larger

cohorts are essential to validate their translational potential in

AML therapy.

Although this study used bioinformatics to screen five

mitophagy genes linked to AML prognosis and built a risk model,

several limitations exist. Existing research has predominantly

utilized data from public databases such as TCGA and GEO.

There is a lack of experimental validation regarding the specific

functions of these biomarkers in AML. Despite MRGs being

effective in patient stratification within both the TCGA and

GSE146173 datasets, smaller datasets like GSE24395 may suffer

from insufficient statistical power. In the future, CRISPR-Cas9

technology can be used to manipulate target genes in AML cell

lines. By combining this with assays such as CCK-8, mitochondrial

membrane potential detection, and autophagic flux analysis, we can

clarify how these genes regulate mitophagy pathways and cellular

phenotypes. The in vivo functionality can be verified using AML

mouse models. Furthermore, ChIP - seq and proteomics

technologies can be utilized to analyze the regulatory network of

these biomarkers within the context of AML cell heterogeneity and

the immune microenvironment. This analysis can provide

theoretical support for developing novel therapies that target

mitophagy pathways.
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5 Conclusion

Five prognostic biomarkers—ITGB2, VIP, PTK2, FHL2, and

BAG3—were identified and integrated into a novel risk model to

stratify patients with AML into high- and low-risk groups. This

classification revealed distinct molecular and immunological

profiles between the two groups, as demonstrated by differences

in functional enrichment patterns, immune cell infiltration, somatic

mutation landscapes, and drug sensitivity. The findings offer a set of

clinically relevant biomarkers with prognostic and therapeutic

significance, providing new insights into personalized treatment

strategies and disease management in AML.
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