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Background: Acute myeloid leukemia (AML) is a hematological malignancy with
a high incidence of febrile neutropenia during the first two treatment cycles. This
study aims to develop a gene signature related to neutrophil extracellular traps
(NETs) to enhance understanding of AML mechanisms and identify potential
prognostic biomarkers.

Methods: A consistent cluster analysis was conducted on 151 AML patients from
the TCGA dataset. A differential analysis was performed to identify the
differentially expressed genes (DEGs) specific to different subtypes and the
training cohort (normal vs tumour). The NETs-related differentially expressed
genes (NR-DEGs) were obtained through the overlapping of the two sets of
differentially expressed genes. Univariate Cox and Least absolute shrinkage and
selection operator (LASSO) regression analysis were employed to construct a
NETs-related AML prognostic signature. Furthermore, an immune feature
estimation and functional enrichment analysis was conducted between the
two risk subgroups.

Results: Two distinct AML subtypes were identified, exhibiting markedly disparate
survival outcomes. A total of 1,700 and 1,941 DEGs were identified in the different
subtypes and training cohort (normal vs. tumour), respectively. Thirteen NR-
DEGs were identified. Subsequently, a NETs-related prognostic signature was
constructed based on the 3 prognostic genes (MPO, CCL3, and TLR8). An
independent prognostic analysis indicated that the risk score and age could be
employed as independent prognostic factors. Our findings revealed the presence
of five markedly differentially expressed immune cells between the two risk
subgroups. Ultimately, it was determined that all three genes were associated
with the ‘chemokine signalling pathway'.
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Conclusion: The prognostic signature comprised of MPO, CCL3, and TLR8 based
on NETs was established, which provided theoretical basis and reference value
for the research of AML.

acute myeloid leukemia, neutrophil extracellular trap, prognostic signature, risk
subgroups, tumor microenvironment

1 Introduction

Acute myeloid leukemia (AML) is a clonal hematopoietic stem
cell disorder marked by the rapid proliferation of immature myeloid
cells (1). The cornerstone of AML treatment has traditionally been
chemotherapy; however, many patients experience drug resistance
and high relapse rates, contributing to persistently poor overall
survival outcomes (2). Recently, advancements in therapeutic
strategies, including molecularly targeted therapies, specific
antibodies, and immune checkpoint inhibitors, have aimed to
address these resistance issues and enhance treatment efficacy (3).
Furthermore, research has identified ALOX5AP as a promising
prognostic marker in AML, indicating its potential role as a
therapeutic target (4). Despite these advancements, the aggressive
nature of AML and the scarcity of effective prognostic markers
present significant challenges in improving patient survival rates.
Thus, identifying new prognostic genes is crucial for monitoring
patient outcomes and understanding the pathogenesis of AML.

The immune system’s role in AML has become a critical area of
research, with immune dysregulation identified as a key factor in
disease progression and treatment resistance (5). Neutrophils, the
predominant immune cells in the bone marrow and peripheral
blood, have a multifaceted role in cancer initiation, progression, and
dissemination. In particular, neutrophil extracellular traps (NETs),
which consist of decondensed chromatin enriched with
antimicrobial proteins, have emerged as significant players in
inflammation and cancer advancement (6). In the context of
AML, NETs have been shown to modulate the immune response
and may profoundly influence patient outcomes (7). However, the
genes regulating NET formation and their prognostic implications
in AML remain poorly understood. This knowledge gap has
prompted our investigation into the potential of NETs-related
genes as innovative prognostic biomarkers in AML (8).

In this study, we aimed to identify a NETs-related prognostic
signature that could predict prognosis in AML patients By
leveraging bioinformatics analyses on large-scale gene expression
datasets, we sought to identify prognostic genes related to NET's in
AML, establish a prognostic model and uncover the molecular
underpinnings of these genes in AML and explore their potential as
therapeutic targets. These findings contribute to offer a new
perspective on the role of the immune system in AML prognosis.
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2 Materials and methods
2.1 Data source

The TCGA database (https://www.cancer.gov/ccg/research/
genome-sequencing/tcga) was utilized to obtain gene expression
profiles from 151 blood samples of AML patients. Additionally,
RNA sequencing data from 386 healthy peripheral blood samples
were sourced from the GTEx database (https://commonfund.
nih.gov/GTEx). The merged dataset from these sources was
designated as the training cohort (batch effects were corrected for
TCGA and GTEx data through the ComBat method). For validation
of the risk model, gene expression data from the GSE71014 dataset
(platform: GPL10558) were collected from the GEO database
(https://www.ncbinlm.nih.gov/geo/) , which included 104 bone
marrow samples. A total of 136 neutrophil extracellular trap
(NET)-related genes (NRGs) were derived from the existing
literature (9).

2.2 Consensus clustering of the NRGs
model

The ‘ConsensusClusterPlus’ package was employed to conduct
consensus cluster analysis on AML samples (N=151), utilizing the
expression levels of all genes available in the TCGA database.
Additionally, the ‘survminer’ package (10) was utilized to analyze
Kaplan-Meier (KM) survival curves, focusing on overall survival
(OS) across different subtypes (p <0.05). Subsequently, the
‘estimate’ package was implemented to compare Immune,
Stromal, and ESTIMATE scores among the various subtypes via
the Wilcoxon rank-sum test (p <0.05) (11).

2.3 Differential analysis

The ‘DESeq2’ package (12) was utilized to identify differentially
expressed genes (DEGs) across different subtypes and within the
training cohort (normal vs. tumor). The criteria for significance
were set as |log,FC| > 1 and adjusted p < 0.05. Both volcano plots
and heat maps were generated to illustrate the identified DEGs.
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2.4 Gene functional enrichment analysis

NETs-related differential genes (NR-DEGs) were derived by
intersecting NRGs and DEGs from different subtypes and the
training cohort. Gene Ontology (GO) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) enrichment analyses of the NR-DEGs
were performed using the ‘clusterProfiler’ package (13). Adjusted p
< 0.05 were considered statistically significant.

2.5 Risk score-based subgroup analysis of
NR-reated AML patients

Univariate Cox regression analysis was performed on NRG-
DEGs to obtain candidate prognostic genes (p < 0.05, Hazard Ratio
(HR) # 1). Least Absolute Shrinkage and Selection Operator (LASSO)
regression analysis was conducted based on candidate prognostic
genes. Ten-fold cross-validation was adopted to screen prognostic
genes based on the optimal lambda value. After screening out the
prognostic genes, the risk scores of AML patients with available
survival data were calculated based on the LASSO coefficient of each
prognostic gene and the expression level of the genes. Then, AML
patients with available survival data were categorized into two risk
subgroups (low-risk vs. high-risk) based on the median risk score
calculated per sample to construct a risk model. The prognostic
reliability of the risk score and model was assessed by K-M and
receiver operating characteristic (ROC) curve (1-, 3-, 5-years),
respectively. Additionally, after cross-platform normalization of the
GSE71014 dataset using the normalizeBetweenArrays function in the
‘limma’ package, external validation of the risk model was performed.

2.6 Clinical nomogram model

Univariate Cox regression analysis was performed for Risk
score, gender, age, FAB category, and cytogenetics risk. Clinical
factors with p < 0.05 and HR # 1 were selected for proportional
hazards (PH) test. Subsequently, multivariate Cox regression
analysis was conducted on the clinical factors that passed the PH
test. Clinical factors with p < 0.05 and HR # 0 were selected as
independent prognostic factors. The nomogram containing
independent factors was drawn to predict 1-, 3-, and 5-year
survival probability of AML patients. Evaluation of the predictive
effect was done by the calibration curve. If the slope of the
calibration curve was close to 1, it indicated that the prediction
performance of the nomogram was good.

2.7 Gene set enrichment analysis

To explore the potential biological pathways involving
prognostic genes, GSEA was performed in the training set. First,
the correlation between each single prognostic gene and all genes in
the training set was calculated, and then all genes were ranked from
largest to smallest according to the correlation coefficients. Finally,
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GSEA was performed using the ‘clusterProfiler’ package (14).
Adjusted p < 0.05 were deemed statistically significant.

2.8 Immune feature estimation and
chemotherapy analysis

The relative abundance of 22 infiltrating immune cell types
across different risk groups was assessed using the CIBERSORT
algorithm (15). The Wilcoxon rank-sum test was used to compare
the infiltration differences of 22 types of immune cells between the
high-risk and low-risk groups, and the Benjamini Hochberg (BH)
method was employed to correct the p-values (adjusted p < 0.05).
Additionally, the expression levels of 20 immune checkpoint
molecules were compared between the high- and low-risk groups
(p < 0.05) (16). Standardized gene expression data were submitted
to the tumor immune dysfunction and exclusion (TIDE) official
website to obtain the TIDE score for AML, and the correlation
between TIDE and risk score was analyzed.

2.9 Potential drug prediction analysis

Using the DGIdb database, we identified potential targeted
therapies to explore prospective treatment options for the
prognostic genes associated with AML.

2.10 Statistical analysis

In this study, the Wilcoxon rank-sum test was used to compare
differences between the two groups, and the Log-rank test was
employed to evaluate survival differences among different groups. A
P-value less than 0.05 was regarded as statistically significant.

3 Results

3.1 The NRGs associated with prognosis in
AML

Consensus clustering analysis identified two distinct subtypes
among 151 AML patients: Cluster 1 (comprising 94 samples) and
Cluster 2 (comprising 57 samples), based on the expression levels of
58,387 genes (Figures 1A, B). Uniform Manifold Approximation
and Projection (UMAP) provided clear differentiation between
these 2 clusters (Supplementary Figure 1). Kaplan-Meier (K-M)
survival analysis indicated a significant difference in survival
between Cluster 1 and Cluster 2, with patients in Cluster 2
exhibiting poorer OS probabilities (Figure 1C). Additionally, the
distribution of various clinicopathological features was presented
for each subtype (Table 1), revealing notable disparities in gender
and age. Importantly, we observed that immune, stromal, and
ESTIMATE scores were significantly elevated in Cluster 2 relative
to Cluster 1 (Figure 1D).
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The consensus clustering analysis of myeloid leukaemia (AML) was conducted. (A-B-2-8)Comparison of clinical characteristics of patients with
different subtypes of acute myeloid leukaemia (AML) (C) Survival analysis of patients with different subtypes of acute myeloid leukaemia (AML). The
survival probability of Cluster 1 was higher than that of Cluster 2 (Log-rank p = 0.039). (D) Comparison of immune score and stromal score in
patients with different subtypes of acute myeloid leukaemia (AML). **** stands for p < 0.0001.

3.2 |Identification of NR-DEGs in AML

A total of 1,700 DEGs were identified between the two
clusters, comprising 760 upregulated and 940 downregulated
genes (Figures 2A, B). In a parallel analysis, 1,941 DEGs (1,075
upregulated and 866 downregulated) were detected between
normal and tumor groups (Figures 2C, D). Ultimately, we
identified 13 NR-DEGs (Figure 2E). Functional enrichment
analysis was performed to further elucidate the roles of these
NR-DEGs in AML. The top 10 items for each classification
were illustrated in a bubble diagram (Figure 2F; Supplementary
Figures 2A, B). Our analysis revealed that these genes
were primarily associated with the ‘positive regulation of
inflammatory response’ and ‘positive regulation of cytokine
production.” Furthermore, these genes were implicated in the
‘Toll-like receptor signaling pathway’ and the formation of
‘Neutrophil extracellular traps’ (Figure 2G; Supplementary
Figures 2C, D).
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3.3 NR-DEGs-based gene signature for
AML outcome prediction

Univariate regression analysis identified five significant prognostic
genes (HR # 1 & P < 0.05) within the training cohort (Figure 3A). To
extract key prognostic indicators, we conducted LASSO regression on
these five significant genes. Ultimately, three predictive genes were
identified: MPO, CCL3, and TLRS8 (Figures 3B, C). These genes were
used to establish a NETs-related prognostic signature for AML.
Patients were classified into two risk groups (high-risk and low-risk)
based on the gene signature (Figures 3D, E). Strikingly, significant
survival differences were observed between the 2 risk groups, with high-
risk patients demonstrating poorer survival outcomes (Figure 3F). To
assess the reliability of the model, the area under the curve (AUC)
values for predicting 1-, 3-, and 5-year survival rates of AML patients
were 0.68, 0.74, and 0.76, respectively, in the training set, indicating the
model’s predictive capability regarding the survival status of AML
patients (Figure 3G).
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TABLE 1 Comparison of clinical characteristics among different subtypes of acute myeloid leukemia (AML) patients.

Clinical features Category Total Clusterl Cluster2 pvalue

Gender Female 68 45 23 03712

Male 83 49 34

Age (year)Mean (SD) 54.1 (£ 16.1) 50.7 (£ 15.9) 59.9 (+ 14.7)

>=60 67 33 34 0.0005

<60 84 61 23

Vital Alive 54 39 15

Dead 97 55 42

WBC (1019/L) Mean (SD) 31.6 (+37.3) 25.1 (+ 42.2) 34.4 (+ 39.8)

<4 30 26 4 0.0118

>=4,<=10 23 12 11

>10 74 41 33

NA 24 15 9
HB Mean (SD) 9.57 (+ 1.39) 9.71 (+ 1.36) 9.33 (+ 1.40) 0.1403
PB_blast (%) Mean (SD) 38.9 (+31.2) 43.7 (£ 322) 31.0 (+ 28.1) 0.0155
Platelet (10/9/L) Mean (SD) 64.4 (+ 53.1) 62.1 (+ 49.3) 68.2 (+59.2) 0.4958
0OS (months) Mean (SD) 18.83 (+ 19.72) 21.44 (+ 20.60) 14.94 (+ 17.80) 0.0539

FAB Mo 15 12 3

M1 35 22 13

M2 38 31 7

M3 15 14 1

M4 29 8 21

M5 15 3 12

M6 2 2 0

M7 1 1 0

NA 1 1 0

Subsequently, we validated the risk model in an external dataset
(GSE71014). Consistent with our training set findings (Figures 4A,
B), patients in the high-risk group exhibited significantly poor
overall survival (Figure 4C). The AUC values for the 1-, 3-, and
5-year survival predictions were consistently greater than 0.60
(Figure 4D), demonstrating that the NETs-related gene signature
exhibited robust predictive performance in the validation cohort.

3.4 Independent prognostic analysis for
AML patients

Univariate Cox regression analyses indicated that risk score,
cytogenetic risk, and age were significant prognostic factors (p <
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0.05) (Figure 5A). The PH hypothesis test confirmed that risk score
and age were appropriate for inclusion in the multivariate Cox
regression model. These factors were validated as independent
prognostic indicators for AML (Figure 5B). A nomogram
depicting the predicted 1-, 3-, and 5-year survival rates was
generated (Figure 5C), and the calibration curve demonstrated
the accuracy and feasibility of the nomogram (Figure 5D).

3.5 The prognostic genes were related to
chemokine relevant pathways

To explore the potential roles of the identified prognostic genes,
we conducted GSEA on MPO, CCL3, and TLR8. Notably, we found
that these three prognostic genes were significantly associated with
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the ‘chemokine signaling pathway’ (Figure 6). Furthermore, MPO
(Figure 6A) and CCL3 (Figure 6B) were linked to the ‘cytokine-
cytokine receptor interaction’ pathway, while TLR8 was enriched in
the “Toll-like receptor signaling pathway’ (Figure 6C).

3.6 Immune infiltration analysis in risk
subgroups

To investigate the immune microenvironment within AML, we
analyzed the expression levels of 22 immune cell types across the 2
identified risk groups (Supplementary Figure 3). Our analysis
revealed significant disparities in the abundances of five immune
cell types, including resting mast cells, monocytes, follicular helper T
cells, activated CD4 memory T cells, and resting CD4 memory T cells
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(Figure 7A). Additionally, all immune checkpoints exhibited
differential expression between the high-risk and low-risk groups
(Figure 7B). Importantly, we observed a strong positive correlation
between the risk score and immune dysfunction, while the risk score
showed a negative association with immune exclusion (Figure 7C).

3.7 Prognostic genes-drug network

With the use of the database, we discovered 25 potential
medications that target MPO, CCL3, and TLR8 (Figure 7D). The
drugs that targeting MPO included tolmetin, asulacrine, and
doxycycline etc. The drugs that targeting TLRS included
CHEMBL512901, resiquimod, telratolimod, and motolimod. The
drugs that targeting CCL3 included infliximab and nagrestipen.
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FIGURE 5

Nomogram-Predicted Probability of 1-5 year Overall Survival

Construction and verification of the nomogram. (A) Forest plots of univariate Cox regression analyses for risk scores and clinical factors.
Cytogenetics was divided into three categories: poor, intermediate, and favorable. The intermediate group was set as the reference group, and
comparisons were made between poor vs. intermediate and favorable vs. intermediate. (B) Forest plots of multivariate Cox regression analyses for
risk scores and clinical factors. Risk score and age were identified as independent prognostic factors. (C) A nomogram was constructed based on
independent prognostic factors to predict the 1-, 3-, and 5-year overall survival probabilities of AML patients. (D) The calibration curves of the
nomogram. The slopes of 1-, 3-, and 5-year survival were all close to 1, indicating high prediction accuracy of the nomogram.

Discussion

This study presents novel insights into the prognostic gene
expression patterns, biological functions, and potential clinical
applications in AML through comprehensive bioinformatics
analyses and extensive gene expression data. Our findings not
only refine the molecular classification of AML but also reveal
promising targets for future therapeutic strategies.
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Utilizing consensus clustering analysis, we identified two distinct
subtypes—Cluster 1 and Cluster 2—among a cohort of 151 AML
patients based on the expression levels of 58,387 genes. This discovery
represents a significant advancement in the molecular classification of
AML, offering a novel approach to patient stratification driven by gene
expression profiles. PCA further validated the clear segregation of these
two clusters, corroborating existing literature on the inherent
heterogeneity of AML. K-M survival analysis indicated a marked
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FIGURE 6

The gene set enrichment analysis (GSEA) result plots of the three prognostic genes. (A) MPO (B) CCL3 (C) TLRS. .

difference in survival outcomes between the two clusters, with patients
in Cluster 2 demonstrating significantly poorer prognoses. These
findings align with prior studies (3) linking specific AML subtypes to
unfavorable outcomes. Notably, we observed significant variations in
gender and age distributions between the two clusters, underscoring the
potential impact of divergent biological characteristics and
environmental factors on AML pathogenesis. Furthermore, Cluster 2
exhibited elevated immune, stromal, and ESTIMATE scores compared
to Cluster 1, indicating a more active tumor microenvironment and a
state of immune suppression. This observation echoes the work of
Shaul and Fridlender (4), which highlights the role of tumor-associated
neutrophils in shaping the tumor microenvironment and modulating
the immune response.

In this study, we identified five significant genes through univariate
regression analysis and further validated three key prognostic genes—
Myeloperoxidase (MPO), Macrophage Inflammatory Protein-lo
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(CCL3), and Toll-Like Receptor 8 (TLR8)—using LASSO regression
analysis. These genes were leveraged to construct a novel NET's-related
prognostic signature for acute AML, marking a significant
advancement in the molecular prognostic landscape of AML. Our
prognostic model stratified AML patients into high-risk and low-risk
groups, revealing significant survival disparities between these cohorts,
with the high-risk group exhibiting markedly poorer outcomes. This
finding is consistent with existing literature that underscores the
relationship between specific gene expression patterns and AML
prognosis (6). Our research not only delineates genes associated with
AML prognosis but also formulates a robust risk model based on these
markers. The model demonstrated commendable predictive
performance, achieving AUC values of 0.68, 0.74, and 0.76 for 1-, 3-,
and 5-year survival predictions, respectively. This is in line with the
observations of Fu et al. (7), who classified AML through molecular
subtypes that correlate with distinct prognoses. Our study enhances
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Immune infiltration analysis between high and low risk groups and drug prediction for prognostic genes. (A) The differences in the infiltration levels
of 22 immune cells between the high and low-risk groups. (B) The differences in the expression of immune checkpoints between the high and low-
risk groups. (C) Scatter plots of correlation analysis between exclusion, dysfunction and the risk score. Exclusion was significantly negatively
correlated with the risk score, while dysfunction was significantly positively correlated with the risk score. (D) The prognostic gene-drug network
diagram. Potential drugs were predicted for the three prognostic genes. **** represents p < 0.0001, *** p < 0.001, on behalf of ** p < 0.01, * on
behalf of p < 0.05, ns on behalf of 0.05.

these findings by providing more precise prognostic insights through a
dedicated gene signature. Validation of the risk model in the external
dataset GSE71014 yielded results congruent with those from the
training set, further affirming the robustness and reliability of
our model.
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MPO, a member of the myeloperoxidase protein family, is an
enzyme predominantly expressed in neutrophils and is capable of
generating reactive oxygen species (ROS) with potent oxidizing
properties (8). Previous studies have shown that MPO and Fas/FasL
expression can suppress CD4+ and CD8+ T cells, contributing to
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tumor progression (17).In the context of AML, MPO expression is
closely associated with chemotherapy sensitivity, given its influence
on ROS production within AML cells, which can consequently
affect their responsiveness to chemotherapeutic agents. The findings
of our study advocate for MPO as a prognostic marker in AML and
provide a theoretical foundation for novel therapeutic strategies
targeting ROS pathways. This aligns with previous research that
emphasizes MPO’s significant role in AML prognosis. By
incorporating MPO into our prognostic model, we further
substantiate its critical involvement in treatment responses in AML.

CCL3, also referred to as Macrophage Inflammatory Protein-1lot
(MIP-10v), encodes a chemokine that directs the migration of immune
cells, particularly leukocytes, to sites of inflammation or infection (9).
In the realm of AML, the role of CCL3 is especially pertinent; it not
only facilitates immune cell recruitment but may also influence disease
progression and patient prognosis. Our study revealed that CCL3
expression in AML correlated significantly with patient risk scores
and alterations in immune cell infiltration levels. This is supported by
previous investigations demonstrating CCL3’s multifaceted role in
various cancers, particularly regarding its regulation of the immune
microenvironment in AML. Moreover, our study elucidates the direct
association between CCL3 and AML prognosis, offering new insights
for future therapeutic strategies aimed at this disease.

TLRS8 is a pattern recognition receptor that plays a pivotal role in
recognizing microbial components and activating the host’s innate
immune response (10, 11). In the context of cancer, TLRS is implicated
in the activation of antitumor immune responses. As a member of the
Toll-like receptors (TLRs) family, TLR8 interacts with damage-
associated molecular patterns (DAMPs), modulating antigen
presentation and cytokine release, thereby directly influencing T-cell
activation and the clearance of tumor cells (18). Our study indicates
that TLR8 may significantly influence the immune microenvironment
of AML, potentially impacting disease progression and treatment
strategies. This finding aligns with previous research demonstrating
TLRSs critical role in the immune response to various cancers. By
highlighting the association between TLR8 and AML prognosis, our
study offers a new theoretical foundation for the development of
immunotherapies designed to leverage the innate immune
system’s capabilities.

Univariate Cox regression analysis in this study identified risk
score, cytogenetic risk, and age as significant prognostic factors in
AML. These findings are consistent with the literature that emphasizes
the importance of age and cytogenetic features in AML prognosis (12).
For example, Nair et al. (13) noted in their review of AML treatment
strategies that age is a key determinant of prognosis, often with older
patients experiencing poorer outcomes. Furthermore, cytogenetic risk
categories are a standard component of AML prognostic classification,
closely correlated with treatment response and survival rates. Our study
not only reaffirms the significance of these traditional prognostic
factors but also establishes risk score and age as independent
prognostic indicators in AML through PH hypothesis testing. This
aligns with the findings of Kremer et al. (14, 19, 20), who reported that
the regulation of the CXCR4 signaling pathway influences apoptosis in
AML cells, potentially impacting prognosis. By providing a
comprehensive risk score, our study refines prognostic assessments,
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enabling more accurate identification of high-risk patient populations.
The generated nomogram forecasts 1-year, 3-year, and 5-year survival
rates, while the calibration curve substantiates the nomogram’s
effectiveness. The development of this prognostic tool is crucial, as it
empowers clinicians and patients to better understand treatment
outcome probabilities, aiding in informed decision-making. This
aligns with research by Waugh and Wilson (15, 21), which discussed
the role of the IL-8 pathway in cancer prognosis and treatment
response. Our study extends these insights by offering a risk score-
based prognostic model, providing a novel perspective for
individualized treatment approaches in AML.

The GSEA of MPO, CCL3 and TLRS8 revealed that these 3
prognostic genes were closely associated with the “chemokine
signaling pathway, we conducted GSEA on MPO, CCL3, and TLRS,
revealing that these 3 prognostic genes are closely linked to the
“chemokine signaling pathway.” This discovery holds significant
importance in AML research, as it elucidates potential mechanisms
through which these genes may contribute to AML progression.
Specifically, MPO and CCL3 are associated with “cytokine-cytokine
receptor interaction,” while TLR8 is enriched in the “Toll-like receptor
signaling pathway.” These results are in accordance with existing
studies that emphasize the roles of chemokines and cytokines in
shaping the immunological microenvironment and influencing
disease progression in AML (16, 22).

In this study, we examined the immune microenvironment of
AML patients by contrasting high-risk and low-risk subgroups,
focusing on the expression levels of 22 immune cell types. Our
analysis revealed significant differences in the abundances of five
immune cell populations: resting mast cells, monocytes, follicular
helper T cells, activated CD4 memory T cells, and resting CD4
memory T cells. These findings underscore the complexity of the
immune landscape in AML and highlight the potential significance of
various immune cell types in AML prognosis. Furthermore, we noted
variations in the expression of immune checkpoints between the high-
risk and low-risk groups, suggesting possible associations with immune
escape mechanisms. Our study not only identifies the differential
expression of immune cells but also correlates these findings with the
risk scores of AML patients. This is in line with the work of Anderson
et al. (23), who reported the expression of C-C chemokine receptor 1 in
hematopoietic neoplasms, which may facilitate immune cell
recruitment and influence tumor microenvironment regulation. Our
research refines these observations by elucidating the relationship
between specific immune cell subsets and AML risk scores, offering a
fresh perspective for understanding the immune microenvironment in
AML. Such insights can inform future treatment strategies; for
instance, therapies targeting specific immune cell populations might
effectively modulate the immune response, thereby enhancing the
prognosis for AML patients. Our findings are corroborated by the
research of Smits et al. (24), who demonstrated that the Toll-like
receptor 7/8 agonist resiquimod boosts the immunostimulatory
capacity of human AML cells, likely correlating with the differences
in immune checkpoint expression identified in our study.

Through univariate regression analysis, five significant genes
were identified, and 3 key prognostic genes were further confirmed
—MPO, CCL3, and TLR8 —using LASSO regression analysis. These
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genes were utilized to construct a NETs-related prognostic signature
for AML, an innovative finding in the molecular prognostic research
of AML. This prognostic model categorized AML patients into high-
risk and low-risk groups, revealing significant survival differences
between the 2 with the high-risk group having poorer outcomes. This
result is consistent with existing studies that emphasize the
association between specific gene expression patterns and AML
prognosis (6). Our study not only identified genes associated with
AML prognosis but also developed a risk model based on these genes.
The model demonstrated good predictive performance, with AUC
values of 0.68, 0.74, and 0.76 for 1-, 3-, and 5-year survival
predictions, respectively. This is in agreement with the findings of
Fu et al. (7), who classified AML through molecular subtypes and
found these subtypes to be associated with different prognoses. Our
study further refined these findings by providing more precise
prognostic information through a specific gene signature.
Validation of the risk model in an external dataset, GSE71014,
yielded results consistent with the training set, further confirming
the robustness and reliability of our model.

The significance of this study lies in the identification of a novel
gene signature associated with prognosis in AML, as well as insights
into how these genes regulate the immune microenvironment and
influence disease progression. This discovery provides new molecular
targets for personalized treatment strategies in AML, thereby
enhancing patient treatment responses and outcomes. However, our
study has certain limitations, including its retrospective design and
reliance on publicly available datasets, which may introduce biases that
affect the generalizability of our findings. Therefore, future research
should aim to incorporate prospective study designs and larger, more
diverse patient cohorts to validate our prognostic models. Meanwhile,
verification is carried out in a sample queue containing rich stroma.
Additionally, experimental studies, including in vitro and in vivo assays,
are necessary to confirm the roles of MPO, CCL3, and TLR8 in NET's
and immune regulation in AML (25, 26). Clinical trials should also be
considered to evaluate the practical utility of our prognostic model in
guiding treatment decisions and improving patient outcomes (27, 28).

5 Conclusion

We identified 3 prognostic genes: MPO, CCL3, and TLRS. The
expression of MPO is closely associated with chemotherapy
sensitivity, potentially influencing the response of leukemia cells
to chemotherapeutic agents by regulating the production of ROS.
CCL3 expression is significantly correlated with patient risk scores
and levels of immune cell infiltration, which may affect disease
progression and patient prognosis by modulating immune cell
infiltration in the tumor microenvironment, potentially playing a
role in immune evasion and progression of AML. TLR8 may impact
the tumor microenvironment by activating immune responses,
thereby influencing disease progression and treatment strategies.
The expression of TLR8 is closely related to the regulation of the
immune microenvironment, which may provide a theoretical basis
for developing new immunotherapeutic strategies. This study
provides a novel prognostic signature for AML, offering insights
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into the molecular mechanisms underlying the disease and potential
avenues for targeted therapy. Future research should focus on
validating these findings in larger and more diverse cohorts, as
well as exploring the functional roles of the identified genes in the
progression of AML and the response to treatment.
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