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Background: Acute myeloid leukemia (AML) is a hematological malignancy with

a high incidence of febrile neutropenia during the first two treatment cycles. This

study aims to develop a gene signature related to neutrophil extracellular traps

(NETs) to enhance understanding of AML mechanisms and identify potential

prognostic biomarkers.

Methods: A consistent cluster analysis was conducted on 151 AML patients from

the TCGA dataset. A differential analysis was performed to identify the

differentially expressed genes (DEGs) specific to different subtypes and the

training cohort (normal vs tumour). The NETs-related differentially expressed

genes (NR-DEGs) were obtained through the overlapping of the two sets of

differentially expressed genes. Univariate Cox and Least absolute shrinkage and

selection operator (LASSO) regression analysis were employed to construct a

NETs-related AML prognostic signature. Furthermore, an immune feature

estimation and functional enrichment analysis was conducted between the

two risk subgroups.

Results: Two distinct AML subtypes were identified, exhibitingmarkedly disparate

survival outcomes. A total of 1,700 and 1,941 DEGs were identified in the different

subtypes and training cohort (normal vs. tumour), respectively. Thirteen NR-

DEGs were identified. Subsequently, a NETs-related prognostic signature was

constructed based on the 3 prognostic genes (MPO, CCL3, and TLR8). An

independent prognostic analysis indicated that the risk score and age could be

employed as independent prognostic factors. Our findings revealed the presence

of five markedly differentially expressed immune cells between the two risk

subgroups. Ultimately, it was determined that all three genes were associated

with the ‘chemokine signalling pathway’.
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Conclusion: The prognostic signature comprised ofMPO,CCL3, and TLR8 based

on NETs was established, which provided theoretical basis and reference value

for the research of AML.
KEYWORDS

acute myeloid leukemia, neutrophil extracellular trap, prognostic signature, risk
subgroups, tumor microenvironment
1 Introduction

Acute myeloid leukemia (AML) is a clonal hematopoietic stem

cell disorder marked by the rapid proliferation of immature myeloid

cells (1). The cornerstone of AML treatment has traditionally been

chemotherapy; however, many patients experience drug resistance

and high relapse rates, contributing to persistently poor overall

survival outcomes (2). Recently, advancements in therapeutic

strategies, including molecularly targeted therapies, specific

antibodies, and immune checkpoint inhibitors, have aimed to

address these resistance issues and enhance treatment efficacy (3).

Furthermore, research has identified ALOX5AP as a promising

prognostic marker in AML, indicating its potential role as a

therapeutic target (4). Despite these advancements, the aggressive

nature of AML and the scarcity of effective prognostic markers

present significant challenges in improving patient survival rates.

Thus, identifying new prognostic genes is crucial for monitoring

patient outcomes and understanding the pathogenesis of AML.

The immune system’s role in AML has become a critical area of

research, with immune dysregulation identified as a key factor in

disease progression and treatment resistance (5). Neutrophils, the

predominant immune cells in the bone marrow and peripheral

blood, have a multifaceted role in cancer initiation, progression, and

dissemination. In particular, neutrophil extracellular traps (NETs),

which consist of decondensed chromatin enriched with

antimicrobial proteins, have emerged as significant players in

inflammation and cancer advancement (6). In the context of

AML, NETs have been shown to modulate the immune response

and may profoundly influence patient outcomes (7). However, the

genes regulating NET formation and their prognostic implications

in AML remain poorly understood. This knowledge gap has

prompted our investigation into the potential of NETs-related

genes as innovative prognostic biomarkers in AML (8).

In this study, we aimed to identify a NETs-related prognostic

signature that could predict prognosis in AML patients By

leveraging bioinformatics analyses on large-scale gene expression

datasets, we sought to identify prognostic genes related to NETs in

AML, establish a prognostic model and uncover the molecular

underpinnings of these genes in AML and explore their potential as

therapeutic targets. These findings contribute to offer a new

perspective on the role of the immune system in AML prognosis.
02
2 Materials and methods

2.1 Data source

The TCGA database (https://www.cancer.gov/ccg/research/

genome-sequencing/tcga) was utilized to obtain gene expression

profiles from 151 blood samples of AML patients. Additionally,

RNA sequencing data from 386 healthy peripheral blood samples

were sourced from the GTEx database (https://commonfund.

nih.gov/GTEx). The merged dataset from these sources was

designated as the training cohort (batch effects were corrected for

TCGA and GTEx data through the ComBat method). For validation

of the risk model, gene expression data from the GSE71014 dataset

(platform: GPL10558) were collected from the GEO database

(https://www.ncbi.nlm.nih.gov/geo/) , which included 104 bone

marrow samples. A total of 136 neutrophil extracellular trap

(NET)-related genes (NRGs) were derived from the existing

literature (9).
2.2 Consensus clustering of the NRGs
model

The ‘ConsensusClusterPlus’ package was employed to conduct

consensus cluster analysis on AML samples (N=151), utilizing the

expression levels of all genes available in the TCGA database.

Additionally, the ‘survminer’ package (10) was utilized to analyze

Kaplan-Meier (KM) survival curves, focusing on overall survival

(OS) across different subtypes (p <0.05). Subsequently, the

‘estimate’ package was implemented to compare Immune,

Stromal, and ESTIMATE scores among the various subtypes via

the Wilcoxon rank-sum test (p <0.05) (11).
2.3 Differential analysis

The ‘DESeq2’ package (12) was utilized to identify differentially

expressed genes (DEGs) across different subtypes and within the

training cohort (normal vs. tumor). The criteria for significance

were set as |log2FC| > 1 and adjusted p < 0.05. Both volcano plots

and heat maps were generated to illustrate the identified DEGs.
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2.4 Gene functional enrichment analysis

NETs-related differential genes (NR-DEGs) were derived by

intersecting NRGs and DEGs from different subtypes and the

training cohort. Gene Ontology (GO) and Kyoto Encyclopedia of

Genes and Genomes (KEGG) enrichment analyses of the NR-DEGs

were performed using the ‘clusterProfiler’ package (13). Adjusted p

< 0.05 were considered statistically significant.
2.5 Risk score-based subgroup analysis of
NR-reated AML patients

Univariate Cox regression analysis was performed on NRG-

DEGs to obtain candidate prognostic genes (p < 0.05, Hazard Ratio

(HR) ≠ 1). Least Absolute Shrinkage and Selection Operator (LASSO)

regression analysis was conducted based on candidate prognostic

genes. Ten-fold cross-validation was adopted to screen prognostic

genes based on the optimal lambda value. After screening out the

prognostic genes, the risk scores of AML patients with available

survival data were calculated based on the LASSO coefficient of each

prognostic gene and the expression level of the genes. Then, AML

patients with available survival data were categorized into two risk

subgroups (low-risk vs. high-risk) based on the median risk score

calculated per sample to construct a risk model. The prognostic

reliability of the risk score and model was assessed by K-M and

receiver operating characteristic (ROC) curve (1-, 3-, 5-years),

respectively. Additionally, after cross-platform normalization of the

GSE71014 dataset using the normalizeBetweenArrays function in the

‘limma’ package, external validation of the risk model was performed.
2.6 Clinical nomogram model

Univariate Cox regression analysis was performed for Risk

score, gender, age, FAB category, and cytogenetics risk. Clinical

factors with p < 0.05 and HR ≠ 1 were selected for proportional

hazards (PH) test. Subsequently, multivariate Cox regression

analysis was conducted on the clinical factors that passed the PH

test. Clinical factors with p < 0.05 and HR ≠ 0 were selected as

independent prognostic factors. The nomogram containing

independent factors was drawn to predict 1-, 3-, and 5-year

survival probability of AML patients. Evaluation of the predictive

effect was done by the calibration curve. If the slope of the

calibration curve was close to 1, it indicated that the prediction

performance of the nomogram was good.
2.7 Gene set enrichment analysis

To explore the potential biological pathways involving

prognostic genes, GSEA was performed in the training set. First,

the correlation between each single prognostic gene and all genes in

the training set was calculated, and then all genes were ranked from

largest to smallest according to the correlation coefficients. Finally,
Frontiers in Immunology 03
GSEA was performed using the ‘clusterProfiler’ package (14).

Adjusted p < 0.05 were deemed statistically significant.
2.8 Immune feature estimation and
chemotherapy analysis

The relative abundance of 22 infiltrating immune cell types

across different risk groups was assessed using the CIBERSORT

algorithm (15). The Wilcoxon rank-sum test was used to compare

the infiltration differences of 22 types of immune cells between the

high-risk and low-risk groups, and the Benjamini Hochberg (BH)

method was employed to correct the p-values (adjusted p < 0.05).

Additionally, the expression levels of 20 immune checkpoint

molecules were compared between the high- and low-risk groups

(p < 0.05) (16). Standardized gene expression data were submitted

to the tumor immune dysfunction and exclusion (TIDE) official

website to obtain the TIDE score for AML, and the correlation

between TIDE and risk score was analyzed.
2.9 Potential drug prediction analysis

Using the DGIdb database, we identified potential targeted

therapies to explore prospective treatment options for the

prognostic genes associated with AML.
2.10 Statistical analysis

In this study, the Wilcoxon rank-sum test was used to compare

differences between the two groups, and the Log-rank test was

employed to evaluate survival differences among different groups. A

P-value less than 0.05 was regarded as statistically significant.
3 Results

3.1 The NRGs associated with prognosis in
AML

Consensus clustering analysis identified two distinct subtypes

among 151 AML patients: Cluster 1 (comprising 94 samples) and

Cluster 2 (comprising 57 samples), based on the expression levels of

58,387 genes (Figures 1A, B). Uniform Manifold Approximation

and Projection (UMAP) provided clear differentiation between

these 2 clusters (Supplementary Figure 1). Kaplan-Meier (K-M)

survival analysis indicated a significant difference in survival

between Cluster 1 and Cluster 2, with patients in Cluster 2

exhibiting poorer OS probabilities (Figure 1C). Additionally, the

distribution of various clinicopathological features was presented

for each subtype (Table 1), revealing notable disparities in gender

and age. Importantly, we observed that immune, stromal, and

ESTIMATE scores were significantly elevated in Cluster 2 relative

to Cluster 1 (Figure 1D).
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3.2 Identification of NR-DEGs in AML

A total of 1,700 DEGs were identified between the two

clusters, comprising 760 upregulated and 940 downregulated

genes (Figures 2A, B). In a parallel analysis, 1,941 DEGs (1,075

upregulated and 866 downregulated) were detected between

normal and tumor groups (Figures 2C, D). Ultimately, we

identified 13 NR-DEGs (Figure 2E). Functional enrichment

analysis was performed to further elucidate the roles of these

NR-DEGs in AML. The top 10 items for each classification

were illustrated in a bubble diagram (Figure 2F; Supplementary

Figures 2A, B). Our analysis revealed that these genes

were primarily associated with the ‘positive regulation of

inflammatory response’ and ‘positive regulation of cytokine

production.’ Furthermore, these genes were implicated in the

‘Toll-like receptor signaling pathway’ and the formation of

‘Neutrophil extracellular traps’ (Figure 2G; Supplementary

Figures 2C, D).
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3.3 NR-DEGs-based gene signature for
AML outcome prediction

Univariate regression analysis identified five significant prognostic

genes (HR ≠ 1 & P < 0.05) within the training cohort (Figure 3A). To

extract key prognostic indicators, we conducted LASSO regression on

these five significant genes. Ultimately, three predictive genes were

identified: MPO, CCL3, and TLR8 (Figures 3B, C). These genes were

used to establish a NETs-related prognostic signature for AML.

Patients were classified into two risk groups (high-risk and low-risk)

based on the gene signature (Figures 3D, E). Strikingly, significant

survival differences were observed between the 2 risk groups, with high-

risk patients demonstrating poorer survival outcomes (Figure 3F). To

assess the reliability of the model, the area under the curve (AUC)

values for predicting 1-, 3-, and 5-year survival rates of AML patients

were 0.68, 0.74, and 0.76, respectively, in the training set, indicating the

model’s predictive capability regarding the survival status of AML

patients (Figure 3G).
FIGURE 1

The consensus clustering analysis of myeloid leukaemia (AML) was conducted. (A-B-2-8)Comparison of clinical characteristics of patients with
different subtypes of acute myeloid leukaemia (AML) (C) Survival analysis of patients with different subtypes of acute myeloid leukaemia (AML). The
survival probability of Cluster 1 was higher than that of Cluster 2 (Log-rank p = 0.039). (D) Comparison of immune score and stromal score in
patients with different subtypes of acute myeloid leukaemia (AML). **** stands for p < 0.0001.
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Subsequently, we validated the risk model in an external dataset

(GSE71014). Consistent with our training set findings (Figures 4A,

B), patients in the high-risk group exhibited significantly poor

overall survival (Figure 4C). The AUC values for the 1-, 3-, and

5-year survival predictions were consistently greater than 0.60

(Figure 4D), demonstrating that the NETs-related gene signature

exhibited robust predictive performance in the validation cohort.
3.4 Independent prognostic analysis for
AML patients

Univariate Cox regression analyses indicated that risk score,

cytogenetic risk, and age were significant prognostic factors (p <
Frontiers in Immunology 05
0.05) (Figure 5A). The PH hypothesis test confirmed that risk score

and age were appropriate for inclusion in the multivariate Cox

regression model. These factors were validated as independent

prognostic indicators for AML (Figure 5B). A nomogram

depicting the predicted 1-, 3-, and 5-year survival rates was

generated (Figure 5C), and the calibration curve demonstrated

the accuracy and feasibility of the nomogram (Figure 5D).
3.5 The prognostic genes were related to
chemokine relevant pathways

To explore the potential roles of the identified prognostic genes,

we conducted GSEA on MPO, CCL3, and TLR8. Notably, we found

that these three prognostic genes were significantly associated with
TABLE 1 Comparison of clinical characteristics among different subtypes of acute myeloid leukemia (AML) patients.

Clinical features Category Total Cluster1 Cluster2 pvalue

Gender Female 68 45 23 0.3712

Male 83 49 34

Age (year)Mean (SD) 54.1 (± 16.1) 50.7 (± 15.9) 59.9 (± 14.7)

>=60 67 33 34 0.0005

<60 84 61 23

Vital Alive 54 39 15

Dead 97 55 42

WBC (10^9/L) Mean (SD) 31.6 (± 37.3) 25.1 (± 42.2) 34.4 (± 39.8)

<4 30 26 4 0.0118

>=4,<=10 23 12 11

>10 74 41 33

NA 24 15 9

HB Mean (SD) 9.57 (± 1.39) 9.71 (± 1.36) 9.33 (± 1.40) 0.1403

PB_blast (%) Mean (SD) 38.9 (± 31.2) 43.7 (± 32.2) 31.0 (± 28.1) 0.0155

Platelet (10^9/L) Mean (SD) 64.4 (± 53.1) 62.1 (± 49.3) 68.2 (± 59.2) 0.4958

OS (months) Mean (SD) 18.83 (± 19.72) 21.44 (± 20.60) 14.94 (± 17.80) 0.0539

FAB M0 15 12 3

M1 35 22 13

M2 38 31 7

M3 15 14 1

M4 29 8 21

M5 15 3 12

M6 2 2 0

M7 1 1 0

NA 1 1 0
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FIGURE 2

The identification and enrichment analysis of NR-DEGs. (A) The volcano plot of differentially expressed genes (DEGs) between Cluster 1 and Cluster
2. (B) The expression heatmap of DEGs between Cluster 1 and Cluster 2. (C) Volcano plots were generated to visualize the DEGs between AML and
control samples. (D) Differential gene expression profiles in AML vs. normal tissues (E) A Venn diagram was constructed, revealing that a total of 13
NR-DEGs were identified. (F, G) Functional enrichment analyses were performed on the NR-DEGs through (GO) and Kyoto Encyclopedia of Genes
and Genomes KEGG pathway analyses.
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FIGURE 3

Identification of prognostic genes and construction of a risk model were performed. (A) Forest plots for univariate Cox regression analysis of NR-
DEGs. Univariate Cox regression analysis identified five significant prognostic genes. (B, C) Least absolute shrinkage and selection operator (LASSO)
analysis was performed on the five genes obtained from univariate Cox regression analysis. (D) Risk score distribution in patients: high vs. low risk
groups over time. (E) Overall survival distribution of patients by risk score in the training dataset. (F) Kaplan-Meier survival curves for high and low risk
patients based on risk scores. The survival probability of the low-risk group was higher than that of the high-risk group (Log-rank p = 0.00017).
(G) ROC Curves for model performance at 1, 3, and 5 years using training data. The AUC values were all greater than 0.6.
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the ‘chemokine signaling pathway’ (Figure 6). Furthermore, MPO

(Figure 6A) and CCL3 (Figure 6B) were linked to the ‘cytokine-

cytokine receptor interaction’ pathway, while TLR8 was enriched in

the ‘Toll-like receptor signaling pathway’ (Figure 6C).
3.6 Immune infiltration analysis in risk
subgroups

To investigate the immune microenvironment within AML, we

analyzed the expression levels of 22 immune cell types across the 2

identified risk groups (Supplementary Figure 3). Our analysis

revealed significant disparities in the abundances of five immune

cell types, including resting mast cells, monocytes, follicular helper T

cells, activated CD4memory T cells, and resting CD4 memory T cells
Frontiers in Immunology 08
(Figure 7A). Additionally, all immune checkpoints exhibited

differential expression between the high-risk and low-risk groups

(Figure 7B). Importantly, we observed a strong positive correlation

between the risk score and immune dysfunction, while the risk score

showed a negative association with immune exclusion (Figure 7C).
3.7 Prognostic genes-drug network

With the use of the database, we discovered 25 potential

medications that target MPO, CCL3, and TLR8 (Figure 7D). The

drugs that targeting MPO included tolmetin, asulacrine, and

doxycycline etc. The drugs that targeting TLR8 included

CHEMBL512901, resiquimod, telratolimod, and motolimod. The

drugs that targeting CCL3 included infliximab and nagrestipen.
FIGURE 4

Verify the risk model in verification dataset (GSE71014). (A) Risk score distribution among patients in the verification dataset. (B) Overall survival
distribution of patients in the verification dataset by risk score. (C) Kaplan-Meier survival curves for high and low risk patients based on risk scores in
the verification dataset. Consistent with the results of the training set, the survival probability of the low-risk group was higher than that of the high-
risk group.n (D) ROC curves for model performance at 1, 3, and 5 years using verification data.
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4 Discussion

This study presents novel insights into the prognostic gene

expression patterns, biological functions, and potential clinical

applications in AML through comprehensive bioinformatics

analyses and extensive gene expression data. Our findings not

only refine the molecular classification of AML but also reveal

promising targets for future therapeutic strategies.
Frontiers in Immunology 09
Utilizing consensus clustering analysis, we identified two distinct

subtypes—Cluster 1 and Cluster 2—among a cohort of 151 AML

patients based on the expression levels of 58,387 genes. This discovery

represents a significant advancement in the molecular classification of

AML, offering a novel approach to patient stratification driven by gene

expression profiles. PCA further validated the clear segregation of these

two clusters, corroborating existing literature on the inherent

heterogeneity of AML. K-M survival analysis indicated a marked
FIGURE 5

Construction and verification of the nomogram. (A) Forest plots of univariate Cox regression analyses for risk scores and clinical factors.
Cytogenetics was divided into three categories: poor, intermediate, and favorable. The intermediate group was set as the reference group, and
comparisons were made between poor vs. intermediate and favorable vs. intermediate. (B) Forest plots of multivariate Cox regression analyses for
risk scores and clinical factors. Risk score and age were identified as independent prognostic factors. (C) A nomogram was constructed based on
independent prognostic factors to predict the 1-, 3-, and 5-year overall survival probabilities of AML patients. (D) The calibration curves of the
nomogram. The slopes of 1-, 3-, and 5-year survival were all close to 1, indicating high prediction accuracy of the nomogram.
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difference in survival outcomes between the two clusters, with patients

in Cluster 2 demonstrating significantly poorer prognoses. These

findings align with prior studies (3) linking specific AML subtypes to

unfavorable outcomes. Notably, we observed significant variations in

gender and age distributions between the two clusters, underscoring the

potential impact of divergent biological characteristics and

environmental factors on AML pathogenesis. Furthermore, Cluster 2

exhibited elevated immune, stromal, and ESTIMATE scores compared

to Cluster 1, indicating a more active tumor microenvironment and a

state of immune suppression. This observation echoes the work of

Shaul and Fridlender (4), which highlights the role of tumor-associated

neutrophils in shaping the tumor microenvironment and modulating

the immune response.

In this study, we identified five significant genes through univariate

regression analysis and further validated three key prognostic genes—

Myeloperoxidase (MPO), Macrophage Inflammatory Protein-1a
Frontiers in Immunology 10
(CCL3), and Toll-Like Receptor 8 (TLR8)—using LASSO regression

analysis. These genes were leveraged to construct a novel NETs-related

prognostic signature for acute AML, marking a significant

advancement in the molecular prognostic landscape of AML. Our

prognostic model stratified AML patients into high-risk and low-risk

groups, revealing significant survival disparities between these cohorts,

with the high-risk group exhibiting markedly poorer outcomes. This

finding is consistent with existing literature that underscores the

relationship between specific gene expression patterns and AML

prognosis (6). Our research not only delineates genes associated with

AML prognosis but also formulates a robust risk model based on these

markers. The model demonstrated commendable predictive

performance, achieving AUC values of 0.68, 0.74, and 0.76 for 1-, 3-,

and 5-year survival predictions, respectively. This is in line with the

observations of Fu et al. (7), who classified AML through molecular

subtypes that correlate with distinct prognoses. Our study enhances
FIGURE 6

The gene set enrichment analysis (GSEA) result plots of the three prognostic genes. (A) MPO (B) CCL3 (C) TLR8. .
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these findings by providing more precise prognostic insights through a

dedicated gene signature. Validation of the risk model in the external

dataset GSE71014 yielded results congruent with those from the

training set, further affirming the robustness and reliability of

our model.
Frontiers in Immunology 11
MPO, a member of the myeloperoxidase protein family, is an

enzyme predominantly expressed in neutrophils and is capable of

generating reactive oxygen species (ROS) with potent oxidizing

properties (8). Previous studies have shown thatMPO and Fas/FasL

expression can suppress CD4+ and CD8+ T cells, contributing to
FIGURE 7

Immune infiltration analysis between high and low risk groups and drug prediction for prognostic genes. (A) The differences in the infiltration levels
of 22 immune cells between the high and low-risk groups. (B) The differences in the expression of immune checkpoints between the high and low-
risk groups. (C) Scatter plots of correlation analysis between exclusion, dysfunction and the risk score. Exclusion was significantly negatively
correlated with the risk score, while dysfunction was significantly positively correlated with the risk score. (D) The prognostic gene-drug network
diagram. Potential drugs were predicted for the three prognostic genes. **** represents p < 0.0001, *** p < 0.001, on behalf of ** p < 0.01, * on
behalf of p < 0.05, ns on behalf of 0.05.
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tumor progression (17).In the context of AML, MPO expression is

closely associated with chemotherapy sensitivity, given its influence

on ROS production within AML cells, which can consequently

affect their responsiveness to chemotherapeutic agents. The findings

of our study advocate forMPO as a prognostic marker in AML and

provide a theoretical foundation for novel therapeutic strategies

targeting ROS pathways. This aligns with previous research that

emphasizes MPO’s significant role in AML prognosis. By

incorporating MPO into our prognostic model, we further

substantiate its critical involvement in treatment responses in AML.

CCL3, also referred to as Macrophage Inflammatory Protein-1a
(MIP-1a), encodes a chemokine that directs the migration of immune

cells, particularly leukocytes, to sites of inflammation or infection (9).

In the realm of AML, the role of CCL3 is especially pertinent; it not

only facilitates immune cell recruitment but may also influence disease

progression and patient prognosis. Our study revealed that CCL3

expression in AML correlated significantly with patient risk scores

and alterations in immune cell infiltration levels. This is supported by

previous investigations demonstrating CCL3’s multifaceted role in

various cancers, particularly regarding its regulation of the immune

microenvironment in AML. Moreover, our study elucidates the direct

association between CCL3 and AML prognosis, offering new insights

for future therapeutic strategies aimed at this disease.

TLR8 is a pattern recognition receptor that plays a pivotal role in

recognizing microbial components and activating the host’s innate

immune response (10, 11). In the context of cancer, TLR8 is implicated

in the activation of antitumor immune responses. As a member of the

Toll-like receptors (TLRs) family, TLR8 interacts with damage-

associated molecular patterns (DAMPs), modulating antigen

presentation and cytokine release, thereby directly influencing T-cell

activation and the clearance of tumor cells (18). Our study indicates

that TLR8 may significantly influence the immune microenvironment

of AML, potentially impacting disease progression and treatment

strategies. This finding aligns with previous research demonstrating

TLR8’s critical role in the immune response to various cancers. By

highlighting the association between TLR8 and AML prognosis, our

study offers a new theoretical foundation for the development of

immunotherapies designed to leverage the innate immune

system’s capabilities.

Univariate Cox regression analysis in this study identified risk

score, cytogenetic risk, and age as significant prognostic factors in

AML. These findings are consistent with the literature that emphasizes

the importance of age and cytogenetic features in AML prognosis (12).

For example, Nair et al. (13) noted in their review of AML treatment

strategies that age is a key determinant of prognosis, often with older

patients experiencing poorer outcomes. Furthermore, cytogenetic risk

categories are a standard component of AML prognostic classification,

closely correlated with treatment response and survival rates. Our study

not only reaffirms the significance of these traditional prognostic

factors but also establishes risk score and age as independent

prognostic indicators in AML through PH hypothesis testing. This

aligns with the findings of Kremer et al. (14, 19, 20), who reported that

the regulation of the CXCR4 signaling pathway influences apoptosis in

AML cells, potentially impacting prognosis. By providing a

comprehensive risk score, our study refines prognostic assessments,
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enabling more accurate identification of high-risk patient populations.

The generated nomogram forecasts 1-year, 3-year, and 5-year survival

rates, while the calibration curve substantiates the nomogram’s

effectiveness. The development of this prognostic tool is crucial, as it

empowers clinicians and patients to better understand treatment

outcome probabilities, aiding in informed decision-making. This

aligns with research by Waugh and Wilson (15, 21), which discussed

the role of the IL-8 pathway in cancer prognosis and treatment

response. Our study extends these insights by offering a risk score-

based prognostic model, providing a novel perspective for

individualized treatment approaches in AML.

The GSEA of MPO, CCL3 and TLR8 revealed that these 3

prognostic genes were closely associated with the “chemokine

signaling pathway, we conducted GSEA on MPO, CCL3, and TLR8,

revealing that these 3 prognostic genes are closely linked to the

“chemokine signaling pathway.” This discovery holds significant

importance in AML research, as it elucidates potential mechanisms

through which these genes may contribute to AML progression.

Specifically, MPO and CCL3 are associated with “cytokine-cytokine

receptor interaction,” while TLR8 is enriched in the “Toll-like receptor

signaling pathway.” These results are in accordance with existing

studies that emphasize the roles of chemokines and cytokines in

shaping the immunological microenvironment and influencing

disease progression in AML (16, 22).

In this study, we examined the immune microenvironment of

AML patients by contrasting high-risk and low-risk subgroups,

focusing on the expression levels of 22 immune cell types. Our

analysis revealed significant differences in the abundances of five

immune cell populations: resting mast cells, monocytes, follicular

helper T cells, activated CD4 memory T cells, and resting CD4

memory T cells. These findings underscore the complexity of the

immune landscape in AML and highlight the potential significance of

various immune cell types in AML prognosis. Furthermore, we noted

variations in the expression of immune checkpoints between the high-

risk and low-risk groups, suggesting possible associations with immune

escape mechanisms. Our study not only identifies the differential

expression of immune cells but also correlates these findings with the

risk scores of AML patients. This is in line with the work of Anderson

et al. (23), who reported the expression of C-C chemokine receptor 1 in

hematopoietic neoplasms, which may facilitate immune cell

recruitment and influence tumor microenvironment regulation. Our

research refines these observations by elucidating the relationship

between specific immune cell subsets and AML risk scores, offering a

fresh perspective for understanding the immune microenvironment in

AML. Such insights can inform future treatment strategies; for

instance, therapies targeting specific immune cell populations might

effectively modulate the immune response, thereby enhancing the

prognosis for AML patients. Our findings are corroborated by the

research of Smits et al. (24), who demonstrated that the Toll-like

receptor 7/8 agonist resiquimod boosts the immunostimulatory

capacity of human AML cells, likely correlating with the differences

in immune checkpoint expression identified in our study.

Through univariate regression analysis, five significant genes

were identified, and 3 key prognostic genes were further confirmed

—MPO, CCL3, and TLR8 —using LASSO regression analysis. These
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genes were utilized to construct a NETs-related prognostic signature

for AML, an innovative finding in the molecular prognostic research

of AML. This prognostic model categorized AML patients into high-

risk and low-risk groups, revealing significant survival differences

between the 2 with the high-risk group having poorer outcomes. This

result is consistent with existing studies that emphasize the

association between specific gene expression patterns and AML

prognosis (6). Our study not only identified genes associated with

AML prognosis but also developed a risk model based on these genes.

The model demonstrated good predictive performance, with AUC

values of 0.68, 0.74, and 0.76 for 1-, 3-, and 5-year survival

predictions, respectively. This is in agreement with the findings of

Fu et al. (7), who classified AML through molecular subtypes and

found these subtypes to be associated with different prognoses. Our

study further refined these findings by providing more precise

prognostic information through a specific gene signature.

Validation of the risk model in an external dataset, GSE71014,

yielded results consistent with the training set, further confirming

the robustness and reliability of our model.

The significance of this study lies in the identification of a novel

gene signature associated with prognosis in AML, as well as insights

into how these genes regulate the immune microenvironment and

influence disease progression. This discovery provides new molecular

targets for personalized treatment strategies in AML, thereby

enhancing patient treatment responses and outcomes. However, our

study has certain limitations, including its retrospective design and

reliance on publicly available datasets, which may introduce biases that

affect the generalizability of our findings. Therefore, future research

should aim to incorporate prospective study designs and larger, more

diverse patient cohorts to validate our prognostic models. Meanwhile,

verification is carried out in a sample queue containing rich stroma.

Additionally, experimental studies, including in vitro and in vivo assays,

are necessary to confirm the roles of MPO, CCL3, and TLR8 in NETs

and immune regulation in AML (25, 26). Clinical trials should also be

considered to evaluate the practical utility of our prognostic model in

guiding treatment decisions and improving patient outcomes (27, 28).
5 Conclusion

We identified 3 prognostic genes: MPO, CCL3, and TLR8. The

expression of MPO is closely associated with chemotherapy

sensitivity, potentially influencing the response of leukemia cells

to chemotherapeutic agents by regulating the production of ROS.

CCL3 expression is significantly correlated with patient risk scores

and levels of immune cell infiltration, which may affect disease

progression and patient prognosis by modulating immune cell

infiltration in the tumor microenvironment, potentially playing a

role in immune evasion and progression of AML. TLR8may impact

the tumor microenvironment by activating immune responses,

thereby influencing disease progression and treatment strategies.

The expression of TLR8 is closely related to the regulation of the

immune microenvironment, which may provide a theoretical basis

for developing new immunotherapeutic strategies. This study

provides a novel prognostic signature for AML, offering insights
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into the molecular mechanisms underlying the disease and potential

avenues for targeted therapy. Future research should focus on

validating these findings in larger and more diverse cohorts, as

well as exploring the functional roles of the identified genes in the

progression of AML and the response to treatment.
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UMAP analysis plots of different subtypes.
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The GO analysis results of NR-DEGs. (A) The GO enrichment string graph of

DEGs between Cluster 1 and Cluster 2. (B) The GO enrichment string graph of
DEGs between AML samples and control samples. (C) Analysis of toll-like

receptor signaling pathway and neutrophil extracellular trap formation. (D)
Gene expression analysis of toll-like receptor signaling pathway and

neutrophil extracellular trap formation.
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The proportion of 22 levels of immune cell infiltration in the samples.
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