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Background: Cytomegalovirus (CMV) infection is a relevant threat to heart-

transplanted patients during the first year after surgery, leading to increased

morbidity and, in some cases, mortality. This proof-of-concept study aims to

assess the transcriptomic profile of CMV infection in cardiac transplanted

patients as a new diagnostic approach to discriminate infection and Acute

Cellular Rejection (ACR) on EMB specimens.

Methods: We performed a microarray-based messenger RNA (mRNA) and

micro-RNA (miRNA) profiling. We analyzed three patient groups in the setting

of CMV viremia and inflammatory infiltrate: a control group (n=5), an ACR group

(n=5), and an infection group (n=6). Differentially expressed mRNA and miRNA

were further investigated through bioinformatic pathway analysis.

Results: Focusing on infection vs rejection comparison, we investigated the role

of the 18 differentially expressed mRNAs and the 12 miRNAs with the most

significative p-value (gene level fold change, FC <-2 or >2, p-value <0.05). Based

on the bioinformatic analysis, we explored the regulatory effects of thesemiRNAs

on themRNA pathways independently identified in the same samples. The results

showed that two genes, IL7R and GZMK (-38.63 and -3.15 FC, respectively), and

two miRNAs, mir-93-5p and mir-345-5p (-2.63 and -2.18 FC, respectively), are

differentially expressed in infection and can be exploited to differentiate CMV-

positive from ACR-positive EMB specimens, reaching an AUC of 0.87 and an

accuracy of 91% at cross-validation.
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Conclusions: We have identified a distinctive combined molecular profile of

mRNAs and miRNAs for infection in post-cardiac transplant follow-up. Based on

IL7R, GZMK,mir-93-5p, andmir-345-5pwe suggest a novel possible workflow to

distinguish infection, where those markers are downregulated, from rejection,

where they are overexpressed, on EMB specimens. This analysis showed good

accuracy and promising predictive performance. The future combined analysis of

these genes and these miRNAs through user-friendly techniques, such as

quantitative PCR, could reduce turn-around time and improve our diagnostic

power for distinguishing CMV infection from ACR in EMB specimens.
KEYWORDS

cytomegalovirus, heart transplant, rejection, transcriptomic profiling mRNA,
miRNA, biomarkers
1 Introduction

Cytomegalovirus (CMV) is the most clinically relevant post-

transplant infectious agent. CMV is a member of the beta-

Herpesviridae family that, in the normal population, latently infects

50-90% of individuals, but normally takes an asymptomatic course (1).

Differently, in cardiac transplanted patients, CMV infection impacts

morbidity and mortality (2, 3), and some studies showed that CMV

infection is a risk factor for Antibody Mediated Rejection (AMR) and

Cardiac Allograft Vasculopathy (CAV) (4–7).

The cardiac transplanted patients can be stratified according to

the donor/recipient (D/R) serological status. The highest risk is

associated with the mismatch between donor-positive and

recipient-negative (D+/R-). Based on the approach chosen by

each transplant center, these patients may undergo pre-emptive

therapy (based on the antiviral administration for early

asymptomatic CMV viremia detected by surveillance testing) or

antiviral prophylaxis (2, 8, 9).

Routine EMB tissue exhamination represents a crucial procedure

to determine CMV replication on the graft and thus intervene with a

proper antiviral therapy and taper the immunosuppression regimen

accordingly. However, the discrimination between Acute Cellular

Rejection (ACR) and the inflammation process triggered by CMV

infection itself is quite cryptic. In case of suspected CMV infection,

both nucleic acid and immunohistochemical tests should be

performed on EMB specimens, e.g. Immunohistochemical staining

on Formalin Fixed Paraffine Embedded (FFPE) EMB slices and

Polymerase Chain Reaction with the nucleic acid extracted from

EMB tissue. Those tests are designed to detect viral components, such

as the CMV genome or proteins, in tissue samples. Still, these tests are

prone to false results due to CMV activation’s patchy nature in tissue,

and the EMB procedure sampling errors.

Seeking novel biomarkers associated with rejection monitoring has

been investigated over years in tissue and liquid biopsy (10–13).

Transcriptomic studies opened new horizons on cardiac rejection

allograft monitoring, showing that Rejection Associated Transcript
02
analyses are similar through solid organ transplants and can

differentiate among Cellular Rejection, Antibody-Mediated Rejection,

and no-rejecting EMBs (11, 14, 15). Unfortunately, most of these

studies focused mainly on inflammation but not on the infection. This

limitation urges the need for new approaches that could help the

pathologist in characterizing the allograft’s status, differentiating the

inflammation itself from the virus induced inflammation pattern.

In this proof-of-concept study, we investigate the transcriptomic

profile of CMV-positive patients at mRNA and miRNA levels to

determine new candidate biomarkers to distinguish inflammatory

infiltrate caused by infection from that due to rejection on FFPE

EMB specimens. For this purpose, we analyzed the mRNA and

miRNA profile of FFPE EMB through high-density Clariom S

Affymetrix GeneChip arrays (Thermofisher Scientific, USA)

platform. We demonstrated that combining different biomarkers

can significantly improve CMV infection detection and

discriminate it from ACR during EMB pathological assessment.
2 Materials and methods

All the details about the Study design, patient selection, EMBs

histological evaluation, RNA extraction protocol, Microarray-based

mRNA and miRNA analysis protocols, bioinformatics, and

statistical analysis are provided in the Extended Methods in

Supplementary Materials.
3 Results

3.1 Study population characteristics

The patients enrolled in this study were divided into three

groups according to the ACR grade and the CMV viremia.

Recipients’ and Donors’ characteristics are shown in Table 1.

Among selected patients, 68.75% were male, and the mean age
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was 61. Ischemic Heart Disease was the most common diagnosis

leading to transplant. These patients were homogenous for

Circulating DSA at the time of EMB, lymphocyte count, hepatic

functionality, and Ejection Fraction. The control group showed

slightly worse renal functionality and a higher time interval between

heart transplant and EMB.
3.2 Microarray transcriptomic analysis of
FFPE EMBs

We analyzed the transcriptomic profile of our samples through

a microarray-based platform. The bioinformatic analysis compared
Frontiers in Immunology 03
the expression levels of detected mRNAs in the Controls, the

Rejection group, and the Infection group.

Notably, 293 genes were differentially expressed between

Control and Infection groups (82 up-regulated and 211 down-

regulated), 407 genes between Control and Rejection groups (126

up-regulated and 281 down-regulated), and 18 genes between

Infection and Rejection groups (10 up-regulated and 8 down-

regulated) (p-value <0.05).

Since we aimed to define a possible molecular signature to

distinguish infection from rejection at the tissue level, we focused

our attention on the differentially expressed genes (DEG) that

emerged in the comparison between these two study groups. In

particular, PHLDB2, HP1BP3, HMGCS2, UBC, LDB3, ALPK2,
TABLE 1 Study population characteristics.

Features Control
(n=5)

Rejection
(n=5)

Infection
(n=6)

t-test p-value
Control

vs Rejection

t-test p-value
Control

vs Infection

t-test p-value
Rejection

vs Infection

Recipient Age (y) 61 ± 5.33 61.6 ± 9.97 54.3 ± 19.69 0.91 0.45 0.46

Recipient gender (male, %) 60 60 100 1 0.17 0.17

Ischemic Heart Disease (%) 60 40 66.7 0.57 0.84 0.43

Dilated Cardiomyopathy (%) 20 40 66.7 0.57 0.84 0.43

Arrhythmogenic Right
Ventricular
Cardiomyopathy (%)

20 0 16.65 0.37 0.90 0.36

Obstructive
Cardiomyopathy (%)

0 20 0 0.37 – 0.37

Donor Age (y) 51 ± 20.29 64 ± 6.67 43 ± 17.67 0.76 0.52 0.22

Donor gender (male, %) 80 60 33.3 0.75 0.87 0.88

Cold Ischemia Time (m) 184.2
± 49.88

195.4 ± 52.04 189.83
± 61.33

0.75 0.87 0.88

Circulating DSA at the time
of EMB (d)

0 0 33.3 – 0.18 0.18

Time between HTx and
EMB (d)

207
± 113.90

62 ± 10.86 77 ± 79.00 0.046 0.067 0.668

Neutrophils (109/l) 4.10 ± 2.12 4.16 ± 1.77 5.24 ± 3.37 0.96 0.51 0.52

Lymphocytes (109/l) 0.76 ± 0.40 0.69 ± 0.21 0.99 ± 0.78 0.75 0.56 0.41

P-AST (U/l) 46.4
± 52.92

23.6 ± 4.92 22.4 ± 15.48 0.39 0.37 0.87

P-ALT (U/l) 25.8
± 20.59

21.8 ± 10.14 24.4 ± 27.07 0.71 0.51 0.37

P-gGT (U/l) 24.2 ± 9.67 58.6 ± 47.86 94 ± 67.50 0.22 0.08 0.38

e-GFR (µmol/l) 42 ± 15.76 75 ± 11.62 63.2 ± 41.23 0.007 0.33 0.56

Creatinine (µmol/l) 146.6
± 30.37

86.4 ± 13.30 149.5
± 133.77

0.0077 0.96 0.30

Cyclosporine (µg/l) 135 ± 57.05 172.2 ± 36.25 167.83
± 48.43

0.27 0.33 0.87

Ejection Fraction (%) 63 59 58.83 0.45 0.97 0.22
Age, sex, and the main biochemical parameters are reported as mean ± standard deviation. Y, Years; d, days; m, minutes; HTx, Heart Transplantation; eGFR, estimated Glomerular Filtration Rate.
The bold style was used to highlight the features reported in the first column from the numerical values reported in the other cells of the table.
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MYH7B, ACADVL, HSPB6, and TBX20 resulted to be

overexpressed in Infection compared to Rejection, while PDCL2,

OCRL, TAOK3, PLAC8, GZMK, MNDA, IL7R, P2RY14 were

downregulated in the same comparison (p<0.05) (Figure 1A).

Afterward, we investigated the role of all these DEGs. We

consulted several databases, such as the GeneCards database and

WikiPathways TAC tool, focusing on their cellular functions and

the biological processes they are involved in. This analysis revealed

that these DEGs are mainly involved in cardiomyocyte metabolism

(e.g. HMGCS2, ACADVL), IL-7 signaling and regulatory circuits of

the STAT3 signaling (e.g. IL7R), DNA replication (e.g. HP1BP3)

and cardiac progenitor differentiation pathways (e.g. PHLDB2,

LDB3, ALPK2, TBX20) (Supplementary Table S1).

As shown in the Volcano Plot (Figure 1A), all the significantly

differently expressed genes are quite homogeneous in terms of fold-

change values, except for GZMK and IL7R. In detail, IL7R resulted

downregulated in the Infection group compared to the Rejection

(-38.63 fold-change; 12.69 (log2) Avg in the Rejection group vs 7.41

(log2) Avg in the Infection group). IL7R is highly expressed in

conventional mature T-cells, except for regulatory T-cells that show

a low level of IL7R on their surface (16, 17). Once activated, IL7R

induces proliferative and anti-apoptotic signals mainly by activating

several cellular pathways, such as JAK/STAT, PI3K/Akt, and

MAPK/ERK pathways (18, 19). In addition, IL7R has been

reported to activate chronic inflammation (20), autoimmunity

(21), and allograft rejection in rodent models (22, 23). Likewise,

GZMK is downregulated in the infection group (-3.15 fold-

change; 9.27 (log2) Avg in Rejection group vs 7.62 (log2) Avg in

Infection group). GZMK is a member of serine proteases that

preferentially cleave after basic residues (24, 25), and it is

expressed in different immune cell types, such as NK cells,

cytotoxic T cells (26), and macrophages (27). GZMK is also

reported to be involved in several pathologic conditions, such as

cardiovascular diseases (28), vasculitis (29), and endothelial

activation, promoting the release of proinflammatory cytokines

from endothelial cells (30).

The heatmap reported in Figure 1B confirms that the DEG

values are homogenous within each group, in terms of the

expression level. Moreover, the hierarchical clustering correctly

classifies nine out of eleven samples (82%), in agreement with

histology and CMV serology. Only two samples were assigned to

the wrong group: sample #36, selected as Infection but classified as

Rejection by hierarchical clustering, and sample #38, selected as

Rejection but classified as Infection by hierarchical clustering. In

detail, the misclassification of these samples is linked to the values of

GZMK and IL7R genes. In our cohort, the expression levels of these

two genes were generally high in the Rejection group and low in the

Infection group. Sample #36 showed a low level of expression of

IL7R and GZMK genes, and the system classified it as “Infection”

despite it being negative for the CMV serology test. On the other

hand, sample #38 showed a high level of expression for IL7R and

GZMK genes, and the system classified it as “Rejection” even

though the CMV serology positivity. This misclassification

suggests that those genes are crucial in differentiating Infections,

with low expression, from Rejections, with high expression.
Frontiers in Immunology 04
3.3 Microarray miRNAs analysis of FFPE
EMB

The same total RNA extracted and analyzed for mRNA

profiling was evaluated for miRNA profiling. The Clariom-S

miRNA 4.0 chip tested the expression level of 2578 different

miRNAs for each patient, and we performed the same

comparisons conducted for the mRNA analysis (gene level fold-

change <-2 or >2, p-value<0.05). The statistical evaluation of the

raw data revealed that 513 miRNAs were differentially expressed

between the Control and Rejection groups, with 477 miRNAs

upregulated and 36 downregulated, while 111 (62 upregulated

and 49 downregulated) between the Control and Infection

groups. The comparison between the Infection and the Rejection

groups showed that 386 miRNAs were differentially expressed (32

upregulated and 354 downregulated). Among these 386 miRNAs,

29 emerged differentially expressed only in the latter comparison.

We further filtered out those results, focusing on the miRNA with

the highest p-value. Hence we selected twelve hsa-miRNAs that

showed the highest p-value in infection versus vs rejection

comparison: miR-8075 (fold-change= 2.23; p-value= 0.0052),

miR-93-5p (fold-change= -2.63; p-value= 0.0058), miR-3651

(fold-change= -2.26; p-value= 0.0059), miR-345-5p (fold-change=

-2.25; p-value= 0.0061), miR-6722 (fold-change= 2.57; p-value=

0.0098), miR-1296-5p (fold-change= -2.08; p-value= 0.0112), miR-

3162-5p (fold-change= -2.15; p-value= 0.0114); miR-532-5p (fold-

change= -3.26; p-value= 0.0177), miR-4433-3p (fold-change= -2.02;

p-value= 0.0293), miR-6782-5p (fold-change= -2.08; p-value=

0.0365), miR-342-5p (fold-change= -2.18; p-value=0.0371), and

miR-210-3p (fold-change= -2.54; p-value= 0.0469) (Figure 1C).

Once determined our miRNAs of interest, we explored their

function through a literature review. The screening of PubTator,

GeneCards, and PubMed databases revealed that these miRNAs are

mainly involved in PI3K/Akt, STAT, and HIF1a pathways, regulating

cell proliferation and apoptosis, along withmitochondria stress response.
3.4 Analysis of mRNA and miRNA
interactions in CMV infection

Once we identified the mRNAs and miRNAs differentially

expressed in the Infection vs Rejection groups, we further

investigated in silico the possible interactions among mRNAs and

the target genes of miRNAs.

We consulted TAC and Microcosm databases to define the

target genes of the selected miRNAs. Through a symmetric matrix

(Supplementary Figure S2), we highlighted the number of shared

genes among each couple of entries. In detail, it showed that only

miR-93-5p targets some of the mRNAs identified as DEG in the

Infection group.

Since we focused on the miRNAs shared target genes, we saw

that the most relevant miRNAs were miR-93-5p, miR-345-5p, miR-

532-5p, miR-342-5p, and miR-210-3p. Indeed, these miRNAs

shared a higher number of target genes: miR-93-5p shared 101

target genes with miR-345-5p, 100 target genes with miR-532-5p,
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FIGURE 1

Results of the microarray mRNA analysis in the Infection vs Rejection group. (A) The Volcano Plot reported the differentially expressed genes
between the Infection and Rejection groups. On the horizontal axis is reported the fold-change value (fold-change <-2 and >2), while the vertical
axis reported the p-values (<0.05) of the same genes. (B) The Hierarchical Clustering reported the fluorescence level of each DEG (higher level in
orange and lower level in blue). In the upper part of the graph is reported the clustering of the patients in the two study groups, Rejection in blue
and Infection in red. (C) Results of the microarray miRNAs analysis in the Infection vs Rejection group. The Volcano Plot reported the differentially
expressed miRNAs between the Infection and Rejection groups. On the horizontal axis is reported the fold-change value (fold-change <-2 and >2)
while the vertical axis reports the p-values (<0.05) of the same miRNAs. (D) The bipartite graph between GZMK and IL7R pathways and miRNAs
target genes, obtained by igraph library in R. The upper white nodes layer represents the Cytoscape pathways selected: GZMK glucose metabolic
(GZMK_1), GZMK type I immune response (GZMK_2), IL7R WP205 - IL-7 signaling pathway (IL7R_WP205), and L7R WP2203 - Thymic stromal
lymphopoietin signaling pathway (IL7R_WP2203). The lower yellow node layer represents the infection-related miRNAs. (E) Confusion Matrix. The
panel shows the performance of the Support Vector Machine model (SVM) to classify infection and rejection at cross-validation. The y-axis
represents the actual enrolled group (5 samples for rejection, and 6 samples for the infection group). The x-axis represents the samples classified by
the SVM. (F) ROC curve analysis: Area Under the Curve (AUC) at cross-validation for infection and rejection discrimination is reported.
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78 target genes with miR-342-5p, and 66 target genes with miR-

210-3p (Supplementary Figure S2A). Next, we represented these

connections with an undirected weighted graph: the thickness of the

edges is proportional to the number of targets shared between two

miRNAs (Supplementary Figure S2B). Once again, the miRNAs

that were more relevant were miR-93-5p, miR-345-5p, miR-532-5p,

miR-342-5p, and miR-210-3p.

Interestingly, miR-93-5p targets some mRNAs identified in

infection vs rejection: ACADVL, ALPK2, OCRL, PDCL2, and UBC.

Using the EnrichR tool, we saw that these genes are mainly involved in

fatty acid metabolism pathways (Supplementary Figures S2C, D).
3.5 The interplay among miRNA targets
and GZMK and IL7R pathways

The analysis of mRNAs revealed that GZMK and IL7R are

crucial for distinguishing infection from rejection. Thus, we

investigated the interplay between the gene pathways and our

selected miRNAs. Consulting the Cytoscape database, we chose

the two most significant pathways for GZMK and IL7R based on the

p-value associated. The genes reported to be involved in these

pathways were matched with the miRNAs’ target genes to identify

the shared ones, and the results are shown in (See Supplementary

Materials, Supplementary Table S2). Notably, only seven miRNAs

were shown to target some genes involved in GZMK and IL7R

pathways, and their interplay is graphically represented by the

bipartite graph reported in Figure 1D. Once again, miR-93-5p

shared more target genes with the pathways analyzed, especially

with IL7R pathways, such as MAPK1, JAK1, MYC, PIK3R2,

STAT3, and CRLF2. MiR-345-5p and miR-342-5p target several

genes in GZMK and IL7R pathways, such as ADHFE1, PTK2B,

IRF1, PIK3R2, CRLF2, MAP2K2, MAPK3, LCK.

Thus, miR-93-5p and miR-345-5p showed the strongest

connections with IL7R and GZMK pathways. Both of them were

up-regulated in the Rejection group: mir-93-5p showed 5.98 Avg

(log2) in the Rejection group vs 4.59 Avg (log2) in the Infection

group; mir-342-5p showed 2.18 Avg (log2) in the Rejection group vs

1.6 Avg (log2) in the Infection group. Li et al. demonstrated that the

miR-93 family takes part in PTEN regulation (31). PTEN is a tumor

suppressor mutated in many cancers that antagonizes the PI3K/Akt

pathway, modulating cell cycle progression and cell survival (32, 33).

Furthermore, several studies demonstrated that this miRNA plays an

important role in enhancing endothelial activities (34) and regulating

integrin-b8 expression (35). Additionally, miR-345-5p showed

several shared target genes with other miRNAs. This miRNA is

reported to play a role in the regulation of HIF1a, and consequently,

modulation of TGFb/Smad2/Smad3 signaling (36), linked to

ischemic damage response. Liu and colleagues reported that miR-

345-5p can downregulate the TLR4/NF-kB pathway, altering

inflammatory response and apoptosis (37).

Taken together, all these results showed that miR-93-5p and

miR-345-5p are the best-ranked candidates to distinguish infection

from rejection since they are down-regulated in CMV-positive

patients and up-regulated in the Rejection group.
Frontiers in Immunology 06
3.6 Performance assessment of the
combined molecular markers

We are aware that our study population is small, and this leads

to a reduced statistical power. This was confirmed by the Post Hoc

Power analysis, which revealed that our cohort is associated with a

value of (1-b) of 0.19, and, consequently, with a high risk of false

negative results.

However, once defined our new panel of combined markers, we

assessed the accuracy of this novel approach to distinguish infection

from rejection. We implemented a classifier based on the identified

markers using a Support Vector Machine with a polynomial kernel

(KSVM). We then performed stratified cross-validation to evaluate

its performance. As shown in the Confusion Matrix (Figure 1E),

based on the level of expression of GZMK, IL7R, mir-93-5p, and

mir-345-5p, the model correctly classified as “rejection” all the real

rejection samples. On the other hand, the model correctly classified

five out of six infection samples (83,3%), with only one

misclassification. This performance is associated with an Infection

Precision of 0.83, with an overall accuracy of 91% (F1 score of 0.91).

Subsequently, the sensitivity and specificity analysis revealed that

the combination of GZMK, IL7R, mir-93-5p, and mir-345-5p

reached good results, with an Area Under the Curve (AUC) of

87% (Figure 1F).

In summary, these analyses showed that, although the power

analysis highlighted a limited statistical power due to the small

sample size, the model based on the combined marker panel

exhibited a promising predictive performance.
4 Discussion

Heart-transplanted patients represent a fragile population. After

surgery, they need to be strictly monitored to contrast possible

rejection episodes. The primary defense against rejection is

immunosuppressive therapy, which patients must take for their

entire lives. Unfortunately, these treatments make them more

susceptible to bacterial and viral infections. Cytomegalovirus is the

most clinically relevant infection in cardiac transplanted patients

during the first year of follow-up (1). CMV de novo infection or

reactivation needs to be treated properly (2, 8). Thus, correct diagnosis

is crucial to define the appropriate therapeutic protocol. With this

study, we aimed to explore the role of mRNA and miRNA as new

biomarkers to improve EMB interpretation and distinguish rejection

from infection-related inflammatory infiltrate on graft tissue.

Current molecular tests to assess CMV infection on EMB

specimens need improvement. Our study suggests that IL7R and

GZMK are decisive in the discrimination between an activate

inflammatory status, due to rejection and infection, and control

stable patients. These genes were downregulated in the Infection

group (-38.63 Fold-change for IL7R and -3.15 Fold-change for

GZMK), compared to the Rejection group, suggesting an alteration

in the regulatory mechanisms of their pathways. Many groups

showed that IL7R (also called CD127) is downregulated in viral

infection characterized by a latent phase (38–41). Interestingly,
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immune activation and CD4 lymphopenia have been associated

with decreased IL7R expression (41). These results perfectly fit with

the conditions observed in CMV-positive transplanted patients,

who are exposed to a viral-induced stimulation in an impaired

immunocompetence condition. Conversely, only a few and

contrasting studies have been published about GZMK expression

in viral infection (42). Of relevance, Verschoor and colleagues

showed that GZMK expression decreased in some specific subsets

of T cells in CMV-positive patients, and in older patients, who are

known to be characterized by a fragile and altered immune response

(43). Focusing on the connection between the pathways of GZMK

and IL7R and the miRNA dysregulated in our comparison, we

identified two key miRNAs that are up-regulated in the Rejection

group: miR-93-5p (5.98 Avg (log2) in Rejection vs 4.59 Avg (log2)

in Infection) and miR-345-5p (2.18 Avg (log2) in Rejection vs 1.6

Avg (log2) in Infection). These elements represent an important

starting point for investigating new CMV diagnosis biomarkers. We

could combine gene expression analysis (IL7R and GZMK) to assess

the inflammatory status of the graft, and on the other hand, the

assessment of miR-93-5p and miR-345-5p could be helpful to

discriminate infection, where their levels of expression are

decreased, from rejection. In clinical practice, the possible

application of this novel and promising approach could be

divided into two phases. First of all, thanks to IL7R and GZMK

testing, we could perform a screening process and discriminate

between stable and unstable patients, who show IL7R and GZMK

increased expression levels compared to non-rejecting patients.

Secondly, through mir-93-5p and mir-345-5p analysis, we could

improve our capacity to distinguish infection, where those miRNAs

show a lower level of expression, from rejection, where they are

overexpressed. In this ideal new workflow, combining different

biomarkers should be decisive in discriminating between infection

and rejection. Indeed, inflammatory response is a dynamic process,

and using a double level of investigation could improve our ability

to identify infection-associated inflammatory infiltrate on

tissue samples.

Over the past 30 years, multiple solid molecular and

epidemiological evidences have connected CMV infection and the

exacerbation of acute and chronic allograft rejection in solid organ

transplants, especially heart transplants (4, 7, 44–47). The association

between CMV and CAV, CAD, and vascular dysfunction has been

deeply investigated at the molecular level, demonstrating the primary

role of CMV in inducing focal inflammation, triggering atherosclerosis,

and microvascular damage. These results were also confirmed in

human hand transplantation and facial vascularized composite

allotransplantation (48–50).

Additionally, this novel paradigm could be effective in improving

CMV diagnosis and overcoming the limitations of molecular tests

currently in use. Indeed, tests based on the detection of the viral

genome are prone to false negative results, due to the focal reactivation

of CMV and to sampling error of EMB. The application of PCR or

immunohistochemistry analysis to detect the viral genomes or proteins

may yield false-negative results when the EMBs fail to sample regions

of focal CMV infection. Conversely, PCR may also produce false-

positive findings by detecting viral particles present on tissue samples as
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a result of blood contamination rather than true myocardial viral

localization. The analysis of genes that test the immune response to the

virus could overcome these limits. Finally, thanks to this proof-of-

concept study, we can optimistically foresee a wide clinical application

of our promising results with cost-effective and user-friendly

techniques, such as quantitative PCR (qPCR). Indeed, we identified

four molecular candidate markers that could be easily analyzed on

EMB specimen extract in all clinical laboratories, with no need for new

platforms and minimal equipment costs.

Our study has some limitations. Unfortunately, our enrolled

population is quite small, and this is due to the strict inclusion

criteria applied in the selection phase. We aimed to evaluate the

transcriptomic profile of the EMB in a setting of CMV infection

without any other viral or bacterial coinfections, significantly

reducing the number of eligible patients. Despite the modest

population size, we obtained a huge amount of data thanks to the

high-throughput transcriptomic platform employed, without any

bias in transcript selection. Our cross-validation results

demonstrated good performance, supporting the robustness of

our findings despite the relatively low expected values. To address

the current limitations, further validation is warranted in an

independent cohort, ideally comprising a larger and more

heterogeneous patient population. This will enhance the

generalizability of our preliminary results to real-world clinical

practice and help mitigate the risk of false negatives.

In conclusion, we explored the possibility of identifying new

biomarker candidates in post-transplantation infection diagnosis.

Our study is a proof-of-concept that infection and rejection are

characterized by different transcriptomic profiles, both at mRNA

and miRNA levels, shedding new light on the understanding of the

pathophysiologic mechanisms that underlie these insidious

conditions. Combining CMV-related gene analysis with rejection-

related miRNA assessment could further improve our “resolution

power” in distinguishing CMV infection from ACR, which can

show an overlapping phenotype on histology. These novel and

interesting results open up new possible innovative, and promising

approaches for CMV infection diagnosis with the use of cost-

effective qPCR applications, reduced turnaround time, and large-

scale clinical applicability of our results.
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