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Background: The field of synthetic biology aims to engineer living organisms for
specific therapeutic applications, with CAR-T cell therapy emerging as a
groundbreaking approach in cancer treatment due to its potential for flexibility,
specificity, predictability, and controllability. CAR-T cell therapies involve the
genetic modification of T cells to target tumor-specific antigens. However,
challenges persist because the limited spatio-temporal resolution in current
models hinders the therapy’'s safety, cost-effectiveness, and overall potential,
particularly for solid tumors

Main body: This manuscript explores how mathematical models and
computational techniques can enhance CAR-T therapy design and predict
therapeutic outcomes, focusing on critical factors such as antigen receptor
functionality, treatment efficacy, and potential adverse effects. We examine
CAR-T cell dynamics and the impact of antigen binding, addressing strategies
to overcome antigen escape, cytokine release syndrome, and relapse.

Conclusion: We propose a comprehensive framework for using these models to
advance CAR-T cell therapy, bridging the gap between existing therapeutic
methods and the full potential of CAR-T engineering and its clinical application.

KEYWORDS

synthetic biology, biological system modeling, CAR-T cells, mathematical modeling,
computational immunotherapy, therapeutic optimization, T cell engineering

1 Introduction

Cancer is a pathological condition characterized by the uncontrolled growth and
metastasis of cells within the body, which evade normal cellular processes, such as
programmed cell death, and disrupt immune surveillance (1, 2). Its development arises
from a complex interplay of genetic predispositions, inheritance, virus exposure, and
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environmental factors. Despite significant research, cancer remains
a major health challenge worldwide. In recent years, remarkable
progress has been made in the development of cancer
immunotherapies, which aim to harness the power of the
immune system to fight cancer. Chimeric Antigen Receptor
(CAR)-T cell therapy has emerged as a revolutionary approach in
cancer immunotherapy, with seven CAR-T cell therapies approved
by the Food and Drug Administration (FDA) for hematological
malignancies. Despite this remarkable progress, significant
challenges remain, including minimizing adverse events,
achieving long-lasting and complete remissions, and extending
the therapy’s efficacy to patients with solid tumors. To address
these challenges, a deeper understanding of the molecular
mechanisms underlying CAR-T cell response is crucial. Recently,
mathematical modeling and simulation have been applied to
provide systematic and quantitative analyses of CAR-T cell
activity and patient responses. This review will summarize the
latest research in this rapidly evolving field, categorizing the
studies based on their contributions to the future of CAR-T therapy.

CAR-T cells are T lymphocytes genetically modified to express
chimeric antigen receptors (CARs) that are designed to recognize
and bind to specific antigens on tumor cells with high selectivity.
Other types of immune cells, such as macrophages and NK cells,
can also be modified to express a chimeric antigen domain. Even
though some promising results involve NK cells for their lower risk
(3), the most profitable area of interest involves T cells. In CAR-T
cells, CARs are modular structures, consisting of an extracellular
antigen-binding domain for target recognition, a hinge region for
flexibility, a transmembrane domain for anchoring the receptor to
the cell membrane, and intracellular signaling domains that activate
the T cell upon target binding (4, 5).

The extracellular antigen-binding domain acts as an external
sensor, interacting with potential target molecules of the cell
surface. The domain comprises a heavy and light chain of
monoclonal antibodies connected with a linker to form a single-
chain variable fragment (scFv). The affinity is fundamental in
determining cell function, and the scFv plays a significant role in
determining the interaction with the light and heavy chains. The
hinge region, also called a spacer, is a domain whose function is to
enhance the flexibility of the scFv receptor head, reducing the
spatial constraints between the CAR and its target antigen.
Increasing the length allows the antigen binding domain to reach
the antigenic determinant, also known as an epitope. The
transmembrane domain connects the extracellular hinge and the
antigen-binding domains with the intracellular signaling region. It
could influence cell functions by increasing expression level and
stability. Finally, the design of the intracellular signaling domain has
undergone significant advancements over the past three decades,
evolving into five distinct generations.

In the first generation of CAR design, the intracellular domain
comprised the CD3( cytoplasmic domain; however, the activation
signal merely from CD3( tail was not sufficient to elicit efficient and
persistent T cell function. Thus, it was quickly replaced by the
second-generation CAR-T that also contains a CD28 or 4-1BB
costimulatory domain in addition to mediating more potent anti-
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tumor activity. The third generation includes multiple
costimulatory domains, such as CD28 and 4-1BB or CD28 and
0X40. This design further enhances CAR-T cell efficacy,
proliferation, and cytokine production and is actively used in
clinics for hematological cancer treatment. The fourth generation
of CAR-T cell design, also known as T cell redirected for universal
cytokine-mediated killing or TRUCKSs, is based on second-
generation CARs with additional transgenes for cytokines
secretion such as IL-2, IL-5, or IL-12. It promotes the production
and secretion of the desired cytokine to promote tumor killing or to
preserve a preferential CAR-T cell phenotype (i.e., memory T cell).
The fifth generation of CARs is based on the second generation of
CARs, containing a truncated cytoplasmic domain of cytokine
receptors, such as IL-2R chain fragment, that includes a motif for
binding transcription factors STAT-3/5. In this design, the antigen-
induced CAR signaling effectively provides all three required signals
for a complete T cell activation: antigen recognition (CD3{
signaling), co-stimulation, and cytokine (JAK-STAT) signaling.
This design further enhances CAR-T cell cytokine secretion,
memory formation, reduces cytotoxicity by fine-tuned activation,
and is suitable for more complex environments, such as solid
tumors, by enhanced tumor infiltration and resistance to
immunosuppression. Figure 1 illustrates the structural evolution
and key components of these five CAR generations, highlighting
their progressive enhancement in functionality and complexity.

Upon the CAR extracellular domain engaging the specific
antigen, it triggers the phosphorylation of CD3-zeta cytoplasmic
domain and co-stimulatory domain(s), which further connects the
CAR initiated signals to the endogenous T cell signaling pathways.
The CD3-zeta mediated signal, co-stimulatory signal, together with
cytokine signal induces cell activation, and proliferation, results in
the clonal expansion of CAR-T in a patient. CAR engagement of the
specific antigen also leads to the formation of the immunological
synapse (IS) between the CAR-T cell and the antigen-expressing
tumor cell. With the IS mediated cell-cell contact, CAR-T cells
achieve targeted tumor killing by a synergistic mechanism of
cytotoxic effector molecules delivery and Fas-FasL pathway
triggering, promoted by cytokines secretion.

However, CAR-T cells present several unsolved challenges (6),
such as hindrance and limited endurance in B cell malignancies,
limited persistence, antigen escape, neurological complications (7),
compromised immune response, hypersensitivity reactions during
infusion, hematological cytopenia (8, 9), poor trafficking, limited
penetration, and immunosuppressive microenvironments in solid
tumors. These hurdles can be addressed by optimizing therapeutic
strategy and dosage of CAR-T cell administration, exploring
combination therapy, and developing next-generation CAR-T cell
therapy that balances efficiency and safety by using logic-gated
CAR-T cells or CAR-T cells spatiotemporally controlled by
chemical or physical activation.

Achieving these improvements depends on a precise
understanding of CAR-T cell dynamics and therapeutic outcomes,
where computational approaches offer a timely and accessible means
to provide critical insights. Mathematical models, in particular, can
play a significant role in enhancing the precision, effectiveness, and
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FIGURE 1

Structural comparison of five generations of Chimeric Antigen Receptor (CAR) designs. All generations contain an ScFv domain for antigen
recognition and a transmembrane domain. Each subsequent generation introduces additional components: CD3{ signaling domain (1st gen),
costimulatory domain (2nd gen), multiple costimulatory domains (3rd gen), IL-12 inducer (4th gen), and IL-2RB with JAK/STAT3/5 signaling (5th gen).
The figure depicts key functional domains and their roles in CAR-T cell activation and anti-tumor response.

durability of CAR-T therapies. By simulating complex interactions
within the tumor microenvironment and predicting therapeutic
responses, these models help optimize treatment regimens, reduce
patient side effects, and ultimately enable higher therapeutic dosages
to potentially expedite cancer eradication and reduce costs. Beyond
these practical benefits, computational modeling serves as a powerful
tool to accelerate discovery and translation in CAR-T cell research. It
enables hypothesis generation, guides experimental design, and
provides a structured framework to investigate the multiscale
mechanisms underlying therapeutic success or failure. As such,
these models are not merely supplementary but are increasingly
integral to driving innovation and improving clinical outcomes in
CAR-T therapy.

In this review, we examine studies published since 2019,
selected for their relevance to the field, to present the latest
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advancements in computational approaches applied to CAR-
T therapeutics.

2 Opportunities and challenges of
computational modeling in CAR-T
therapy

Computational modeling has emerged as a vital component in
advancing CAR-T cell therapy, offering tools to optimize
experimental design, personalize treatment, and anticipate clinical
outcomes. In this section, we summarize the main opportunities
that modeling approaches bring to the field and discuss open
challenges that future efforts must address. Figure 2 provides an
overview of the computational modeling cycle in CAR-T therapy,
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The Computational Modeling Cycle in CAR-T Development
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The computational modeling cycle in CAR-T development. This figure illustrates the iterative cycle of computational modeling in CAR-T cell therapy
development. Four interconnected stages are represented: “Computational Modeling” (blue, top) featuring ODE models, agent-based models, and
machine learning; “Experimental Design” (red, right) encompassing in vitro studies, animal models, and CAR engineering; “Clinical Application”
(green, bottom) focusing on dosing optimization, toxicity management, and combination therapies; and “Data Collection & Analysis” (purple, left)
incorporating patient outcomes and model validation. The central "Key Outcomes” highlight the ultimate goals: improved efficacy, reduced toxicity,
enhanced persistence, and expanded applications. These models generate testable hypotheses about CAR-T mechanisms and therapeutic
responses, which are then validated through experimental and clinical studies that continuously refine model accuracy. Bidirectional arrows indicate
how each stage both informs and is informed by the others, with experimental and clinical data continuously feeding back into computational

modeling for iterative hypothesis generation, testing, and model refinement.

highlighting its iterative nature and the key stages where modeling
contributes to development and clinical success.

2.1 Guiding experimental design and
reducing development costs

Computational models significantly reduce the experimental
burden of CAR-T cell development through several complementary
mechanisms. Parameter space exploration represents a primary
advantage, as evidenced by Finley et al. (10), whose models efficiently
examined vast arrays of CAR design options that would have been
prohibitively expensive and time-consuming to test experimentally.
Their work on NFxB signaling pathways identified key kinetic
parameters affecting CAR-T cell response time, thereby directing
experimental focus to specific modifications of the 4-1BB co-
stimulatory domain. Furthermore, computational approaches
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facilitate hypothesis prioritization, as demonstrated by Greenman
et al. (11), whose models identified previously underappreciated
factors such as receptor downmodulation that significantly influence
CAR-T cell function. By highlighting these critical mechanisms, such
approaches enable researchers to prioritize specific hypotheses for
experimental testing. Resource optimization constitutes another vital
benefit, particularly since CAR-T cell manufacturing remains expensive
and labor-intensive. Models developed by Barros et al. (12) provide
insights into optimizing cell expansion protocols, potentially reducing
manufacturing costs and increasing therapy accessibility across diverse
patient populations.

The integration of computational approaches with manufacturing
optimization represents a critical frontier for improving CAR-T cell
therapy outcomes. Colina et al. (13) provided a comprehensive
framework highlighting how computational models can inform
manufacturing decisions across the entire production pipeline, from T
cell activation and expansion protocols to construct selection and
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delivery methods. Their review demonstrates how mathematical models
can guide key manufacturing variables including media composition,
isolation and depletion of specific cell subsets, activation strategies, and
construct delivery methods. This manufacturing-focused computational
approach complements traditional pharmacokinetic/pharmacodynamic
modeling by addressing the upstream factors that determine the quality
and functionality of the final CAR-T cell product before infusion. The
authors emphasize that computational models can help optimize
manufacturing conditions to favor less differentiated, more persistent
CAR-T cell phenotypes, which correlates with improved clinical
outcomes (13).

2.2 Improving patient outcomes through
predictive modeling

Computational approaches directly contribute to improved
patient outcomes through several interconnected mechanisms.
Personalized dosing strategies represent a significant advancement,
as demonstrated by Valle et al. (14) and Levin et al. (15), whose
mathematical modeling work determines optimal dosing regimens
tailored to individual patients, potentially reducing toxicity while
maintaining efficacy. Their models suggest that lower, precisely
calculated doses may achieve complete responses while minimizing
side effects—a finding that challenges the conventional “more is
better” approach prevalent in many therapeutic contexts. Side effect
prediction and management constitute another critical contribution,
exemplified by Zhang et al. (16), who developed models that predict
cytokine release syndrome (CRS) severity and identify optimal timing
for interventions such as tocilizumab administration. These models
indicate that preemptive tocilizumab could reduce CRS severity by
25% without compromising therapeutic efficacy, a prediction
subsequently validated in clinical trials. Additionally, computational
approaches enable relapse prediction, as evidenced by Liu et al. (17),
who created models that can predict relapse probabilities based on
early response data, potentially allowing for preemptive intervention
before clinical deterioration becomes evident. Their work identifies
specific biomarkers that could be monitored to predict treatment
failure, enabling earlier clinical interventions. Furthermore,
combination therapy optimization has advanced through studies by
Adhikarla et al. (18) and Mahasa et al. (19), who employ mathematical
modeling to identify synergistic treatment combinations and optimal
sequencing of CAR-T cells with other therapies. Their research
demonstrates that administering CAR-T cells before other
treatments can significantly increase progression-free survival,
providing actionable insights for clinical protocol development.

2.3 Critical unanswered challenges for
future modeling

Despite significant progress, several critical challenges remain that
future computational models must address. Solid tumor penetration
and efficacy represent a primary concern, as current models
inadequately capture the complex spatial dynamics of solid tumors.
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Future models must incorporate multiple factors, including physical
barriers to T cell infiltration, immunosuppressive tumor
microenvironments, heterogeneous antigen expression across tumor
regions, and oxygen and nutrient gradients affecting CAR-T cell
function. These elements collectively influence therapeutic efficacy
and require sophisticated spatial modeling approaches to accurately
simulate the tumor-immune cell interface. Long-term persistence and
memory formation constitute another challenge requiring advanced
computational frameworks to better understand and optimize the
transition of CAR-T cells from effector to memory phenotypes,
which is critical for durable responses. These models should predict
factors governing memory cell formation, persistence duration under
various conditions, and strategies to enhance memory without
compromising initial efficacy—a balance critical for sustained
therapeutic outcomes. As CAR designs become increasingly complex
with multi-antigen targeting systems such as logic-gated CARs and
dual-targeting systems, sophisticated computational frameworks must
be developed to predict their behavior in heterogeneous tumor
environments and optimize their design parameters. Real-time
adaptation represents another frontier, as future models should work
toward real-time integration of patient data to allow dynamic
adjustment of treatment parameters throughout therapy, creating
truly adaptive treatment protocols that respond to evolving patient
conditions. Finally, biomarker identification remains crucial, as
computational approaches could identify novel biomarkers that
predict response and toxicity, enabling better patient selection and
monitoring. These models should integrate multi-omic data with
clinical parameters to develop comprehensive predictive frameworks
that enhance clinical decision-making and treatment personalization.

2.4 Hypothesis generation and testing
through computational frameworks

A fundamental strength of computational modeling in CAR-T
therapy lies in its ability to generate testable hypotheses about
cellular mechanisms and therapeutic responses. Mathematical
models can propose non-intuitive relationships between CAR
design parameters, manufacturing conditions, and clinical
outcomes that would not be apparent through experimental
observation alone. For example, models suggesting that lower
CAR-T cell doses might achieve superior killing efficiency per cell
while increasing exhaustion rates generate specific hypotheses about
dose-response relationships that can be experimentally validated.

Computational frameworks enable systematic hypothesis

<

testing by allowing researchers to simulate “what-if” scenarios
under controlled conditions before committing to expensive
experimental validation. Models can predict how specific
perturbations—such as modifying costimulatory domains, altering
manufacturing protocols, or adjusting dosing regimens—will affect
therapeutic outcomes. These predictions generate explicit
hypotheses that guide targeted experimental design and clinical
trial planning, creating an iterative cycle where computational
predictions inform experimental work, and experimental results

refine model accuracy and generate new hypotheses for testing.
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3 Modeling in describing CAR-T cell
response

This chapter provides a comprehensive overview of research
utilizing mathematical modeling to investigate the CAR-T cell
response. As depicted in Figure 3, the modeling pipeline spans
from cancer to remission, encompassing key aspects such as antigen
receptor design, treatment specificity, and cell dynamics. The first
sub-section discusses how modeling is employed to characterize
CAR-T cell signaling and function in response to various
parameters. These parameters include the affinity of CAR binding
to tumor antigen, the density and heterogeneity of presented tumor
antigen, variations in CAR designs (including co-stimulatory
domains), and different CAR-T cell to tumor cell ratios. The
second sub-section explores how modeling can be used to predict
the in vivo response of CAR-T cells after encountering tumor cells,
including its proliferation, expansion, trafficking, killing,
pharmacological response, and potential side effects.

3.1 Dissect cellular response of CAR-T cells

3.1.1 Antigen expression predicts treatment
efficacy

Fischel and colleagues (20) investigated the minimum
percentage of antigen expression needed in a tumor for effective
treatment. Their findings suggest a negative correlation between the
percentage of antigen-presenting tumor cells and tumor growth.

10.3389/fimmu.2025.1581210

Moreover, the study highlights the potential challenge of CAR-T
cells reaching their targets due to a “shield” of antigen-negative cells
surrounding antigen-presenting cells. The example used is Triple-
Negative Breast Cancer, which lacks the receptors typically targeted
by therapies (estrogen, progesterone, and human epidermal growth
factor receptors).

Tumors with a high number of antigen-presenting cells showed
significant reduction. However, identifying a universal antigen
across all cancer types remains a challenge. The study suggests
that tumor size reduction might still be achievable even if more than
50% of the tumor is non-antigen-presenting. Furthermore, the
antigen composition of a tumor appears to influence the number
of CAR-T cells needed for therapeutic efficacy. Antigen receptors
can be especially important when matched with full spatiotemporal
control to sense specific ligands and control gene expression such as
in the case of Synthetic juxtacrine receptors (SJRs) (21).

3.1.2 Downstream signaling events

The mathematical modeling and computational approaches
were further utilized to examine CAR-T cells signaling.
Naghizadeh et al. (22) employed a machine learning-based
detection and segmentation method to assess CAR-T cell
immunological synapses in patients. Their approach specifically
utilized instance segmentation, as cells display clustering, irregular
shapes, and occlusion. By leveraging these techniques, the authors
were able to develop new procedures for studying the
immunological synapses between T cells and antigen-
presenting cells.

Modelling of CAR-T Cells Therapies
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Schematic representation of CAR-T cell therapy modeling pipeline from disease state to recovery. The workflow progresses through six
interconnected stages: antigen receptors, treatment specificity, combination therapy, time and dosage, cell dynamics, and treatment efficacy. Each
stage includes specific modeling considerations depicted by icons and detailed subpoints below. The pathway flows from initial patient condition to
healthy outcome, with a timeline emphasizing continuous data collection throughout the treatment process. The figure highlights both molecular-
level considerations (such as antigen receptor engineering) and systemic responses (like cytokine release syndrome), demonstrating the

comprehensive nature of CAR-T therapy modeling.
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The potency of downstream signaling events triggered by
antigen binding depends on the co-stimulatory domain within the
structure of the CAR. CAR-T cells engineered with 4-1BB or CD28
co-stimulatory domains have demonstrated significant anti-tumor
activity. Previous studies have shown that CD28-based CAR elicits
stronger and more sustained signaling compared to 4-1BB
counterparts, which exhibit milder activation but potentially
longer persistence. However, traditional experimental comparison
across various tumor models to assess their performance and
signaling response is laborious and time-consuming. Using
ordinary differential equation-based mathematical models and
Monte Carlo simulations, Finley et al. (10, 14, 23) elucidated how
CAR co-stimulatory domains influence cell activation in the
presence of biological variability. Their work quantitatively
described the NFxB signaling pathway activated by CD19scFv-4-
1BB and proposed specific manipulations to refine the response of
these cells at physiological antigen. Additionally, they also
demonstrated a faster and more consistent population response,
mediated by CD28-based CARs. Their findings identified kinetic
parameters impacting cell response time and proposed strategies to
prolong response times in heterogeneous CAR-T cell populations
by enhancing lymphocyte-specific protein tyrosine kinase activity.

Reiter et al. (11) highlighted the importance of integrating
mathematical and experimental approaches during model
development. Their work employed a phenotypic model
comprised of ordinary differential equations to describe the
interplay between biophysical parameters of CAR binding
(affinity, avidity, and antigen density) and CAR-T cell activity. By
incorporating experimentally derived parameters and analyzing
receptor downmodulation and intracellular signaling processes,
they revealed that receptor downmodulation is a previously
underappreciated factor influencing CAR-T cell function.

Shah et al. (24) took a different computational approach by
developing a coarse-grained logic-based Boolean model to simulate
the evolution of signaling signatures during CAR-T cell and tumor
cell interactions. Using probabilistic Boolean networks (PBNs),
their model incorporated major activation pathways (CAR,
MAPK, PI3K-AKT-MTORI, calcium signaling), cytokine
signaling (IL2), cytotoxic pathways, and inhibitory signaling (PD1
and CTLA4) with relevant crosstalks and feedback mechanisms.
The model employed three readout nodes capturing CAR-T cell
function (CFUNC), CAR-T cell inhibition (CINHIB), and tumor
apoptosis (TAPOP) to track signaling signature trajectories. Their
simulations revealed that while activation of the CAR receptor alone
leads to moderate functional and cytotoxic signaling, addition of
IL2 increases functional signaling, whereas inhibitory pathways
through PDL1L2 and CD8086 markedly decrease functional
signatures. Importantly, their model predicted that significant
improvements to baseline CAR-T cell function through
intracellular network perturbations may be intrinsically limited,
suggesting that optimization strategies should focus on supporting
sustained low-level activation rather than maximum activation (24).
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3.2 Predict in vivo response of CAR-T cell

In order to fully exploit the potential of engineered CAR-T cells
in vivo, it is crucial to consider their behavior and interactions
within the intricate biological environment. This section presents a
comprehensive overview of the mathematical models that have
been created to assist in comprehending and optimizing CAR-T
cell therapy.

3.2.1 CAR-T cell dynamics

In CAR-T cell therapy, after cell infusion, there is a well-defined
sequence of phases: distribution, expansion, and contraction (25).
Upon infusion, CAR-T cells enter the bloodstream and distribute to
various tissues throughout the body. This initial phase is
characterized by a transient decrease in circulating CAR-T cell
density. Once reaching the tumor site, the CAR-T cells undergo a
robust expansion phase, proliferating several orders of magnitude to
reach a peak density (Cmax) typically within 2-3 weeks post-
infusion (26, 27). This expansion is driven by the recognition and
engagement of tumor-associated antigens (TAAs) by the CAR-T
cells. CAR-T cells undergo contraction due to activation-induced
cell death (AICD) (5). This process is thought to be a self-regulatory
mechanism to prevent excessive immune activation and potential
toxicities. A fraction of CAR-T cells adopts memory phenotypes
and persists for months to years to mediate continuing antitumor
activity. These memory cells are crucial for preventing
tumor relapse.

Paixao et al. (28) investigated the impact of antigen specificity
and cellular dynamics within the tumor microenvironment on
CAR-T cell expansion. The study focused on patients with
hematological malignancies, suggesting that analyzing the
concentration of non-exhausted CAR-T cells could potentially
predict future treatment responses.

Researchers often model distinct phases of CAR-T therapy
independently to gain specific insights. Liu et al. (29) observed
that CAR-T responders have a higher expansion capacity, greater
proliferation, and lower contraction rates than non-responders.
CAR-T cells proliferate at a relatively higher rate in hematologic
malignancies than in solid tumors, a finding applicable to both solid
and liquid tumors. Hematologic malignancies (including ALL/CLL/
MM) display greater proliferation than solid tumors and
lymphomas. This difference can be attributed to the challenges
CAR-T cells face in penetrating solid tumors and recognizing
antigens. Additionally, the study revealed age-related disparities
in patient responses. Pediatric ALL patients displayed lower
proliferation rates, contraction, and memory cell death, while
exhibiting higher memory differentiation compared to adults.
These findings underscore the importance of incorporating
patient-specific factors into CAR-T therapy models.

External factors such as medication can also influence the
dynamics of CAR-T cells. For instance, dexamethasone, a steroid
medication used to reduce inflammation and suppress the immune
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system, can affect CAR-T cells. Brummer et al. (30), reported that
high doses of dexamethasone destabilize the in vitro coexistence
between tumor cells and CAR-T cells. This drug can decrease the
activity of CAR-T cells and lead to CAR-T exhaustion, which
ultimately promotes the growth of tumor cells. Another
important consideration when developing new therapeutics is the
threshold-dependent tolerance of CAR-T cells. Brummer et al. (30)
noted that CAR-T cells effectively eliminate cancer cells up to a
certain tolerability threshold; beyond this threshold, however, high
doses of dexamethasone impair their efficacy.

3.2.2 CAR-T cell expansion

Enhancing CAR-T cell expansion, both in vitro and in vivo, can
increase the number of cells available for patient infusion. Carvalho
Barros et al. (12) focused on in vivo cell expansion, in order to
reduce potential treatment offsets. They built upon a previous paper
(31) which explained the possibility of studying CAR-T cells in vivo
by directly correlating the number of tumor cells with photon
emission, even though the exact number cannot be determined),
they developed a model that did not account for natural tumor cell
death or immune evasion. Deterministic models, mathematical
frameworks in which system parameters uniquely determine the
outcome with no randomness involved, have been used to
understand CAR-T cell behavior. In these models, the same initial
conditions always produce identical results, making them
computationally efficient but potentially less reliable when
modeling systems with low cell numbers where random
fluctuations can have significant effects.

To address this limitation, Kimmel et al. (32) employed a hybrid
(deterministic-stochastic) model for a more detailed description of
cell dynamics. This approach combines deterministic equations for
larger cell populations with stochastic elements that account for
random variations when cell numbers are small, thus leveraging the
computational efficiency of deterministic models with the biological
realism of stochastic approaches. CAR-T cells typically reach a peak
followed by decay, with fitting parameters informed by previous
data (33, 34). These authors also distinguished the dynamics of
CAR-T cells from normal T cells, noting the latter follow a stable
first-order response. Additionally, in a prior study (35), they
investigated how the system evolves under different conditions by
comparing progression-free survival based on variations in
parameters such as tumor growth rate, initial tumor size, memory
CAR-T cell fraction, and T cell density at CAR injection.

3.2.3 CAR-T cell killing

Agent-based modeling, particularly leveraging predator-prey
dynamics, mathematical frameworks originally developed in
ecology to describe interactions between hunters and their prey,
has been instrumental in exploring CAR-T cell killing kinetics.
Predator-prey mathematical models play a crucial role in
understanding the interactions between CAR-T and other cells at
the tissue level. Agent-based modeling, particularly Predator-prey
dynamics have been used to explore CAR-T cell killing kinetics.
Predator-prey dynamics models represent the relationship between

Frontiers in Immunology

10.3389/fimmu.2025.1581210

two populations where one (predator) relies on the other (prey)
for survival.

Agent-based modeling approaches have provided valuable
insights into CAR-T cell killing dynamics. Luque et al. (36)
developed an agent-based model to study heterogeneous tumor-
derived organoid response to CAR-T cell therapy, demonstrating
that increasing CAR-T cell dosage does not necessarily improve
killing efficiency. Their simulations revealed an emergent ‘shield-
like’ structure formed by cells with low antigen expression that
protected cells with high antigen expression, highlighting how
spatial organization influences therapeutic outcomes.

Brummer et al. (37) pioneered the application of Sparse
Identification of Nonlinear Dynamics (SINDy) algorithms to
biological systems. SINDy is a computational method that
automatically discovers the underlying mathematical equations
from experimental data by identifying the minimal set of terms
needed to accurately represent the system’s behavior, essentially
reverse-engineering the rules governing cellular interactions from
observed patterns. In other words, SINDy identifies the underlying
equations governing a system from a set of observed data (38),
which modeled cancer cell growth with logistic functions and
considered multiple factors influencing CAR-T cells, such as rates
of proliferation, exhaustion, persistence, and target cell killing. They
found an inverse relationship between CAR-T cell dose and killing
rate, but a direct relationship with the rate of exhaustion and
proliferation. Lower doses of CAR-T cells would kill more cancer
cells for each T-cell, but they would also lead to faster exhaustion
and subsequent tumor regrowth.

Based on the matrix parameters of the model, it is possible to
obtain specific results from the system. The results suggest that it is
crucial to consider the proliferation and exhaustion of CAR-T cells
apart from how many cancer cells can be eliminated. The CARRGO
model (Chimeric Antigen Receptor T cell treatment Response in
GliOma) is highly accurate for in vivo or in vitro studies of humans
and has the potential to be used in real-life scenarios. One key
limitation of Predator-Prey models is their inability to capture the
full dynamic range of CAR-T cell behavior. They cannot fully
represent the possibility of a CAR-T cell showing its potential to
change from an effector CAR-T cell into a memory cell and then
back to a CAR-T effector cell after identifying an antigen. Barros
et al. (39) addressed this limitation by understanding how a tumor
can inhibit immune cells. In their model, it is possible to observe
that the fast decay of CAR-T cell doses may prevent CAR-T cells
from becoming memory cells. The model was derived and modified
from a prior empirical model of the immune response to bacterial
or viral infections that can demonstrate how different problems that
follow similar dynamics can potentially be described with few
differences. The model described did not take into consideration
the toxicity effect of CAR-T cell immunotherapy. However, they
introduced the CARTmath platform for studying tumor responses
to CAR-T cell immunotherapy in immunodeficient mouse models
of hematological cancers.

Mathematical approaches to modeling CAR-T cell
pharmacology have been further advanced by Kirouac et al. (40),
who developed quantitative frameworks to analyze the complex
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relationships between product characteristics, patient physiology,
and clinical outcomes. Their study demonstrated that CAR-T
pharmacokinetics can be separated into distinct phases including
biodistribution, expansion, contraction, and persistence. Notably,
their modeling revealed that both maximal cell expansion (Cmax)
and immunophenotype of circulating CAR-Ts following expansion
are predictive of patient response, with patients showing robust
tumor responses more likely to have pharmacokinetic profiles in the
top quartile of the distribution. Their work highlights how
mathematical models can characterize the high interpatient
variability in CAR-T cell exposure and efficacy, which
significantly exceeds the variability typically observed with small
molecules or biologics.

3.2.3.1 Mathematical formulation of predator-prey
dynamics in CAR-T cell therapy

To illustrate the mathematical approaches used to model CAR-
T cell and tumor interactions, we present the CARRGO (Chimeric
Antigen Receptor T cell treatment Response in GliOma) model
developed by Sahoo et al. (38). This model utilizes a predator-prey
framework described by the following system of ordinary
differential equations:

dx X

Zopx(1-2) - kXY

dt p( K) !
d—Y—kZXY—OY

dt

Where X represents cancer cell density, Y is CAR-T cell density,
p is the net growth rate of cancer cells (day '), K is the cancer cell
carrying capacity, k; is the killing rate of CAR-T cells (day " cell ™),
k, is the net rate of proliferation including exhaustion of CAR-T
cells when encountered by a cancer cell (day ' cell "), and 8 is the
death rate of CAR-T cells (day 1.

The first equation represents cancer cell dynamics, with logistic
growth pX(1 -%) and cell death kXY due to CAR-T cell killing.
The second equation describes CAR-T cell dynamics, where k, XY
represents either proliferation (if k, >0) or exhaustion (if k,<0) of
CAR-T cells upon encountering cancer cells, and 8Y accounts for
natural CAR-T cell death.

Through non-dimensionalization, the system can be rewritten

as:
d
d_JtC =x(1-x)—xy
dy
Z —Bxy-A
PR A
With dimensionless parameters A = %5 and B = kZTK.

Dynamical systems analysis reveals three distinct therapeutic
outcomes based on parameter values:

e Successful CAR-T cell treatment (A=0, B>0): Cancer cells
are eliminated with some remaining CAR-T cells. This
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occurs when CAR-T cell persistence is high and
proliferation exceeds exhaustion.

*  CAR-T cell treatment failure (A=0, B<0): Cancer cells grow
to carrying capacity and CAR-T cells are eliminated,
occurring when exhaustion dominates proliferation.

* Pseudo-failure/pseudo-response (A>0, B>0): Cancer and
CAR-T cells coexist in oscillatory patterns, potentially
explaining the clinical phenomenon of pseudo-progression.

The CARRGO model demonstrates that the balance between
proliferation and exhaustion (k2) is more critical for treatment
success than the killing rate (k1). Experimental validation showed
that CAR-T cell dose inversely correlates with killing rate and
directly correlates with proliferation/exhaustion rate, suggesting
that at lower doses, individual T cells kill more cancer cells but
become more exhausted compared to higher doses.

This mathematical framework provides quantitative insights
into key factors influencing CAR-T therapy outcomes and
highlights the importance of considering nonlinear dynamics
when designing and optimizing treatment protocols.

Biological context and CAR design implications

The CARRGO model parameters directly relate to CAR
construct components shown in Figure 1. The killing rate (k;) is
influenced by the CAR’s cytotoxic signaling domains and scFv
binding affinity, while the proliferation/exhaustion balance (k,)
depends on costimulatory domain selection (CD28 vs. 4-1BB)
and intracellular signaling strength. This model can inform CAR
design by predicting optimal binding affinities that maximize the k,/
k; ratio for sustained therapeutic response. For therapeutic
strategies, the model suggests that optimizing CAR persistence
(minimizing negative k,) may be more critical than maximizing
immediate killing efficiency, guiding the selection of costimulatory
domains that favor memory formation over rapid effector function.

Within the iterative framework of Figure 2, this model generates
hypotheses about optimal CAR designs that can be tested through
experimental validation of different construct combinations, with
clinical data refining parameter estimates for patient-
specific modeling.

3.2.3.2 T cell competition and stochastic extinction model

Another important mathematical approach is presented by
Kimmel et al. (32), who developed a model that incorporates
competition between normal T cells and CAR-T cells, while
treating tumor elimination as a stochastic process:

dN N+C
@5

dc N+C
E =—Tc (T)Cln( . >
d_B -, B ¥BC
atr & Kg+C
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Where N represents normal T cell density, C is CAR-T cell
density, B is tumor cell density, T = N + C is the total lymphocyte
count, Ky and K¢ are the respective carrying capacities, and 73 is the
tumor-killing rate. The model uses Gompertz growth for immune
reconstitution rather than logistic growth.

The CAR-T growth rate function r<(T) includes feedback from
total lymphocyte count:

(T - Ky)?

T) = po+ b NS
re(T) =pe+ a-T? + (T - Ky)?

A key innovation in this model is its treatment of tumor
eradication as a stochastic rather than deterministic process.
When tumor burden falls below a threshold (approximately 100
cells), the model switches from deterministic to stochastic
simulation, allowing for calculation of extinction probabilities.

This approach revealed that:

* CAR-T cells initially expand faster but are eventually
outcompeted by normal T cells.

* Cure (tumor extinction) typically occurs early (days 20-80),
while progression occurs much later (days 200-500).

* Lymphodepletion before CAR-T infusion is critical for
creating space for CAR-T expansion.

3.2.3.3 Comparative perspectives on mathematical
approaches

The mathematical models described above offer complementary
insights into CAR-T cell therapy dynamics. While the CARRGO
model focuses on the direct interaction between tumor and CAR-T
cells and emphasizes the balance between killing efficiency and
exhaustion, the Kimmel model incorporates competition with
normal T cells and stochastic extinction events, helping explain
variability in clinical responses.

These different mathematical formulations highlight how
various modeling approaches can capture distinct aspects of the
complex biological phenomena in CAR-T therapy. The CARRGO
model suggests optimizing CAR-T dose based on tumor antigen
expression, while the Kimmel model emphasizes the importance of
effective lymphodepletion and predicts the timing of treatment
outcomes.

Biological context and clinical applications

The Kimmel model parameters reflect real CAR-T
manufacturing and clinical variables. The lymphocyte carrying
capacities (Ky, K¢) relate to patient lymphocyte counts post-
lymphodepletion, while the competition dynamics inform optimal
CAR-T dosing relative to endogenous T cell recovery. The
stochastic extinction threshold (~100 cells) provides a biological
basis for minimum effective doses. This model can guide
therapeutic strategies by predicting optimal lymphodepletion
intensity and CAR-T infusion timing to maximize the therapeutic
window before normal T cell recovery.

For CAR design applications, the model suggests that constructs
favoring rapid initial expansion (high pc) may be more effective
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than those optimized for long-term persistence when administered
with appropriate lymphodepletion. Within Figure 2’s framework,
this model exemplifies how computational predictions about
optimal dosing and timing can be validated through clinical trials,
with patient pharmacokinetic data refining model parameters for
precision dosing strategies.

3.2.4 Tumor response

The term “tumor response” refers to the changes observed in a
cancer following a therapeutic intervention. Responses are
categorized as a complete response, partial response, stable
disease, or progressive disease based on tumor size changes.
Rodrigues et al. (41) developed a mathematical model that
characterizes tumor elimination, equilibrium, and escape in solid
tumors. Their model suggests that complete cancer cell elimination
occurs in only 5% of cases, with 18% reaching equilibrium and 77%
experiencing escape. Factors influencing complete elimination
include tumor proliferation rate, CAR-T cell inhibition by the
tumor microenvironment, and CAR-T cell proliferation and
death rates. The model was based on data from HDLM-2 and
Raji cell lines (42, 43).

The “stem cell hypothesis” proposes that cancer stem cells play
a crucial role in tumor development and treatment resistance.
Mathematical models that incorporate the effect of cancer stem
cells in the tumor microenvironment are needed to understand the
potential for complete response to treatment. Swanson et al. (44)
developed a strategy for targeting tumor stem cells in solid tumors
by infusing trained CAR-T cells. Their work highlights the role of
transforming growth factor TGF-P (B) as a defensive mechanism
employed by tumor cells to avoid effectors cells attack. However,
TGF-P inhibitor can enhance effector cells efficacy by rendering
them insensitive to the effect of TGF-p.

3.2.5 Relapse

Relapse, defined as the return of cancer after treatment, can
occur either locally (original site), or distantly (new location). Due
to its high frequency, mathematical and computational simulations
can aid in designing new treatments that aim to predict when
relapse may occur. Liu et al. (17) developed a computational
approach to predict long-term treatment effects based on early-
stage clinical data. Using simulated clinical data allows for
comparison with real-world outcomes. The authors considered
the presence of the CD19 protein, found on the surface of B-cells,
which is a common target for CAR-T cell therapies. Tumor cells
that lose CDI19 expression can evade CAR-T cell recognition,
rendering the therapy less effective. Their model predicted that
CAR-T reinjection might not be highly beneficial, but CAR-T cell
expansion within the patient could be possible due to the initial
presence of a large number of targets. However, complete tumor
eradication might not be achieved due to antigen escape (tumor cell
loss of target protein) or CAR-T cell fratricide (self-destruction).

Since CAR-T therapy is relatively new to the pharmaceutical
industry, multiple generations of chimeric antigen receptors differ
based on their efficacy and safety. Pérez-Garcia et al. (45)
underlined how the therapy design impacts predicted outcomes.
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Personalized medicine aims to develop patient-specific models,
instead of generalized ones that may not be universally applicable.

Martinez-Rubio et al. (46) developed a dynamic model
combining B cells and effector and memory CAR-T cells. This
model allows for in silico testing of CAR-T cell dose effectiveness,
helping determine optimal treatment strategies.

Bone marrow may play an important role in relapse, as it
produces a constant number of B cells, but it is difficult to
implement the model in vivo. However, as most clinical data are
based on peripheral blood samples, the significance of B cells can
still be assessed.

Moreover, another cause of relapse can be the presence of
alternative isoforms in cancer cells, so the immune system does not
detect them. These antigen-negative relapses tend to be a huge
problem to consider when developing new therapeutics to avoid
poor CAR-T cell cytotoxicity or persistence. For this reason,
Santurio et al. developed a PDE model to define different
dynamics of patients depending on the therapeutic response (47).

Overall, mathematical and computational simulations are
valuable tools for designing new treatments and predicting
relapse in CAR-T therapy. The development of personalized
medicine and dynamic models that capture the complexity of the
immune system will be crucial for improving treatment efficacy.

3.3 Side effects

A significant challenge in CAR-T cell therapy is the
management of adverse side effects. A range of them can occur,
including on-target, off-tumor effects and systemic inflammatory
responses. Figure 4 depicts these key challenges, including cytokine
release syndrome, on-target/off-target effects, tumor response
mechanisms, and factors contributing to potential relapse.
Understanding the underlying mechanisms of these side effects is
crucial for developing strategies to mitigate them.

3.3.1 On-target off-target effect

On-Target, Off-Tumor (OT, OT) responses, also known as
“collateral damage,” occur when a therapeutic intervention, such
as a drug or treatment, targets a specific molecule or pathway in
cancer cells but unintentionally affects normal, non-cancerous cells.
This can lead to toxicity or other adverse effects for the patient. For
instance, CAR-T cell therapies targeting CD19, a protein expressed
on both cancer and B cells can deplete B cells resulting in infections
or autoimmune disorders.

Santurio et al. (48) explored this phenomenon in glioblastoma,
considering the tumor population, CAR-T cells, neurons, and Glial
cells expressing the antigen. Assuming 90% of glial cells lack the
antigen, the study highlighted the potential for lethal central
nervous system toxicity (49), due to OT, OT effects in solid
tumors, despite a positive antitumor response. A higher CAR-T
cell load leads to a faster and more pronounced peak, while
glioblastoma cells decrease faster.

The simulation also revealed a threshold for the number of
tumor cells, suggesting that quantifying CAR-T cells for effective
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therapy is crucial. While this work assumes direct tumor site
injection, the ability of CAR-T cells to penetrate the brain-blood
remains a significant challenge of current therapies.

Ledn-Triana and colleagues (50) described a similar OT, OT
interaction between CAR-T and B cells, inspired by Kuznetsov’s
model (51). They investigated controlling tumor growth with single
and double CAR-T therapy, concluding that dual therapy is
more efficient.

The potential interaction with CD19 in the OT, OT scenario may
lead to early CAR-T cell amplification. As solid tumors exhibit high
immunosuppressive capabilities, an in-silico study proposed targeting
two antigens, CD19 and a tumor-associated antigen, to produce
substantial CAR-T cell numbers and overcome suppression.

3.4 Cytokine release syndrome

Cytokine Release Syndrome (CRS) is a common adverse effect
following CAR-T cell therapies. It results from excessive cytokine
release into the bloodstream, leading to various side effects such as
fever, fatigue, and low blood pressure, potentially causing organ
damage or death. Previous studies have shown that excessive
cytokine release typically occurs within the first 14 days after
CAR-T cell infusion.

Zhang et al. (16) aimed to identify factors reducing CRS
probability by understanding cellular interactions. They
demonstrated that tocilizumab, a medication used for rheumatoid
arthritis, can lower CRS severity by 25% by blocking the
interleukin-6 receptor when administered from the day of CAR-T
cell infusion. Clinical trials confirmed the validity of this approach
(52). Additionally, slower CAR-T cell infusion rates correlate with
milder CRS symptoms. However, reducing the number of injected
CAR-T cells may compromise their anti-cancer efficacy.

Corticosteroids are commonly used to reduce inflammation and
suppress the immune system, potentially slowing down the immune
response by decreasing cytokine production. Stein et al. (53)
conducted a model-based analysis to characterize the kinetics of
tisagenlecleucel therapy, a CAR-T therapy for leukemia, focusing on
potential comedications for CRS. Patients with CRS have shown
benefits from tocilizumab and corticosteroid treatment.

Furthermore, small molecules may potentially enhance cell
therapies. However, due to the longer half-life of CAR-T cells
compared to small molecules, standard pharmacokinetic
parameters cannot predict their clearance. Understanding the
optimal timing for cell therapy injection is essential to minimize
side effects. Khailov et al. (54) used the Pontryagin maximum
principle to study this problem, considering the presence of CAR-
modified T-lymphocytes, B-leukemic or cancer cells, healthy B-
cells, and inflammatory cytokines. The results suggest that therapies
with resting intervals are more effective than continuous injections.
Five possible scenarios were modeled, varying the injection time
and analyzing the results based on the system parameters.
According to their simulation, complete cancer recovery is
achievable when chimeric cells preferentially target cancer cells
over healthy ones.
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FIGURE 4

Comprehensive illustration of key side effects and challenges in CAR-T cell therapy. The central tumor mass (middle) expresses both tumor-specific
antigens (TSA) and tumor-associated antigens (TAA), and is surrounded by four major therapeutic challenges: (1) Cytokine release syndrome (bottom
left) - depicted by the cytokine storm and activated immune cells that contribute to systemic inflammation; (2) On-target/off-target effects (top left)
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- where CAR-T cells recognize antigens on non-tumor cells; (3) Tumor response mechanisms (bottom right) - including growth suppressors and
resistance pathways; and (4) Potential relapse (top right) - showing tumor cells that have escaped immune surveillance. While these challenges can
occur independently, they often interact—for example, tumor resistance can lead to relapse, while excessive CAR-T activation can cause both

cytokine release syndrome and off-target toxicity. The figure also highlights cancer-associated fibroblasts (CAF) and their expression of fibroblast

activation protein-a (FAP) in the tumor microenvironment, which can serve as both potential targets and obstacles for CAR-T therapy by modulating

the tumor microenvironment and influencing CAR-T cell infiltration and function.

Table 1 provides a comprehensive overview of recent
computational approaches and mathematical models on CAR-T
cell therapy, categorized by scale (from protein to organism level),
modeling approach, experimental context, and cancer type.
Covering studies published between 2019 and 2024, it highlights
various methodologies, including ordinary differential equations
(ODEs), agent-based models, and machine learning approaches.
Each study is linked to its relevant section in this review, illustrating
how different modeling strategies address specific aspects of CAR-T
therapy, from antigen receptor design to treatment optimization.
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4 Modeling in improving CAR-T cell
therapy

4.1 Providing guidance for therapeutic
strategies

Although CAR-T therapy has achieved great success in
hematological malignancies, several challenges persist, including
limiting adverse events, achieving complete and durable responses,
and expanding the treatment to patients with solid tumors. Clinical
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TABLE 1 Summary of computational approaches and mathematical models applied to CAR-T cell therapy (2019-2024).

ABojounwiwi| Ul s1213U044

et

[SSIRVFETM I

Lead author Year Scale Model/ Experimental Parameter Simulation Cancer type
system context count tool

Adhikarla V., et al. (18) 2021 organism = ODE in vivo 9 Matlab combination therapy myeloma liquid 34680320
Barros L. R. C,, et al. (12) 2020 tissue ODE in silico 9 C CAR-T cell expansion  leukemia liquid -

Barros L. R. C,, et al. (39) 2021 cell ODE in silico 9 R predator-prey haematological liquid 34208323
Brummer A. B, et al. (30) 2022 cell ODE in vitro 8 Python cell dynamics glioblastoma solid 35081104
Brummer A. B, et al. (37) 2023 cell ODE in vitro 8 Python predator-prey glioblastoma solid 37256133
Charoenkwan P., et al. (55) | 2020 protein RF and SVM in silico - Python antigen receptors - - 32333902
Cho J. H,, et al. (56) 2021 tissue boolean in vivo - - treatment efficiency leukemia liquid 33542232
Colina A. S, et al. (13) 2024 multi- review in silico/in vitro - Multiple Manufacturing multiple Multiple 39086435

scale optimization

Daniels K. G, et al. (57) 2022 protein CNN and TSTM | in vivo - Python treatment efficiency leukemia liquid 36480602
de Jesus Rodrigues, 2019 cell ODE in silico 10 Matlab tumor response lymphoma liquid -

etal. (41)

Fischel H., et al. (20) 2021 tissue agent based in silico 7 Matlab antigen receptors breast Solid 36231127
Giordano-Attianese G., 2020 protein simulation in vitro | in vivo - XML treatment efficiency - - 32015549
et al. (58)

Khailov E., et al. (54) 2020 tissue ODE in silico 15 Matlab CRS leukemia liquid -
Kimmel G. J., et al. (35) 2019 cell ODE/SDE in silico 9 Julia CAR-T cell expansion lymphoma liquid -
Kimmel G. J., et al. (32) 2021 cell ODE/SDE in silico 9 Julia CAR-T cell expansion | lymphoma liquid 33757357
Leon-Triana O., et al. (59) 2021 tissue ODE in silico 8 Matlab time and dosage leukemia liquid -
Leon-Triana O., et al. (50) 2021 tissue ODE in silico 11 Matlab off tumor glioblastoma solid 33572301
Levin A. G, et al. (15) 2020 organism | ODE in vivo 6 Matlab time and dosage breast solid 32130452
Liu C, et al. (29) 2021 cell ODE in silico 6 - cell dynamics any Any 33002189
Liu L, et al. (17) 2022 tissue ODE in silico 15 Monolixsuite relapse leukemia liquid 36600553
Mabhasa K. ], et al. (19) 2022 cell ODE in silico 15 Matlab combination therapy - solid 35430822
Martinez-Rubio A., 2021 tissue ODE in silico 18 Matlab relapse leukemia liquid 34198713
et al. (46)

Naghizadeh A., et al. (22) 2022 cell CNN in vitro - Python antigen receptors leukemia liquid 35303007
Ottensen J. T., et al. (60) 2021 tissue ODE in silico 7 Matlab time and dosage - - 34359690

(Continued)
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TABLE 1 Continued

ABojounwiwi| Ul s1213U044

640°UISIoNUOY

Lead author Year Scale Model/ Experimental Parameter Simulation Section Cancer type
system context count tool
Owens, K., et al. (61) 2021 tissue ODE in silico 19 Matlab combination therapy lymphoma, leukemia liquid 33740142
and melanoma

Paixdo E. A, et al. (28) 2022 cell ODE in silico 19 C cell dynamics leukemia and lymphoma liquid 36428671
Pérez-Garcia V. M., 2021 tissue ODE in silico 7 Matlab relapse leukemia liquid 39191245
et al. (45)

Sahoo P, et al. (38) 2020 cell ODE in vitro 5 Matlab predator-prey glioma solid 31937234
Santurio D. S, et al. (48) 2022 tissue ODE in silico 12 C off tumor glioblastoma solid -

Shah V., et al. (24) 2023 cell Boolean/Logic in silico 59 Matlab downstream signaling any any 38083755
Stein A. M., et al. (53) 2019 molecule | ODE in silico 5 Monolixsuite | R CRS leukemia liquid 30848084

| Matlab

Swanson E. R,, et al. (44) 2022 tissue ODE in vitro 20 Matlab tumor response cancer stem cells solid 38199607
Valle P. A, et al. (14) 2021 tissue ODE in silico 6 Matlab time and dosage leukemia liquid -

Zhang Z., et al. (16) 2022 tissue ODE in silico 14 Matlab CRS leukemia liquid 36590643

The table categorizes studies by their modeling scale, approach, and application. The ‘Section’ indicates where each study is discussed in detail within this review. ODE, ordinary differential equation; SDE, Stochastic Differential equation; CNN, Convolutional Neural
Network; TSTM, Time-Series Transformer Model; RF, Random Forest; SVM, Support Vector Machine.
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studies have shown that higher dosages or multiple CAR-T cell
infusions can potentially improve therapeutic outcomes in some
patients with hematological malignancies, but this approach raises
concerns about associated toxicity (62, 63). Additionally, the
efficacy of CAR-T cell therapy in solid tumors are limited by
factors such as tumor antigen heterogeneity, increased difficulty
of T cell infiltration, and immunosuppressive tumor
microenvironment. A promising strategy involves combining
CAR-T cell infusion with other anti-tumor therapies, including
chemotherapy, radiotherapy, oncolytic viruses (OVs), cancer
vaccines, cytokines, and checkpoint blockade (64, 65). However,
verifying therapeutic efficacy and safety through clinical trials is
often resource intensive. Computational approaches offer a valuable
tool by providing a systematic understanding of therapeutic
responses based on complex treatment strategies.

4.2 Time and dosage

Control theory approaches offer advantages in managing the
time and dosage of CAR-T cell therapies. Levin and colleagues (15)
investigated how altering therapeutic concentration would affect
tumor growth, observing high variability in the results. Increasing
CAR-T cell number does not necessarily increase the killing ratio, as
each CAR-T cell can kill multiple tumor cells. To address this
dosing problem, Valle et al. (14) employed nonlinear systems
theories like the Localization of Compact Invariant Sets (LCIS)
and Lyapunov’s Direct method. LCIS identifies stable regions where
system trajectories remain bounded over time, while Lyapunov’s
method analyzes stability without requiring explicit solutions to
equations by examining energy-like functions. Together, these
approaches enable rigorous analysis of complex biological systems
like CAR-T and tumor cell interactions. Their study presented four
main dose delivery approaches: a constant daily dose, a constant
weekly dose, or two doses at different periods and intensities. Using
a protocol designed by Lee et al. (96), the authors found that the
data achieved a complete response with CAR-T cells below the
detectability threshold, outperforming other approaches. However,
they noted discrepancies between their simulations and Lee et al.’s
findings, which were more consistent with the biweekly
administration schedule. The authors considered parameters like
the cancer cell growth rate and killing efficacy rate of CAR-T cells,
which they found to be highly patient- dependent. More
comprehensive models of cell interactions can enable greater
accuracy in understanding optimal therapy timing. Leon-Triana
and colleagues (50) proposed a holistic approach to study cellular
interactions during CAR-T therapies, including less commonly
considered cells like hematopoietic stem cells. Their work
demonstrated that varying time intervals for CAR-T therapies can
be more advantageous in preventing cancer recurrence.

The quantity of CAR-T cells may also depend on several
simultaneous complications. Ottesen and colleagues (60)
investigated how external pathogens such as viruses and bacteria
along with health complications such as aging, diabetes, and
smoking, may influence cancer. The immune system may have
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limited capability, and external pathogens may compromise it,
leading to cancer progression. The presence of CAR-T cells in the
model can enhance the system’s ability to manage different external
complications, as pathogens are considered. The model exhibits a
bistable equilibrium with a dormant state and a cancer-infection
disease state. The simulation demonstrated that cancer progression
might depend on the treatment levels, and small perturbations can
cause the system to transition from a low tumor concentration to a
high tumor concentration, but not vice versa. One limitation of the
work is the lack of specific infection to illustrate common scenarios.
The authors primarily aimed to describe the potential limitations of
the immune system in managing multiple complications. However,
given the hypothesis of a limited immune system capacity, different
pathogens would perturb it differently, demonstrating that not all
external attacks would have the same effect.

These computational approaches also generate testable
hypotheses about optimal dosing regimens that can be validated
through clinical trials. For example, models predicting that biweekly
administration achieves superior outcomes provide specific
hypotheses for clinical testing, creating an iterative cycle where
computational predictions guide trial design and clinical outcomes
refine dosing models.

4.3 Combination therapy

Combination therapy, which involves using multiple therapies
together for a beneficial outcome, has shown promise in reducing
tumor growth with CAR-T cells, even if complete eradication is not
achieved (18, 60). Combining CAR-T cells with OV, chemotherapy,
radiotherapy, and immune checkpoint inhibitors is a common
practice. OV therapies target selectively cancer cells, potentially
enhancing the effectiveness of CAR-T therapies. Mahasa et al. (19)
developed a model to investigate the effects of combining CAR-T
cells with OVs on tumor cells. The model consisted of four ODEs
that examined the infection rate, burst size, and viral clearance in
the TME, and CAR-T cell migration. By expressing these biological
processes as rates of change over time, ODEs provide a
mathematical framework to simulate how these interconnected
elements evolve together in response to combination therapy. The
study also explored virus-induced increased levels in CAR-T
cells’killing ability of tumor cells and performed simulations with
and without considering virus-induced synergistic effects. Other
experimental studies have shown that combining OVs and CAR-T
cells can modestly decrease tumor growth, and understanding the
potential synergistic effect and the time of administration is crucial
(66, 67). Moreover, understanding the potential relationship
between the OV and CAR-T cells may be important for future
work. The findings suggest that combining OVs and CAR-T cells to
treat tumor burden may not always result in better therapeutic
outcomes, as CAR-T cells can have both beneficial and
harmful effects.

In addition, it is crucial to consider that a single dose may not be
sufficient to eradicate tumor cells. Adhikarla and colleagues (18)
investigated how the mathematical model for targeted radionuclide
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therapy (TRT) can be used to elucidate the dosing regimen,
temporal scheduling, and sequential order of therapeutic
interventions. The model focused on progression-free survival
(PES), overall survival (OS), and time to nadir. Administering
CAR-T cell therapies before other treatments led to an increase in
PES, OS, and time to tumor burden nadir. Depending on the time
between the two therapies, adapting the therapy based on the
tumor’s proliferation rate, is essential. Both approaches emphasize
patient preconditioning, which aims to create an environment
where CAR-T cells can thrive and effectively target cancer cells.
Owens and Bozic (61) investigated whether a mathematical model
could be developed based on previous research in the field (68).
They extended the work by modeling the population of CAR-T cells
and the chemotherapy concentration. While the model is valuable
for liquid tumors, its usefulness may be limited in solid tumors
where the distribution of CAR-T and cancer cells is not uniform.
Moreover, CAR-T resistance is still not explored with these

10.3389/fimmu.2025.1581210

methods. Through this work, they described a tumor-free
equilibrium point and a high-tumor equilibrium. Moreover,
understanding the potential relationship between the OV and
CAR-T cells may be important for future work. Figure 5
summarizes a decision matrix that guides researchers in selecting
appropriate computational modeling approaches based on their
research objectives, providing an overview of the strengths and
limitations of various methodologies across mechanistic, predictive,
and optimization tasks. To further clarify the distinctions between
available computational strategies, Table 2 provides a concise
overview of major modeling approaches used in CAR-T cell
research. It describes each method’s underlying principles,
classification type (e.g., mechanistic vs. empirical, deterministic
vs. stochastic), and the types of research questions it is best suited
to address.

Computational models of combination therapy serve as
hypothesis-generating platforms, predicting synergistic effects and

CAR-T Computational Modeling: Matrix Selection Framework

Model Type Research Question Type
Mechanistic Understanding Outome Prediction Parameter Estimation System Optimization
+4++ Trar 2Paras Trar
ODE Systems Signaling pathways Biological interpretability Mechanistic parameter Simple optimization
Cell population dynamics but limited complexity indentification problem
Agent-Based +++ ++ + +
Models Spatial tumor-immune Emergent behavior Challenging parameter Computationally
interactions prediction esitmation expensive
Machine + +++ ++ ++
Learning LII’T.lIted mechi’a?ishc Complex F)efttern Ry Dat:a-.dnv.en
interpretability recognition optimization
Bayesian arar o+ Srarar s
| ti ior biological Populati 1 Uncertainty-
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knowledge estimation optimization
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FIGURE 5

CAR-T Computational modeling: matrix selection framework. This figure presents a decision matrix for selecting appropriate computational
modeling approaches based on specific CAR-T research objectives. The matrix categorizes six modeling methodologies (rows: ODE Systems, Agent-
Based Models, Machine Learning, Bayesian Methods, Control Theory, and Sensitivity Analysis) against four research question types (columns:
Mechanistic Understanding, Outcome Prediction, Parameter Estimation, and System Optimization). Each intersection is rated with plus signs (+, ++,
or +++) indicating relative effectiveness and includes concise descriptions of strengths or limitations. This framework guides researchers in selecting
optimal modeling approaches for their specific CAR-T research questions, highlighting that ODE systems excel in signaling pathway analysis, agent-
based models in spatial tumor-immune interactions, machine learning in pattern recognition, Bayesian methods in uncertainty quantification, control
theory in optimization, and sensitivity analysis in parameter ranking.
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TABLE 2 Summary of mathematical modeling approaches for biological systems (2019-2024).

Modeling Description

approach

Best used for

Ordinary Differential
Equations (ODEs)

Mathematical equations that relate functions to their
derivatives, describing how quantities change over time
continuously and deterministically.

Stochastic Differential

Equations (SDEs) for inherent noise and variability in biological systems.

Agent-Based Models

autonomous agents (cells), capturing emergent behaviors from

individual rules.

Machine Learning
Approaches (CNN, RF,
SVM, TSTM)

existing datasets to make predictions or classifications.

Pontryagin
Maximum Principle determining the best control strategy to minimize a

cost function.

Markov Models
probabilities depend only on the current state, not
previous history.

Boolean Networks
the state of a system component, with logical rules
determining interactions.

Stochastic models describing sequences of events where

Differential equations containing random terms, accounting

Computational models simulating actions and interactions of

Data-driven computational methods that learn patterns from

A mathematical approach for optimizing control systems,

Models where variables take binary values (0/1) representing

Deterministic, Population dynamics, cell-cell interactions, cytokine
Mechanistic signaling, when using average behaviors and
large populations.
Stochastic, Small cell populations, extinction events, cellular
Mechanistic heterogeneity, when randomness significantly
impacts outcomes.
Stochastic, Spatial dynamics, cellular heterogeneity, cell-cell
Mechanistic interactions in complex microenvironments,
particularly in solid tumors.
Empirical, Pattern recognition in large datasets, biomarker
Statistical identification, predicting treatment outcomes from
patient data, image analysis.
Deterministic, Optimizing treatment protocols, dosing strategies, and
Optimization- timing of therapeutic interventions.
based
Stochastic, Cell state transitions, modeling disease progression,
Statistical predicting long-term outcomes from limited

clinical data.

Deterministic or
Stochastic,
Mechanistic

Signaling pathways, gene regulatory networks,
designing logic-gated CAR systems.

The table categorizes computational techniques by their mathematical description, type, and application. The ‘Best Used For’ column indicates specific research contexts where each approach

provides optimal insights.

optimal sequencing that guide experimental design. These predictions
can be systematically tested in preclinical models, with experimental
results feeding back to refine combination therapy models and generate
new hypotheses about therapeutic combinations.

4.4 Optimize CAR-T cell design

Optimizing chimeric antigen receptors (CARs) is a complex yet
essential process. One promising new technique for this is Deep
Mutational Scanning (DMS), which enables researchers to
systematically introduce mutations across a CAR protein’s sequence,
allowing for a detailed exploration of its functional landscape. Initially
developed for simpler organisms like E. coli and yeast, DMS has
recently expanded to mammalian cell systems due to technological
advances, making it particularly valuable for studying proteins involved
in human diseases. For instance, Di Roberto et al. (69) established a
functional screening platform aimed at enhancing the selectivity and
safety of CARs by integrating DMS with CRISPR-Cas9 genome editing
techniques. This innovative approach enables the generation of a
diverse library of CAR variants, which can then undergo high-
throughput functional screening based on their ability to activate T
cells in response to specific antigen levels.

Furthermore, CAR optimization strategies are increasingly
incorporating machine learning (ML) approaches, such as
variational autoencoders, as demonstrated by Yu et al. (70),
alongside traditional mathematical models that serve as transparent
‘white-box” tools. An example of this is PASCAR, a multiscale
framework developed by Rajakaruna et al, which explores the
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design space for both constitutive and inducible CAR-T cells (71).
In such optimization scenarios, researchers often encounter a Pareto
front, where improving one parameter can inadvertently compromise
another. Qiu et al. (72) addressed this challenge with CAR-Toner, a
tool designed to balance effective tonic signaling without inducing
CAR-T cell exhaustion or reducing persistence. Their approach
refines positively charged patches (PCPs) on CAR surfaces to
enhance CAR-T cell therapy performance. By integrating protein
databases, structural biology, and advanced deep learning models,
CAR-Toner efficiently calculates and optimizes PCP scores to
improve therapeutic outcomes.

4.5 Enhance CAR-T cell signaling

Optimizing CAR-T cell signaling domains is crucial for
improving therapeutic efficacy. Daniels and colleagues (57) aimed
to systematically investigate CAR-T therapy design by using 13
signaling motifs (including a spacer motif) to create a repertoire of
CAR costimulatory domains with random motif combinations. The
goal was to study and identify specific combinations that could
enhance stemness and cytotoxicity. As an example of their work,
they predicted the effects of adding the M1 motif to CD28-like and
4-1BB-like synthetic costimulatory domains. While CD28-like
domains were not predicted to enhance cytotoxicity or stemness,
4-1BB-like domains were forecasted to increase them. These
predictions were experimentally validated.

Engineering cells may not be the only factor influencing
treatment success or failure. Indeed, Giorgadze et al. considered
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different antigen distribution models defined as heterogeneous and
binary antigen distribution models. In the first case, a gradient of
distributions is presented. In the second case, there would be high or
low levels of antigens without intermediate values. In both cases, the
treatment was able to eliminate the tumor by targeting cancer stem
cells in addition to the bulk of the tumor (73).

Recent advancements in CAR specificity include the work of
Ruffo et al., who developed a novel approach for enhancing receptor
specificity and control in CAR and synthetic Notch (synNotch)
therapies (74). This method uses a “universal” receptor system with
covalent antibody attachment, allowing post-translational
modification of targeting. A SNAPtag fused to the receptor
enables it to bind covalently with antibodies carrying a benzyl
guanine (BG) motif. This system’s benefits include high-affinity
interactions essential for receptor activation and the ability for a
single receptor to target multiple antigens using different BG-
tagged antibodies.

4.6 Improve CAR-T cell specificity

Treatment specificity can be enhanced by designing new
proteins. Giordano-Attianese et al. (58) studied the structure of
proteins using Rosetta MotifGraft (75), introducing a “safety
switch” that allows for the modulation of T cell effector function
with a small molecule drug adding a controllable element to
synthetic cellular therapies. Tuning down CAR-T cells can offer
potential benefits, such as reducing the cost of recombinant protein
production and potential immunogenicity. Additionally, a safety
switch allows for faster and more precise control over cell therapies.

Designing new chimeric antigen receptors can also be achieved
through Boolean logic. Current efforts are focused on developing a
three-input logic system to identify specific antigens, enabling
biocomputation in human immune cells. Biocomputation, along
with CAR design, is possible in both CAR-T cells or other cell types.
In the work of Hwan Cho et al. (56), a SUPRA CAR system, that
uses boolean logic, has been introduced on seven types of cells. This
system has the potential to induce helper T cell activation at a
specific time, creating a sequential order of inflammation and
reducing cytokine release syndrome without compromising the
initial anti-tumor response. Future research in this area is likely
to expand the range of antigens that are not solely cancer specific.

T cell antigen receptors (TCRs) are transmembrane proteins
expressed on T cells that recognize specific antigens, typically foreign
molecules that elicit an immune response. Chimeric antigen receptors
(CARs), engineered to recognize distinct antigens, are another avenue
of focus. Charoenkwan et al. (55) developed an open-access platform
utilizing machine learning algorithms, such as support vector machines
(SVM) and random forests (RF), to identify T cell epitopes in tumor
antigens. Leveraging multiple features, this approach improved
performance by 4% to 7% over previous works, significantly
reducing the time and cost of experimental T cell epitope
identification in tumor antigens. To address data imbalances, the
authors oversampled sparse data, enhancing the accuracy of
their results.
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5 Future directions
5.1 Goal of modeling

The objective of this study was to elucidate the computational
approaches and mathematical models pertaining to CAR-T
therapeutics. As illustrated in Figure 6, current modeling
approaches follow key principles ranging from accuracy to unity,
while future opportunities lie in advanced computational
techniques and improved patient outcome prediction. Although
the field of synthetic biology predominantly focuses on the
engineering of CAR-T cell components, this review underscores
the importance of pharmaceutical products that consider crucial
factors such as patient cost, time, dosage, and age. In summary, the
following key points must be kept in mind:

5.1.1 Accuracy is power

In order to determine precise and relevant outcomes, it is
imperative to tailor each model to a specific patient or
population. Mathematical models must consider important
factors such as the chimeric antigen receptor generation (45, 58),
patient age, other concurrent treatments (30), and the variability in
cellular gene expression (17). Model fitting for individual patients
may rely on specific parameters obtained through specialized tests
(12, 38) and, the nature of the test and its capacity to measure
certain parameters should also be considered. For example, bone
marrow presents challenges in studying certain features that may be
restricted to hard-to-reach sites (46).

5.1.2 Less is often more

Previous papers have considered various components such as
CAR-T cells, cancer cells, memory cells (39), neurons (48), and
stem cells (50), among others (55, 61). However, no single model
has described all of them. While holistic models can provide a
general understanding of global behavior, they are often
computationally intensive and may not yield accurate predictions
for patients. Therefore, identifying and studying specific
interactions is crucial. Mathematical equations can lead to
significant progress, but a biological foundation is essential to
remain connected to real-world issues, such as cellular dynamics
(between logistics or Allee effect) and dual CAR-T therapy (37). A
conservative approach can help acquire information about the
system being studied and formulate hypotheses, such as dual
CAR-T therapy or system evolution (28, 29). Imaging techniques
will play a pivotal role in the coming years (22, 41, 55), where
obtaining less data is preferable to obtaining erroneous data for
CAR-T cell design.

5.1.3 Variety entails veracity

The use of ODE:s is a prevalent approach for studying cellular
interactions due to their computational efficiency and mechanistic
nature. However, developing more comprehensive models that
represent various stages of CAR-T cell development, such as
cancer treatments, is essential. Multiple differential equations can
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Comprehensive framework showing the evolution of computational modeling for CAR-T cell therapy. The left panel outlines current research
objectives organized under four foundational principles: (1) ‘Accuracy is power’ emphasizes the importance of patient-specific parameters and
clinically relevant outcomes in models; (2) ‘Less is often more’ advocates for focused modeling approaches that prioritize essential interactions over
comprehensive but unwieldy systems; (3) ‘Variety leads to veracity’ highlights how diverse modeling techniques (from deterministic to stochastic
approaches) provide complementary insights into complex biological processes; and (4) ‘Unity is strength’ underscores the value of integrating
multiple therapeutic approaches and recognizing nonlinear effects in combination therapies. The right panel illustrates how these current
approaches are evolving toward three transformative future opportunities: generative models that can synthesize and analyze multiple data types
simultaneously; biomarker development for precise prediction of patient-specific therapy responses and toxicities; and safe, continuously improving
treatment strategies through predictive control methods. The connecting arrow represents the natural progression from current modeling goals to
more advanced computational approaches, demonstrating how today’s foundational principles will enable tomorrow’s precision medicine

applications in CAR-T therapy.

describe cell distribution, expansion, contraction, and persistence at
specific time points (14, 53). Additionally, ODEs may not function
effectively with small sample sizes, and SDEs may be more
advantageous in such cases. Examples can be found in the works
of Kimmel et al. (32, 35), where stochasticity better represented a
low number of cells. Therefore, various modeling techniques can
enhance veracity by providing a more comprehensive view of the
cellular interactions involved in CAR-T cell development.

5.1.4 Unity is strength

In scientific research, understanding the interconnectedness of
systems is crucial. While therapies often focus on single components,
the nonlinear effects of interconnectivity can make a single therapy
insufficient. Mathematical models should consider how multiple
therapies could work together to achieve a beneficial effect in cancer
treatments, while minimizing collateral damage such as CRS (18, 19,
61). Efforts should be made to unite cell therapies with molecules, as
they present distinct characteristics that must be considered (16, 44,
53). While CAR-T cells are known for their remarkable qualities like
increased size after injection, prolonged persistence in the body, and
high specificity, molecules may offer advantages due to our prior
knowledge of pharmacokinetics, rapid clearance, and diverse actions.
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5.2 Future opportunities

As a powerful tool that frees experimentalists from exhaustive
testing conditions, computational approaches and mathematical
models of CAR-T therapeutics will continue to evolve in the
following directions:

5.2.1 Enhanced modeling assisted by advanced
experimental results

Detailed experimental data can be used to develop accurate
predictive models for CAR-T cells with more advanced designs and
to refine model parameters. For example, modeling has been used to
characterize the signaling event of the CAR-T cell design with either
CD28 or 4-1BB costimulatory domains. However, there are limited
modeling studies describing the signaling response of CD28 and 4-
1BB CAR-T cells, which have been extensively studied in preclinical
research and early-phase clinical trials.

Additionally, computational approaches should increasingly
guide the rational engineering of CAR constructs themselves,
optimizing binding kinetics, signaling domains, and logic-gated
designs to improve therapeutic performance before
experimental validation.
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Furthermore, there is a growing need to develop models
describing the activities of fourth and fifth generation CAR-T
cells, which have gained increasing interest in recent years. To
address the challenges in solid tumor treatment, additional variants
of logically gated CAR-T cells or spatially and temporally
controllable CAR-T cells, have been developed such as dual
CARs, split CARs and inducible-split CARs, small molecule-
inducible, optogenetic and sonogenetic CAR, and suicide CAR-T
cells. The increased complexity of these CAR designs exponentially
increases the workload required for characterizing and evaluating
them through traditional experimental methods. Computational
approaches and mathematical models can significantly accelerate
these studies, although challenges remain in establishing them.

The activation kinetics, cytokine signaling pathway and cytokine
secretion are regulated by CAR activation and additional conditions,
leading to increased complexity in both their cellular signaling response
and in vivo dynamics, proliferation, and killing. Using more detailed
experimentally determined parameters as input values can greatly aid
in forming and constraining the models. Various non-invasive imaging
techniques can be used to monitor CAR-T cellular and molecular
events, including in vitro fluorescent proteins (FPs) and biosensors-
based visualization; in vivo fluorescence, and bioluminescence imaging,
such as Magnetic Resonance Imaging (MRI), Positron Emission
Tomography (PET), and photoacoustic (PA) imaging. These imaging
techniques provide comprehensive understanding of CAR-T cell
signaling pathways and real-time biodistribution and activation. The
results can serve as input parameters for future modeling work, leading
to the mutual development of experimental and computational/
mathematical studies.

5.2.2 Integrated modeling and other
computational techniques for CAR-T cell design

Combined with other in silico approaches, modeling can be
leveraged to guide the design of CAR extracellular binding epitopes
and intracellular signaling motifs. In the past, CAR structural design
was dominated by rational design, library screening, and
experimental verification. Recently, computational approaches,
such as molecular dynamic, molecular docking, and Al-based
protein discovery, have shown great promise in CAR molecule
design by significantly expediting the design process and reducing
cost and workload. However, numerical approaches are not a full
substitute for experimental approaches. Experimental confirmation
remains crucial to ensure the accuracy and efficacy of computational
predictions, while modeling can be employed to guide the design of
these validation experiments. Therefore, the integration of modeling
with other computational techniques offers a more effective way to
accelerate CAR-T cell design.

To achieve a balance between anti-tumor activity and the risk of
toxicity or other side effects in solid tumors, a research team
computationally designed a chemically disruptable heterodimer
(CDH). In this design, the antigen-recognition chain and the
CD3(- and CD28-containing endodomain signaling chain were
placed on separate subunits. A small-molecule drug was
administered to block the binding between the two chains,
serving as a safety switch by dynamically inactivating CAR-T cell
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activity. Tonic signaling, the spontaneous activation of CAR-T cells
in the absence of tumor antigen stimulation, plays a crucial role in
controlling CAR-T efficacy. In another study, researchers
numerically determined the 3D conformation, electrostatic
potential, surface electrostatic and net charge of CAR scFvs. By
combining these computational results with experimental
approaches, they concluded that positively charged patches
(PCPs) on the surface of the CAR antigen-binding domain
mediate CAR clustering and result in tonic signaling. Fine-tuning
these PCPs can optimize tonic signaling and CAR-T cell fitness.
Molecular docking was also employed to optimize the anti-tumor
effect of anti-CD123 CAR-T cell against acute myeloid leukemia
(AML). A research team investigated the interaction between anti-
CD123 and CDI123 complex using molecular docking, proposing
mutations in anti-CD123 antigen binding loops to refine the design.
Together with experimental validation, they were able to adjust
CAR expression and CAR binding affinity without altering the
overall CAR design.

5.2.3 Modeling in the era of artificial intelligence

The field of CAR-T cell therapies stands to be significantly
impacted by computational techniques and methodologies that
have shown promise in other fields and now hold transformative
potential here.

5.2.3.1 Large language models

Large language models (LLMs), which are AI systems trained
on vast amounts of text, offer a powerful means of consolidating and
synthesizing the extensive, often fragmented body of biological
knowledge. In biology and medical research, information is
scattered across numerous publications, each adding unique
perspectives, findings, and methodologies that can be challenging
to integrate due to the sheer volume of literature. This challenge is
particularly pronounced in the CAR-T therapy field, where rapid
advances in tumor antigen discovery, immune response
modulation, and cellular engineering have generated a highly
dynamic research landscape.

LLMs could reshape CAR-T research by serving as
comprehensive, adaptive tools capable of summarizing key
findings, identifying emerging trends, and even detecting subtle
patterns that might elude individual researchers. By synthesizing
insights across related topics—such as antigen identification,
receptor engineering, safety mechanisms, and toxicity management
—LLMs can provide a cohesive perspective that highlights
previously unrecognized therapeutic opportunities or challenges.
Additionally, LLMs can analyze complex interconnections between
studies, potentially aiding in hypothesis generation for CAR design
optimization or reducing off-target effects. These capabilities also
extend to identifying research gaps, informing experimental design,
and enhancing translational potential by highlighting aspects crucial
to clinical applications.

For example, Chaves et al. developed a model fine-tuned for
therapeutic development tasks across diverse modalities, including
small molecules, proteins, nucleic acids, and cell lines (76). This
model leverages the Therapeutics Data Commons (TDC), an
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extensive dataset, to achieve competitive performance on multiple
benchmarks in areas like drug-target binding, toxicity prediction,
and drug combination synergy. Such projects can predict
interactions involving cell lines and other biological entities.
Another example comes from Li et al., who developed a model
specifically fine-tuned for predicting drug synergies in rare tissue
types (77). This model addresses challenges in synergy prediction
for underrepresented tissues in cancer research, where limited
experimental data and structured information are available.

5.2.3.2 Generative Al beyond text

While large language models (LLMs) are transforming the synthesis
of text-based knowledge, other generative Al techniques are expanding
possibilities beyond text alone, working across various data types such as
images, molecular structures, and even genomic sequences. These
broader generative AI models offer transformative potential in fields
like genomics, cellular therapies, and drug development, where data and
discoveries are scattered across studies with diverse methodologies. By
simulating biological systems, proposing hypotheses, and designing
novel molecules or genetic sequences, these models can accelerate
research in ways that LLMs alone cannot.

Some studies have started to explore the unique advantages of these
broader generative Al approaches in biomedicine (78, 79). Current
applications frequently focus on designing and predicting interactions
for small molecules (80-82), though future research may apply similar
techniques to larger molecules (83) and even cell therapies, opening up
new avenues for personalized and regenerative medicine. Beyond their
current applications, generative Al models could reshape biomedical
research by enabling more holistic approaches to understanding and
intervening in complex diseases. For example, by integrating multi-
omic data (genomic, transcriptomic, proteomic) with clinical and
environmental data, these models could help identify patterns that
reveal underlying disease mechanisms or patient-specific therapeutic
targets. As research pushes towards greater personalization in
medicine, these AI models could support the design of tailored
treatments, including custom-engineered cell therapies. The long-
term potential of these models lies not only in drug discovery but in
bridging the gap between data and clinical application, bringing
precision medicine closer to becoming a standard of care.

5.2.3.3 Model predictive control

In addition to generative AI, other advanced computational
techniques are proving valuable in optimizing CAR-T cell therapies.
Model Predictive Control (MPC) (84-86) is an advanced control
strategy widely used in engineering and process systems. It involves
utilizing a model of the system to predict its future behavior and
optimize control inputs in real time, all while considering constraints
on the system’s states and control actions. In MPC, the control action is
determined by solving an optimization problem at each time step, with
the objective of minimizing a cost function related to system
performance, subject to various constraints.

The advantage of MPC over other techniques lies in its ability to
optimize performance while managing constraints. In the context of
CAR-T cell therapies, this approach is particularly beneficial as it
enables the definition of constraints across multiple stages, from
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production and distribution to delivery and injection. By effectively
managing these constraints, MPC can enhance the efficiency,
consistency, and quality of cell-based therapies.

Looking ahead, MPC is poised to make a significant impact on
the medical field, especially as it becomes applicable to increasingly
complex processes. A key benefit of MPC is its ability to operate
with relatively limited data compared to many data-driven
approaches, which typically require large datasets for model
training. This makes MPC an appealing option in areas where
data is scarce or expensive to collect (87). Moreover, integrating
contextual knowledge—such as biological insights and system
dynamics—becomes essential for applying MPC in healthcare,
ensuring that predictions and optimizations are grounded in real-
world conditions.

By focusing on models that combine predictive accuracy with
contextual understanding, MPC can streamline the production and
delivery of CAR-T cell therapies while offering substantial
advancements in personalized medicine, ultimately improving the
accessibility, cost-effectiveness, and safety of these treatments.

5.2.3.4 Tracking treatment efficacy through biomarkers

Biomarkers are measurable indicators of biological processes,
conditions, or diseases within the body, providing essential insights
into an individual’s health status, disease progression, and response
to treatments. They come in various forms, including digital
biomarkers, which capture data through electronic devices, and
biological biomarkers, which are measurable substances found in
biological samples such as blood, urine, or tissues.

Digital biomarkers are increasingly valuable for real-time
monitoring of patient responses. They can reveal patterns like
changes in vital signs or early signs of adverse events, such as
Cytokine Release Syndrome (CRS), a common complication in
CAR-T cell therapies. This continuous data flow enables clinicians
to swiftly adjust treatment plans, enhancing patient safety and
ensuring precise therapeutic outcomes (88). For example, digital
biomarkers (89) can help detect subtle shifts in a patient’s immune
response or alert physicians to potential complications, enabling
timely intervention (88).

Biological biomarkers, on the other hand, reflect specific biological
processes or disease states. In the context of CAR-T cell therapies,
biological biomarkers are crucial for evaluating therapy effectiveness
and the behavior of engineered T cells in the patient’s body (90). By
tracking tumor antigen levels, clinicians can assess whether CAR-T
cells are effectively targeting and eliminating cancer cells. Additionally,
immune cell markers help monitor whether CAR-T cells are expanding
and persisting at necessary levels to sustain therapeutic efficacy or even
a joint immunotherapeutic reaction (91, 92).

Aging biomarkers offer further insights into how immune
decline or cellular aging may influence the success of CAR-T
therapies. This is particularly relevant for older patients, whose
immune systems may respond differently. Understanding these
biomarkers allows for better therapy management and
customization based on the individual’s age and immune status
(93-95), ultimately improving the likelihood of successful outcomes
in older populations.
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5.2.3.5 In conclusion

This review has provided a comprehensive analysis of
mathematical models and computational approaches for CAR-T
cell therapeutics, highlighting recent advances and emerging
opportunities in this rapidly evolving field. The review
demonstrates how computational tools can enhance our
understanding of CAR-T cell behavior across multiple scales,
from molecular interactions to clinical outcomes.

5.3 Summary of key findings

Our review has revealed several important trends in the
computational modeling of CAR-T therapeutics:

* Receptor Design and Signaling Dynamics: Mathematical
models have successfully characterized the impact of CAR
designs, antigen expression, and downstream signaling
events on treatment efficacy. In particular, studies by
Finley et al. (10, 23), Reiter et al. (11), and Fischel et al.
(20) have provided crucial insights into how CAR co-
stimulatory domains influence cell activation and how
antigen expression levels correlate with treatment efficacy.

* In Vivo Response Prediction: Computational approaches
have advanced our ability to predict CAR-T cell dynamics,
expansion, killing efficiency, and tumor responses. Models
by Paixao et al. (28), Liu et al. (29), and Brummer et al. (37)
have characterized important factors in CAR-T cell efficacy
and identified thresholds for therapeutic success.

 Side Effects Management: Models addressing cytokine release
syndrome and on-target/off-tumor effects have provided
valuable frameworks for enhancing treatment safety. Zhang
et al. (16) and Stein et al. (53) have shown how interventions like
tocilizumab administration can mitigate CRS severity while
maintaining therapeutic efficacy.

* Therapeutic Strategy Optimization: Computational
approaches have provided insights into optimal dosing
regimens, timing, and potential combination therapies.
Work by Valle et al. (14), Leon-Triana et al. (50, 59), and
Adhikarla et al. (18) has demonstrated how mathematical
models can guide therapeutic decision-making.

Author contributions

GP: Conceptualization, Data curation, Formal analysis,
Investigation, Methodology, Software, Visualization, Writing -
original draft, Writing - review & editing. SR: Conceptualization,
Data curation, Formal analysis, Investigation, Methodology, Software,
Validation, Visualization, Writing — original draft, Writing — review &
editing. ZY: Conceptualization, Validation, Writing — original draft.

Frontiers in Immunology

22

10.3389/fimmu.2025.1581210

JM: Funding acquisition, Resources, Supervision, Writing — review &
editing. SG: Conceptualization, Formal analysis, Investigation,
Methodology, Project administration, Supervision, Writing -
original draft.

Funding

The author(s) declare that financial support was received for the
research and/or publication of this article. SRC receives funding
from ETH Zurich, JM has received support from the National
Research Program, Ministerio de Ciencia e Innovacion, Spanish
Government Grants PID2022-1425140B-100, Instituto de Salud
Carlos IIT Grant CIBERCV CB16/11/00486.

Acknowledgments

Guido Putignano acknowledges support from the Mercatus
Center’s Emergent Ventures Fellowship and the Foresight
Institute Fellowship Program during the development of this
work. We thank Sonia Monti for designing the figures and
Professor Alessandro Colombo from Politecnico di Milano for his
initial support, conceptual guidance, and methodological feedback.

Conflict of interest
The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Correction note

A correction has been made to this article. Details can be found
at: 10.3389/fimmu.2025.1694607.

Generative Al statement

The author(s) declare that no Generative AI was used in the
creation of this manuscript.

Publisher’'s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations,
or those of the publisher, the editors and the reviewers. Any product
that may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

frontiersin.org


https://doi.org/10.3389/fimmu.2025.1694607
https://doi.org/10.3389/fimmu.2025.1581210
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Putignano et al.

References

1. Liao JB. Viruses and human cancer. Yale | Biol Med. (2006) 79:115-22.

2. Mavaddat N, Antoniou AC, Easton DF, Garcia-Closas M. Genetic susceptibility to
breast cancer. Mol Oncol. (2010) 4:174-91. doi: 10.1016/j.molonc.2010.04.011

3. Xie G, Dong H, Liang Y, Ham JD, Rizwan R, Chen J, et al. CAR-NK cells: A
promising cellular immunotherapy for cancer. EBioMedicine. (2020) 59:102975.
doi: 10.1016/j.ebiom.2020.102975

4. Mehrabadi AZ, Ranjbar R, Farzanehpour M, Shahriary A, Dorostkar R,
Hamidinejad MA, et al. Therapeutic potential of CAR-T cell in Malignancies: A
scoping review. BioMed Pharmacother. (2022) 146:112512. doi: 10.1016/
j.biopha.2021.112512

5. Milone MC, Xu J, Chen §J, Collins MA, Zhou J, Powell DJ, et al. Engineering
enhanced CAR-T cells for improved cancer therapy. Nat Cancer. (2021) 2:780-93.
doi: 10.1038/5s43018-021-00241-5

6. Sterner RC, Sterner RM. CAR-T cell therapy: current limitations and potential
strategies. Blood Cancer J. (2021) 11:69. doi: 10.1038/s41408-021-00459-7

7. Tallantyre EC, Evans NA, Parry-Jones J, Morgan MPG, Jones CH, Ingram W,
et al. Neurological updates: neurological complications of CAR-T therapy. J Neurol.
(2021) 268:1544-54. doi: 10.1007/s00415-020-10237-3

8. Cordeiro A, Bezerra ED, Hirayama AV, Hill JA, Wu QV, Voutsinas J, et al. Late
events after treatment with CD19-targeted chimeric antigen receptor modified T cells.
Biol Blood Marrow Transplant. (2020) 26:26-33. doi: 10.1016/j.bbmt.2019.08.003

9. Fried S, Avigdor A, Bielorai B, Meir A, Besser MJ, Schachter J, et al. Early and late
hematologic toxicity following CD19 CAR-T cells. Bone Marrow Transplant. (2019)
54:1643-50. doi: 10.1038/s41409-019-0487-3

10. Tserunyan V, Finley SD. Computational analysis of 4-1BB-induced NFkappaB
signaling suggests improvements to CAR cell design. Cell Commun Signal. (2022)
20:129. doi: 10.1186/512964-022-00937-w

11. Greenman R, Pizem Y, Haus-Cohen M, Horev G, Denkberg G, Shen-Orr S, et al.
Phenotypic models of CAR-T cell activation elucidate the pivotal regulatory role of
CAR downmodulation. Mol Cancer Ther. (2021) 20:946-57. doi: 10.1158/1535-
7163.MCT-19-1110

12. Barros LRC, de Jesus Rodrigues B, Almeida RC. CAR-T cell goes on a
mathematical model. J Cell Immunol. (2020) 2:31-7. doi: 10.33696/immunology.2.016

13. Colina AS, Shah V, Shah RK, Kozlik T, Dash RK, Terhune S, et al. Current
advances in experimental and computational approaches to enhance CAR-T cell
manufacturing protocols and improve clinical efficacy. Front Mol Med. (2024)
4:1310002. doi: 10.3389/fmmed.2024.1310002

14. Valle PA, Coria LN, Plata C, Salazar Y. CAR-T cell therapy for the treatment of
ALL: eradication conditions and in silico experimentation. Hemato-Basel. (2021)
2:441-62. doi: 10.3390/hemato2030028

15. Levin AG, Kronik N, Shiloach T, Waks T, Eshhar Z, Vainstein V, et al. Less is
more: reducing the number of administered chimeric antigen receptor T cells in a
mouse model using a mathematically guided approach. Cancer Immunol Immun.
(2020) 69:1165-75. doi: 10.1007/s00262-020-02516-9

16. Zhang ZY, Liu LN, Ma C, Chen WQ. A computational model of cytokine release
syndrome during CAR-T cell therapy. Adv Ther-Germany. (2022) 5:2200130.
doi: 10.1002/adtp.202200130

17. Liu L, Ma C, Zhang Z, Witkowski MT, Aifantis I, Ghassemi S, et al.
Computational model of CAR-T cell immunotherapy dissects and predicts leukemia
patient responses at remission, resistance, and relapse. ] Immunother Cancer. (2022)
10:1-14. doi: 10.1136/jitc-2022-005360

18. Adhikarla V, Awuah D, Brummer AB, Caserta E, Krishnan A, Pichiorri F, et al. A
mathematical modeling approach for targeted radionuclide and chimeric antigen receptor T
cell combination therapy. Cancers. (2021) 13:5171. doi: 10.3390/cancers13205171

19. Mahasa K]J, Ouifki R, Eladdadi A, de Pillis L. A combination therapy of oncolytic
viruses and chimeric antigen receptor T cells: a mathematical model proof-of-concept.
Math Biosci Eng. (2022) 19:4429-57. doi: 10.3934/mbe.2022205

20. Fischel H, Giorgadze T, Tessier A, Norton KA. Computational modeling of
chimeric antigen receptor (car) t cell therapy of a binary model of antigen receptors in
breast cancer. IEEE International Conference on Bioinformatics and Biomedicine
(BIBM). (2021). pp. 3267-74. IEEE.

21. Lam C. Design and mathematical analysis of activating transcriptional amplifiers
that enable modular temporal control in synthetic juxtacrine circuits. Synth Syst
Biotechnol. (2023) 8:654-72. doi: 10.1016/j.synbi0.2023.09.008

22. Naghizadeh A, Tsao WC, Cho JH, Xu H, Mohamed M, Li D, et al. In vitro
machine learning-based CAR-T immunological synapse quality measurements
correlate with patient clinical outcomes. PloS Comput Biol. (2022) 18:¢1009883.
doi: 10.1371/journal.pcbi. 1009883

23. Tserunyan V, Finley SD. Modelling predicts differences in chimeric antigen
receptor T-cell signalling due to biological variability. Roy Soc Open Sci. (2022)
9:220137. doi: 10.1098/rs0s.220137

24. Shah V, Womack J, Zamora AE, Terhune SS, Dash RK. Simulating the evolution
of signaling signatures during CAR-T cell and tumor cell interactions. Annu Int Conf
IEEE Eng Med Biol Soc. (2023) 2023:1-5. doi: 10.1109/EMBC40787.2023.10340076

Frontiers in Immunology

10.3389/fimmu.2025.1581210

25. Mitra A, Barua A, Huang L, Ganguly S, Feng Q, He B, et al. From bench to
bedside: the history and progress of CAR-T cell therapy. Front Immunol. (2023)
14:1188049. doi: 10.3389/fimmu.2023.1188049

26. Kimmel GJ, L. FL, Altrock PM. Response to CAR-T cell therapy can be explained
by ecological cell dynamics and stochastic extinction events. bioRxiv. (2020).
doi: 10.1101/717074

27. Mc Laughlin AM, Milligan PA, Yee C, Bergstrand M. Model-informed drug
development of autologous CAR-T cell therapy: Strategies to optimize CAR-T cell
exposure leveraging cell kinetic/dynamic modeling. CPT Pharmacometrics Syst
Pharmacol. (2023) 12:1577-90. doi: 10.1002/psp4.13011

28. Paixao EA, Barros LRC, Fassoni AC, Almeida RC. Modeling patient-specific
CAR-T cell dynamics: multiphasic kinetics via phenotypic differentiation. Cancers
(Basel). (2022) 14:1-24. doi: 10.3390/cancers14225576

29. Liu C, Ayyar VS, Zheng X, Chen W, Zheng S, Mody H, et al. Model-based
cellular kinetic analysis of chimeric antigen receptor-T cells in humans. Clin Pharmacol
Ther. (2021) 109:716-27. doi: 10.1002/cpt.2040

30. Brummer AB, Yang X, Ma E, Gutova M, Brown CE, Rockne RC, et al. Dose-
dependent thresholds of dexamethasone destabilize CAR-T cell treatment efficacy. PloS
Comput Biol. (2022) 18:e1009504. doi: 10.1371/journal.pcbi. 1009504

31. Eftimie R, Gillard JJ, Cantrell DA. Mathematical models for immunology:
current state of the art and future research directions. B Math Biol. (2016) 78:2091-
134. doi: 10.1007/s11538-016-0214-9

32. Kimmel GJ, Locke FL, Altrock PM. The roles of T cell competition and stochastic
extinction events in chimeric antigen receptor T cell therapy. P Roy Soc B-Biol Sci.
(2021) 288:20210229. doi: 10.1098/rspb.2021.0229

33. Locke FL, Ghobadi A, Jacobson CA, Miklos DB, Lekakis L], Oluwole OO, et al.
Long-term safety and activity of axicabtagene ciloleucel in refractory large B-cell
lymphoma (ZUMA-1): a single-arm, multicentre, phase 1-2 trial. Lancet Oncol. (2019)
20:31-42. doi: 10.1016/S1470-2045(18)30864-7

34. Neelapu SS, Locke FL, Bartlett NL, Lekakis L], Miklos DB, Jacobson CA, et al.
Axicabtagene ciloleucel CAR-T cell therapy in refractory large B-cell lymphoma. New
Engl ] Med. (2017) 377:2531-44. doi: 10.1056/NEJMoal707447

35. Kimmel GJ, Locke FL, Altrock PM. Response to CAR-T cell therapy can be
explained by ecological cell dynamics and stochastic extinction events. bioRxiv. (2019),
717074. doi: 10.1101/717074

36. Luque LM, Carlevaro CM, Rodriguez-Lomba E, Lomba E. In silico study of
heterogeneous tumour-derived organoid response to CAR-T cell therapy. Sci Rep.
(2024) 14:12307. doi: 10.1038/s41598-024-63125-5

37. Brummer AB, Xella A, Woodall R, Adhikarla V, Cho H, Gutova M, et al. Data
driven model discovery and interpretation for CAR-T cell killing using sparse
identification and latent variables. Front Immunol. (2023) 14:1115536. doi: 10.3389/
fimmu.2023.1115536

38. Sahoo P, Yang X, Abler D, Maestrini D, Adhikarla V, Frankhouser D, et al.
Mathematical deconvolution of CAR-T-cell proliferation and exhaustion from real-
time killing assay data. J R Soc Interface. (2020) 17:20190734. doi: 10.1098/
1sif.2019.0734

39. Barros LRC, Paixao EA, Valli AMP, Naozuka GT, Fassoni AC, Almeida RC, et al.
CAR-T math - A mathematical model of CAR-T immunotherapy in preclinical studies
of hematological cancers. Cancers. (2021) 13:2941. doi: 10.3390/cancers13122941

40. Kirouac DC, Zmurchok C, Morris D. Making drugs from T cells: The
quantitative pharmacology of engineered T cell therapeutics. NPJ Syst Biol Appl.
(2024) 10:31. doi: 10.1038/s41540-024-00355-3

41. de Jesus Rodrigues B, Barros LRC, Almeida RC. Three-compartment model of
CAR-T-cell immunotherapy. bioRxiv. (2019), 779793. doi: 10.1101/779793

42. Ninomiya S, Narala N, Huye L, Yagyu S, Savoldo B, Dotti G, et al. Tumor
indoleamine 2,3-dioxygenase (IDO) inhibits CD19-CAR-T cells and is downregulated by
lymphodepleting drugs. Blood. (2015) 125:3905-16. doi: 10.1182/blood-2015-01-621474

43. Ruella M, Klichinsky M, Kenderian SS, Shestova O, Ziober B, Kraft DO, et al.
Overcoming the immunosuppressive tumor microenvironment of Hodgkin lymphoma
using chimeric antigen receptor T cells. Cancer Discov. (2017) 7:1154-67. doi: 10.1158/
2159-8290.Cd-16-0850

44. Swanson ER, Kése E, Zollinger EA, Elliott SL. Mathematical modeling of tumor
and cancer stem cells treated with CAR-T therapy and inhibition of TGF-B. B Math
Biol. (2022) 84:58. doi: 10.1007/s11538-022-01015-5

45. Pérez-Garcia VM, Leon-Triana O, Rosa M, Pérez-Martinez A. CAR-T cells for
T-cell leukemias: Insights from mathematical models. Commun Nonlinear Sci. (2021)
96:105684. doi: 10.1016/j.cnsns.2020.105684

46. Martinez-Rubio A, Chulian F, Blazquez-Gofi A, Ramirez-Orellana M, Perez-
Martinez A, Navarro-Zapata A, et al. A mathematical description of the bone marrow
dynamics during CAR-T cell therapy in B-cell childhood acute lymphoblastic leukemia.
Int ] Mol Sci. (2021) 22:6371. doi: 10.3390/ijms22126371

47. Santurio DS, Paixao EA, Barros LRC, Almeida RC, Fassoni AC. Mechanisms of
resistance to CAR-T cell immunotherapy: Insights from a mathematical model. Appl
Math Model. (2024) 125:1-15. doi: 10.1016/j.apm.2023.08.029

frontiersin.org


https://doi.org/10.1016/j.molonc.2010.04.011
https://doi.org/10.1016/j.ebiom.2020.102975
https://doi.org/10.1016/j.biopha.2021.112512
https://doi.org/10.1016/j.biopha.2021.112512
https://doi.org/10.1038/s43018-021-00241-5
https://doi.org/10.1038/s41408-021-00459-7
https://doi.org/10.1007/s00415-020-10237-3
https://doi.org/10.1016/j.bbmt.2019.08.003
https://doi.org/10.1038/s41409-019-0487-3
https://doi.org/10.1186/s12964-022-00937-w
https://doi.org/10.1158/1535-7163.MCT-19-1110
https://doi.org/10.1158/1535-7163.MCT-19-1110
https://doi.org/10.33696/immunology.2.016
https://doi.org/10.3389/fmmed.2024.1310002
https://doi.org/10.3390/hemato2030028
https://doi.org/10.1007/s00262-020-02516-9
https://doi.org/10.1002/adtp.202200130
https://doi.org/10.1136/jitc-2022-005360
https://doi.org/10.3390/cancers13205171
https://doi.org/10.3934/mbe.2022205
https://doi.org/10.1016/j.synbio.2023.09.008
https://doi.org/10.1371/journal.pcbi.1009883
https://doi.org/10.1098/rsos.220137
https://doi.org/10.1109/EMBC40787.2023.10340076
https://doi.org/10.3389/fimmu.2023.1188049
https://doi.org/10.1101/717074
https://doi.org/10.1002/psp4.13011
https://doi.org/10.3390/cancers14225576
https://doi.org/10.1002/cpt.2040
https://doi.org/10.1371/journal.pcbi.1009504
https://doi.org/10.1007/s11538-016-0214-9
https://doi.org/10.1098/rspb.2021.0229
https://doi.org/10.1016/S1470-2045(18)30864-7
https://doi.org/10.1056/NEJMoa1707447
https://doi.org/10.1101/717074
https://doi.org/10.1038/s41598-024-63125-5
https://doi.org/10.3389/fimmu.2023.1115536
https://doi.org/10.3389/fimmu.2023.1115536
https://doi.org/10.1098/rsif.2019.0734
https://doi.org/10.1098/rsif.2019.0734
https://doi.org/10.3390/cancers13122941
https://doi.org/10.1038/s41540-024-00355-3
https://doi.org/10.1101/779793
https://doi.org/10.1182/blood-2015-01-621474
https://doi.org/10.1158/2159-8290.Cd-16-0850
https://doi.org/10.1158/2159-8290.Cd-16-0850
https://doi.org/10.1007/s11538-022-01015-5
https://doi.org/10.1016/j.cnsns.2020.105684
https://doi.org/10.3390/ijms22126371
https://doi.org/10.1016/j.apm.2023.08.029
https://doi.org/10.3389/fimmu.2025.1581210
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Putignano et al.

48. Santurio DS, B. LRC. A mathematical model for on-target off-tumor effect of CAR-
T cells on gliomas. Front Syst Biol. (2022) 2:923085. doi: 10.3389/fsysb.2022.923085

49. Richman SA, Nunez-Cruz S, Li LZ, Gershenson ZT, Mourelatos ZP, Barrett DM,
et al. High-affinity GD2-specific CAR-T cells induce fatal encephalitis in a preclinical
neuroblastoma model. Cancer Immunol Res. (2018) 6:36-46. doi: 10.1158/2326-
6066.Cir-17-0211

50. Leon-Triana O, Pérez-Martinez A, Ramirez-Orellana M, Pérez-Garcia VM.
Dual-target CAR-ts with on- and off-tumour activity may override immune
suppression in solid cancers: A mathematical proof of concept. Cancers. (2021)
13:703. doi: 10.3390/cancers13040703

51. Kuznetsov VA, Knott GD. Modeling tumor regrowth and immunotherapy.
Math Comput Model. (2001) 33:1275-87. doi: 10.1016/S0895-7177(00)00314-9

52. Kadauke S, Myers RM, Li Y, Aplenc R, Baniewicz D, Barrett DM, et al. Risk-
adapted preemptive tocilizumab to prevent severe cytokine release syndrome after
CTLO19 for pediatric B-cell acute lymphoblastic leukemia: A prospective clinical trial. J
Clin Oncol. (2021) 39:920—+. doi: 10.1200/Jc0.20.02477

53. Stein AM, Grupp SA, Levine JE, Laetsch TW, Pulsipher MA, Boyer MW, et al.
Tisagenlecleucel model-based cellular kinetic analysis of chimeric antigen receptor-T
cells. Cpt-Pharmacomet Syst. (2019) 8:285-95. doi: 10.1002/psp4.12388

54. Khailov E, Grigorieva E, Klimenkova A. Optimal CAR-T-cell immunotherapy
strategies for a leukemia treatment model. Games-Basel. (2020) 11:53. doi: 10.3390/
11040053

55. Charoenkwan P, Nantasenamat C, Hasan MM, Shoombuatong W. iTTCA-Hybrid:
Improved and robust identification of tumor T cell antigens by utilizing hybrid feature
representation. Anal Biochem. (2020) 599:113747. doi: 10.1016/j.ab.2020.113747

56. Cho JH, Okuma A, Sofjan K, Lee S, Collins M, Wong WW, et al. Engineering
advanced logic and distributed computing in human CAR immune cells. Nat Commun.
(2021) 12:792. doi: 10.1038/s41467-021-21078-7

57. Daniels KG, Wang M, Simic MS, Bhargava A, Capponi S, Tonai Y, et al.
Decoding CAR-T cell phenotype using combinatorial signaling motif libraries and
machine learning. Science. (2022) 378:1194-200. doi: 10.1126/science.abq0225

58. Giordano-Attianese G, Gainza P, Gray-Gaillard E, Cribioli E, Shui S, Kim S, et al.
Author Correction: A computationally designed chimeric antigen receptor provides a
small-molecule safety switch for T-cell therapy. Nat Biotechnol. (2020) 38:503.
doi: 10.1038/541587-020-0461-z

59. Ledn-Triana O, Sabir F, Calvo G, Belmonte-Beitia J, Chulian F, Martinez-Rubio
A, et al. CAR-T cell therapy in B-cell acute lymphoblastic leukaemia: Insights from
mathematical models. Commun Nonlinear Sci. (2021) 94:105570. doi: 10.1016/
j.cnsns.2020.105570

60. Ottesen JT, Andersen M. Potential of immunotherapies in treating
hematological cancer-infection comorbidities-A mathematical modelling approach.
Cancers. (2021) 13:3789. doi: 10.3390/cancers13153789

61. Owens K, Bozic I. Modeling CAR-T-cell therapy with patient preconditioning. B
Math Biol. (2021) 83:42. doi: 10.1007/s11538-021-00869-5

62. Stefanski HE, Eaton BR, Baggott C, Rossoft JH, Verneris MR, Prabhu §, et al.
Higher doses of tisagenlecleucel are associated with improved outcomes: a report from
the pediatric real-world CAR consortium. Blood Adv. (2023) 7:541-8. doi: 10.1182/
bloodadvances.2022007246

63. Gauthier J, Bezerra ED, Hirayama AV, Fiorenza C, Sheih A, Chou K, et al.
Factors associated with outcomes after a second CD19-targeted CAR-T-cell infusion
for refractory B-cell Malignancies. Blood. (2021) 137:323-35. doi: 10.1182/
blood.2020006770

64. Al-Haideri M, Tondok SB, Safa SH, Maleki A, Rostami S, Jalil AT, et al. CAR-T
cell combination therapy: the next revolution in cancer treatment. Cancer Cell Int.
(2022) 22:365. doi: 10.1186/s12935-022-02778-6

65. Grosser R, Cherkassky L, Chintala N, Adusumilli PS. Combination
immunotherapy with CAR-T cells and checkpoint blockade for the treatment of
solid tumors. Cancer Cell. (2019) 36:471-82. doi: 10.1016/j.ccell.2019.09.006

66. Evgin L, Huft AL, Wongthida P, Thompson J, Kottke T, Tonne J, et al. Oncolytic
virus-derived type I interferon restricts CAR-T cell therapy. Nat Commun. (2020)
11:3187. doi: 10.1038/s41467-020-17011-2

67. Ramazzotti D, Angaroni F, Maspero D, Ascolani G, Castiglioni I, Piazza R, et al.
LACE: Inference of cancer evolution models from longitudinal single-cell data. J
Comput Sci-Neth. (2022) 58:101523. doi: 10.1016/j.jocs.2021.101523

68. Kuznetsov VA, Makalkin IA, Taylor MA, Perelson AS. Nonlinear dynamics of
immunogenic tumors: parameter estimation and global bifurcation analysis. Bull Math
Biol. (1994) 56:295-321. doi: 10.1007/BF02460644

69. Di Roberto RB, Castellanos-Rueda R, Frey S, Egli D, Vazquez-Lombardi R,
Kapetanovic E, et al. A functional screening strategy for engineering chimeric antigen
receptors with reduced on-target, off-tumor activation. Mol Ther. (2020) 28:2564-76.
doi: 10.1016/j.ymthe.2020.08.003

70. YuJC, Xu TY, Rong Y, Huang JZ, He R. Structure-aware conditional variational
auto-encoder for constrained molecule optimization. Pattern Recogn. (2022)
126:108581. doi: 10.1016/j.patcog.2022.108581

71. Rajakaruna H, Desai M, Das J. PASCAR: a multiscale framework to explore the
design space of constitutive and inducible CAR-T cells. Life Sci Alliance. (2023) 6:1-14.
doi: 10.26508/1sa.202302171

Frontiers in Immunology

10.3389/fimmu.2025.1581210

72. Qiu SZ, Chen J, Wu T, Li L, Wang G, Wu H, et al. CAR-Toner: an Al-driven
approach for CAR-Tonic signaling prediction and optimization. Cell Res. (2024)
34:386-8. doi: 10.1038/s41422-024-00936-1

73. Giorgadze T, Fischel H, Tessier A, Norton KA. Investigating two modes of
cancer-associated antigen heterogeneity in an agent-based model of chimeric antigen
receptor T-cell therapy. Cells. (2022) 11:1-19. doi: 10.3390/cells11193165

74. Ruffo E, Butchy AA, Tivon Y, So R, Kvorjak M, Parikh P, et al. Post-translational
covalent assembly of CAR and synNotch receptors for programmable antigen
targeting. Nat Commun. (2023) 14:2463. doi: 10.1038/s41467-023-37863-5

75. Silva DA, Correia BE, Procko E. Motif-driven design of protein-protein
interfaces. Methods Mol Biol. (2016) 1414:285-304. doi: 10.1007/978-1-4939-3569-
7_17

76. Chaves JMZ, Wang E, Tu T, Vaishnav ED, Lee B, Mahdavi SS, et al. Tx-LLM: A
large language model for therapeutics. arXiv 2406.06316. (2024). doi: 10.48550/
arXiv.2406.06316

77. Li TH, Shetty S, Kamath A, Jaiswal S, Jiang X, Ding Y, et al. CancerGPT for few
shot drug pair synergy prediction using large pretrained language models. NPJ Digit
Med. (2024) 7:40. doi: 10.1038/s41746-024-01024-9

78. Derraz B, Breda A, Kaempf A, Baenke F, Cotte E, Reiche M, et al. New regulatory
thinking is needed for Al-based personalised drug and cell therapies in precision
oncology. NPJ Precis Oncol. (2024) 8:23. doi: 10.1038/s41698-024-00517-w

79. Vert J-P. How will generative AI disrupt data science in drug discovery? Nat
Biotechnol. (2023) 41:750-1. doi: 10.1038/s41587-023-01789-6

80. Watson JL, Juergens D, Bennett NR, Trippe BL, Yim ], Eisenach HE, et al. De
novo design of protein structure and function with RFdiffusion. Nature. 620
(7976):1089-100.

81. Durairaj J, Adeshina Y, Cao Z, Zhang X, Oleinikovas V, Duignan T, et al.
PLINDER: The protein-ligand interactions dataset and evaluation resource. bioRxiv
2024-07. (2024). doi: 10.1101/2024.07.17.603955

82. Corso G, Stirk H, Jing B, Barzilay R, Jaakkola T. Diffdock: Diftusion steps, twists,
and turns for molecular docking. arXiv 2210.01776. (2022). doi: 10.48550/
arXiv.2210.01776

83. Shanehsazzadeh A, Bachas S, McPartlon M, Kasun G, Sutton JM, Steiger AK,
et al. Unlocking de novo antibody design with generative artificial intelligence. bioRxiv
2023-01. (2023). doi: 10.1101/2023.01.08.523187

84. Fisac JF, Akametalu AK, Zeilinger MN, Kaynama S, Gillula J, Tomlin CJ, et al. A
general safety framework for learning-based control in uncertain robotic systems. IEEE
T Automat Contr. (2019) 64:2737-52. doi: 10.1109/Tac.2018.2876389

85. Hewing L, Kabzan ], Zeilinger MN. Cautious model predictive control using
Gaussian process regression. IEEE T Contr Syst T. (2020) 28:2736-43. doi: 10.1109/
Tcst.2019.2949757

86. Hewing L, Wabersich KP, Menner M, Zeilinger MN. Learning-based model
predictive control: toward safe learning in control. Annu Rev Contr Robot. (2020)
3:269-96. doi: 10.1146/annurev-control-090419-075625

87. Rickenbach R, Kohler J, Scampicchio A, Zeilinger MN, Carron A. Active
learning-based model predictive coverage control. IEEE T Automat Contr. (2024)
69:5931-46. doi: 10.1109/Tac.2024.3365569

88. Dockendorf MF, Murthy S, Bateman K, Kothare PA, Anderson K, Xie W, et al.
Leveraging digital health technologies and outpatient sampling in clinical drug
development: A phase I exploratory study. Clin Pharmacol Ther. (2019) 105:168-76.
doi: 10.1002/cpt.1142

89. Smokovski I, Steinle M, Behnke H, Bhaskar R, Grech C, Richter D, et al. Digital
biomarkers: 3PM approach revolutionizing chronic disease management - EPMA 2024
position. EPMA J. (2024) 15:149-62. doi: 10.1007/s13167-024-00364-6

90. Hong RM, Hu YX, Huang H. Biomarkers for chimeric antigen receptor T cell therapy
in acute lymphoblastic leukemia: prospects for personalized management and prognostic
prediction. Front Immunol. (2021) 12:627764. doi: 10.3389/fimmu.2021.627764

91. LiuH, XuY, Gao P, Zhu Y, Liu B, Yang Y, et al. Metabolic molecule PLA2G2D is
a potential prognostic biomarker correlating with immune cell infiltration and the
expression of immune checkpoint genes in cervical squamous cell carcinoma. Front
Oncol. (2021) 11:755668. doi: 10.3389/fonc.2021.755668

92. Wang DR, Wu XL, Sun YL. Therapeutic targets and biomarkers of tumor

immunotherapy: response versus non-response. Signal Transduct Target Ther. (2022)
7:331. doi: 10.1038/s41392-022-01136-2

93. Cipriano A, Mogqri M, Maybury-Lewis B, Rogers-Hammond A, de Jong K, Parker R,
et al. Mechanisms, pathways and strategies for rejuvenation through epigenetic
reprogramming. Nat Aging. (2024) 4:14-26. doi: 10.1038/s43587-023-00562-3

94. Moqri M, Cipriano A, Simpson L, Rasouli N, Murty M, de Jong K, et al. PRC2-
Agelndex as a universal biomarker of aging and rejuvenation. Nat Commun. (2024)
15:5956. doi: 10.1038/s41467-024-50098-2

95. Moqri M, Herzog C, Poganik J, Ying K, Justice ], Belsky D, et al. Validation of
biomarkers of aging. Nat Med. (2024) 30:360-72. doi: 10.1038/s41591-023-02784-9

96. Lee DW, Kochenderfer JN, Stetler-Stevenson M, Cui YK, Delbrook C, Feldman
SA, et al. “T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic
leukaemia in children and young adults: a phase 1 dose-escalation trial.” Lancet. (2015)
385(9967):517-28. doi: 10.1016/S0140-6736(14)61403-3

frontiersin.org


https://doi.org/10.3389/fsysb.2022.923085
https://doi.org/10.1158/2326-6066.Cir-17-0211
https://doi.org/10.1158/2326-6066.Cir-17-0211
https://doi.org/10.3390/cancers13040703
https://doi.org/10.1016/S0895-7177(00)00314-9
https://doi.org/10.1200/Jco.20.02477
https://doi.org/10.1002/psp4.12388
https://doi.org/10.3390/g11040053
https://doi.org/10.3390/g11040053
https://doi.org/10.1016/j.ab.2020.113747
https://doi.org/10.1038/s41467-021-21078-7
https://doi.org/10.1126/science.abq0225
https://doi.org/10.1038/s41587-020-0461-z
https://doi.org/10.1016/j.cnsns.2020.105570
https://doi.org/10.1016/j.cnsns.2020.105570
https://doi.org/10.3390/cancers13153789
https://doi.org/10.1007/s11538-021-00869-5
https://doi.org/10.1182/bloodadvances.2022007246
https://doi.org/10.1182/bloodadvances.2022007246
https://doi.org/10.1182/blood.2020006770
https://doi.org/10.1182/blood.2020006770
https://doi.org/10.1186/s12935-022-02778-6
https://doi.org/10.1016/j.ccell.2019.09.006
https://doi.org/10.1038/s41467-020-17011-z
https://doi.org/10.1016/j.jocs.2021.101523
https://doi.org/10.1007/BF02460644
https://doi.org/10.1016/j.ymthe.2020.08.003
https://doi.org/10.1016/j.patcog.2022.108581
https://doi.org/10.26508/lsa.202302171
https://doi.org/10.1038/s41422-024-00936-1
https://doi.org/10.3390/cells11193165
https://doi.org/10.1038/s41467-023-37863-5
https://doi.org/10.1007/978-1-4939-3569-7_17
https://doi.org/10.1007/978-1-4939-3569-7_17
https://doi.org/10.48550/arXiv.2406.06316
https://doi.org/10.48550/arXiv.2406.06316
https://doi.org/10.1038/s41746-024-01024-9
https://doi.org/10.1038/s41698-024-00517-w
https://doi.org/10.1038/s41587-023-01789-6
https://doi.org/10.1101/2024.07.17.603955
https://doi.org/10.48550/arXiv.2210.01776
https://doi.org/10.48550/arXiv.2210.01776
https://doi.org/10.1101/2023.01.08.523187
https://doi.org/10.1109/Tac.2018.2876389
https://doi.org/10.1109/Tcst.2019.2949757
https://doi.org/10.1109/Tcst.2019.2949757
https://doi.org/10.1146/annurev-control-090419-075625
https://doi.org/10.1109/Tac.2024.3365569
https://doi.org/10.1002/cpt.1142
https://doi.org/10.1007/s13167-024-00364-6
https://doi.org/10.3389/fimmu.2021.627764
https://doi.org/10.3389/fonc.2021.755668
https://doi.org/10.1038/s41392-022-01136-2
https://doi.org/10.1038/s43587-023-00562-3
https://doi.org/10.1038/s41467-024-50098-2
https://doi.org/10.1038/s41591-023-02784-9
https://doi.org/10.1016/S0140-6736(14)61403-3
https://doi.org/10.3389/fimmu.2025.1581210
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org

Putignano et al.

Glossary
CAR-T

FDA

scFv

1L

STAT

JAK

AICD
TAA
ALL
CLL
MM
CRS
NK
SJRs
TRUCKs
ODE
SDE
CNN
TSTM

RF

Chimeric Antigen Receptor T-Cell

Food and Drug Administration

Single-Chain Variable Fragment

Interleukin

Signal Transducer and Activator of Transcription
Janus Kinase

Immunological Synapse

Activation-Induced Cell Death
Tumor-Associated Antigens

Acute Lymphoblastic Leukemia

Chronic Lymphocytic Leukemia

Multiple Myeloma

Cytokine Release Syndrome

Natural Killer (cell)

Synthetic Juxtacrine Receptors

T Cell Redirected for Universal Cytokine-Mediated Killing
Ordinary Differential Equation

Stochastic Differential Equation

Convolutional Neural Network

Time-Series Transformer Model

Random Forest
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SVM
AML
PET
MRI

PA
CDH
PCP
LLM
TDC
MPC
PFS

oS
TRT
CRISPR
TCR
synNotch
BG
TME
or

BCR

10.3389/fimmu.2025.1581210

Support Vector Machine

Acute Myeloid Leukemia

Positron Emission Tomography
Magnetic Resonance Imaging
Photoacoustic (Imaging)

Chemically Disruptable Heterodimer
Positively Charged Patches

Large Language Model

Therapeutics Data Commons

Model Predictive Control
Progression-Free Survival

Overall Survival

Targeted Radionuclide Therapy
Clustered Regularly Interspaced Short Palindromic Repeats
T Cell Antigen Receptor

Synthetic Notch

Benzyl Guanine

Tumor Microenvironment

OT, On-Target, Off-Tumor

B Cell Receptor
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