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Donor adipose-derived stromal
cells are vasoprotectant but
unable to revert acute rejection
in rodent vascularized composite
allotransplants
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Background: Vascularized composite allotransplantation is successful in

reconstruction of major defects of the upper extremity and face. Both

rejection and vascular damage seriously endanger the outcome. The role of

adipose-derived stromal cells (ASCs) in suppressing acute rejection of composite

allotransplants and their short-term protective effects on vessels remains

widely unexplored.

Methods: Systemic and local donor-derived ASCs (CD45−CD29+CD90+) versus

FK-506 administration was evaluated for reversal of acute rejection and vascular

alterations in fully mismatched rat hind-limb transplants.

Results: ASC administration upon grade II rejection significantly delayed but did

not suppress progression to grade III rejection (7.6 ± 1.0 days systemic, 7.1 ± 1.1

days local vs. no cell therapy 2.9 ± 1 days; p<0.01, n=38 animals). Pro-

inflammatory cytokine blood levels significantly increased in controls from

grade II to grade III rejection, whereas ASC significantly lowered the levels for

G-CSF, MIP-1a, MIP-3a, IL-1a, IL-1b, IL-18, and Rantes (p<0.05). Local and

systemic PKH-26-labeled ASCs homed to the allograft and reversed intragraft

vascular alterations in arterioles of rejecting skin and muscle, similarly to FK-506-

treated controls (p<0.01).
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Conclusions: Although systemic and local ASC therapy reduces progression of

acute rejection in vascularized composite allotransplantation, it is not able to

revert rejection without additional immunosuppressive therapy. However, graft

vasculitis during acute rejection is significantly reduced after cytotherapy.
KEYWORDS

hand transplantation, face transplantation, immunomodulation, rejection therapy,
transplant vasculitis, vasculopathy
1 Introduction

S in c e th e in c ep t i on o f v a s cu l a r i z ed compos i t e

allotransplantation (VCA), over 230 procedures have been

performed worldwide, offering advanced reconstructive options

for anatomic and functional restoration of complex and disabling

tissue defects that curtail conventional reconstructive procedures

(1–3). The positive functional and quality-of-life results reported

thus far need to be carefully evaluated in light of the still significant

risk of allograft loss and mortality (4, 5), whereas in some cases,

prosthetic solutions might be the preferred choice (6).

Acute and chronic morbidity due to lifelong systemic

immunosuppression (IS), e.g., with calcineurin inhibitors, that

affects kidney function promotes cancer and disturbs endocrine

function (7, 8), currently limiting the indication for VCA (9, 10).

Much of scientific effort is invested in finding a solution to drug-

based IS, including novel modern strategies such as genetic

engineering, but there is a paucity of reports that investigate

alternative approaches to therapy of onset acute rejection, to

reduce toxicity of corticosteroids and classical IS regimens (11).

Adipose-derived mesenchymal stem cells (ASCs) retain

multiple potential therapeutic effects, including but not limited to

immunomodulatory, angiogenetic, and pro-neurotropic properties

(12). Our group and others have shown a beneficial effect of ASCs in

peri-transplant immunomodulatory and tolerogenic regimens

(13–19).

In addition to that, development of graft vasculopathy (GV) in

VCA has a significant impact on the long-term outcomes of VCA

and is therefore a topic of ongoing investigation. GV refers to the

development of changes or abnormalities in blood vessels that

supply transplanted tissue, usually in the long term due to
cell; BL, baseline; BN,

in succinimidyl ester;

ft vasculopathy; HE,

/M, intima/media;IgM,

eaction assay; MSC,

delivery group; PBMC,

e day; SASC, systemic

regulatory T cell; VCA,

illebrand factor.
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chronic rejection, eventually leading to graft failure (20). Other

than GV, very little is known about vascular alterations arising

during the setting of acute rejection in VCA, whereas vasculitis has

been recognized being an important issue in heart transplantation

(21). We have previously shown that vascular alterations including

thickening of the intima and progressive occlusion also occur

during acute rejection, probably following different mechanisms

than classical GV (17). Different approaches are proposed to

address and prevent vascular issues in VCA, mainly based on

preventive rather than therapeutic strategies taking advantage of

the immunomodulatory function of immunosuppressive drugs and

cell-based therapies.

While the protective effect of ASCs in terms of prevention of

acute rejection and tolerance induction has been explored, to date

there is no report that explores the potential of ASCs in alleviation

or therapy of already manifest acute rejection in VCA, nor their

potential protective effect on allograft vasculature in the setting of

onset acute rejection.

Given this paucity of knowledge, we aimed at exploring the

potential of local or systemically delivered donor-derived ASCs in

attenuation or reversal of acute rejection in an established

osteomyocutaneous rodent VCA model, compared with

traditional reversal with immunosuppressive drug regimen. As

secondary aim, we assessed ASC’s effect on rejection-induced

vascular alterations.
2 Materials and methods

2.1 Experimental protocol

This study was performed according to Swiss animal protection

law and approved by the local animal experimentation committee

(Zurich, Switzerland; permission ZH 107/2015).

6- to 8-week-old male Lewis (LEW, RT1 (1), recipient) and

Brown Norway (BN, RT1n, donor) rats (Janvier or Charles River,

Sulzfeld, Germany; approx. 250 g) were housed in specific

pathogen-free barrier cages with food and water ad libitum. All

recipients were treated with FK-506 (LC Labs, Woburn, MA; 0.5

mg/kg s.c.) daily from surgery to postoperative day (POD) 7 to

allow wound healing and balancing of the immune system, and with
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dexamethasone (4 mg s.c., Galepharm AG, Switzerland) once

during surgery. Four groups were formed: “CTRL” received no

therapy; “LASC” received 2.5 × 106 ASCs s.c. into allograft at

rejection grade II and 2 days later; “SASC” received 2.5 × 106

ASCs i.v. at rejection grade II and 2 days later; and “TAC” received

FK-506 (0.5 mg/kg) and 4 mg dexamethasone s.c. daily (Figure 1).

ASCs were administered in 1 mL PBS by penile vein injection

(SASC) or s.c. into allograft and groin (LASC) after blood (1 mL)

collection for cytokine analysis during a short isoflurane anesthesia.

Before injections, skin samples were taken for baseline (BL) values.

Animals were monitored daily for rejection grades (22). Rejection

grade III (min. 80% of the allograft) or day 8 since start of remission

therapy were defined endpoints. Clinical rejection grading occurred

according to previous reports (grade 0 = normal; grade I = edema;

grade II = erythema; grade III = epidermolysis) (22).
2.2 ASC isolation, cultivation, and
characterization

To isolate ASCs, BN rat inguinal fat pads were excised and cells

were isolated according to the established protocols (23). Cells were

expanded in vitro until passage 3. For surface marker analysis, the cells

were stained with anti-rat CD29, CD73, CD90, and CD45 antibodies

and analyzed using an LSRII flow cytometer (BD Biosciences, San

Diego, CA) with FlowJo (TreeStar Inc., Ashland, OR). For analysis of

cell viability in ASCs, cells were stained with 10 mMCellTrace Calcein-

AM (CellTrace Green, Life Technologies) for 30 min. at 37°C. Viable

cells were detected using a fluorescence microscope.
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2.3 Transplantation model

LEW rats received orthotopic hindlimb transplants from BN

donor rats as described previously in detail (14, 17). Analgesia

occurred with buprenorphine (Temgesic® , Eumedica

Pharmaceuticals AG, Switzerland) 0.1 mg/kg BW s.c. every 6 h

and paracetamol (200 mg/mL Dafalgan Sirup®, UPSA Switzerland

AG) in the drinking water for at least for 72 h or as needed.
2.4 Mixed lymphocyte reaction assays

As responder cells, peripheral blood mononuclear cells

(PBMCs) from the recipient were isolated as described above and

stained with 5 mM carboxyfluorescein succinimidyl ester (CFSE,

Thermo Fisher). Splenocytes isolated from spleens of Brown

Norway were used as stimulator cells and irradiated with 30 Gy.

Both responder and stimulator cells were seeded at a 1:1 ratio and

cultured for 5 days in DMEM/F12 supplemented with 10% FBS, 1%

Pen/Strep (Thermo Fisher), and 0.05 mM 2-mercaptoethanol

(Sigma-Aldrich). After 5 days, CFSE staining was assessed on

CD4+CD45+ T cells by flow cytometry and proliferation

expressed with the proliferation index (PI) as determined using

FlowJo software. The immunomodulatory function of ASCs was

confirmed by adding donor-specific ASCs on top to

abovementioned mixed lymphocyte reaction (MLR) at different

concentrations in respect to responder cells (1:2, 1:1, 10:1). ASCs

were cultivated as described previously (14, 17) and exosomes

(EXO) isolated from the same ASCs at passages 2–4. After the
FIGURE 1

Study groups and protocol. ASC, adipose-derived stem cell.
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seeded ASCs reached 60%–70% confluency, the culture media was

changed to FBS EXO-depleted media (DMEM/F-12 [Gibco] + 10%

EXO depleted FBS [Gibco] + 1% PenStrep [Gibco]) and incubated

for 48 h. The media were then collected and ultrafiltered. The

ultrafiltrate was separated by size exclusion chromatography and

sterilized, and the EXO concentrate fraction was ultrafiltered again.

The EXO that were thawed and used for the experiment, were

isolated from the same ASCs, which were also used for all three

MLR experiments. EXO were diluted with EXO-depleted media

(1:10 [3 × 106 EXO/well],1:1,10:1) and finally added to MLRs in a

similar fashion as the ASCs.
2.5 Blood cytokine analysis

Frozen aliquots of blood plasma were thawed up over ice. For a

customized multiplex immunoassay with magnetic beads, the

ProcartaPlex® kit (Thermo Fisher) including a set of

immunological cytokines was utilized following step-by-step

manufacturer’s protocol and read out with a FlexMAP 3D

multiplex reader (Bio-Rad, Cressier, Switzerland). The assays were

performed in duplicates following the manufacturer’s instructions.

For TSG-6 an ELISA (Cusabio CSB-E17373r) was performed

following step-by-step manufacturer’s protocol.
2.6 PKH-26 cell labeling injection

ASCs were labeled with PKH67 (Sigma Aldrich, PKH67GL-

1KT) according to the manufacturer’s recommendation. A total of 1

mL PBS with cell suspension (2.5 × 106 cells) was injected at

multiple locations subcutaneously into the thigh and groin of the

transplanted limb or systemically by tail vein punction. Samples

were harvested from skin, muscle, and adipose tissue of the allograft

and were embedded in Tissue-Tek (O.C.T., Thermo Fisher) and

snap frozen, cryo-cut sections made and then visualized by

fluorescent microscope (Leica DMi8).
2.7 Histopathology

Samples were harvested at endpoint from skin, fixed with 4%

formalin, and paraffin-embedded, and 4-µm-thick sections were cut.

The sections were stained for hematoxylin and eosin (HE) and elastin

van Gieson. The slides were assessed and scored for BANFF criteria

(24) and semiquantitatively for vasculopathy by a pathologist (PB)

blinded to groups (25). For BANFF grade, necrosis, lymphocyte

infiltration, and vasculitis scores, the pathologist assessed five

representative high power fields per slide for each animal by

conventional microscopy. Each high-power field was categorized

according to the following scale: 0 = none/absent, 1 = minimal, 2 =

moderate, 3 = extensive; and a mean score per animal created.

Exclusion criteria were followed according to Cendales et al (24).

Pretreatment samples of the skin were taken at grade II rejection

prior to systemic or local administration of ASCs. Naive samples were
Frontiers in Immunology 04
retrieved from LEW rats at the time of transplantation. After fixation

with formalin, samples were embedded into paraffin and stained with

Van Gieson’s stain to visualize the internal elastic membrane of the

arterial blood vessels. For analysis of the vessels in skin and muscle,

samples with at least two identifiable vessels were included into analysis.

Measurements of intima and media thickness were performed using

ImageJ software (NIH, Bethesda, USA) at four different spots of the

vessel wall where the tunica intima and media could be clearly

identified by the internal elastic membrane. The intima/media (I/M)

ratio was calculated as intima thickness (µm)/media thickness (µm) and

an average calculated per vessel. All pictures were taken using a Leica

DM6000 B microscope at 20–40× magnification.

For vWF immunohistochemistry, after deparaffinization and

rehydration, slides were washed in Tris buffer pH 7.6 at 37°C×30

min. Antigen retrieval was performed with 0.1% pronase for 15 min at

37°C and sections blocked for 2 h with TBS+10%GS+0.05%T20 at RT.

Slides were incubated with anti-vWF antibody (Abcam, Ab6994; 1:400)

overnight at 4°C, followed by a secondary antibody (Abcam,

Ab150077; 1:1,500) for 1.5 h at RT. After counterstaining with

DAPI, slides were mounted with fluorescent mounting media (Dako).

For immunoglobulin M (IgM) immunohistochemistry, antigen

retrieval was performed with sodium citrate buffer (10 mM sodium

citrate, 0.05% Tween 20, pH 6.0) and blocked with TBS+5% goat

serum+5%BSA+0.05% T20 for 1hr at RT. The anti-IgM antibody at

1:50 dilution (SouthernBiotech 3020-08) was applied and incubated

for overnight at 4°C, followed by streptavidin Cy3 1:100 for 1 h

(Sigma-Aldrich S6402).

vWF and IgM analysis was performed using ImageJ software

(NIH, Bethesda, USA).
2.8 Statistical analysis

Prism 9.0 (GraphPad Software, La Jolla, CA) was used for statistical

analysis and data presented as means ± SD, unless otherwise specified.

Differences between the groups were assessed by one-way ANOVA

and Bonferroni’s post-test. Graft survival was compared using Kaplan–

Meier analysis and the log-rank test (Mantel–Cox) adjusted for

multiple comparisons. Statistical significance is defined as * p< 0.05,

** p< 0.01, *** p< 0.001, **** p< 0.0001.
3 Results

3.1 Reduction of allo-reactivity after
addition of ASCs in vitro

Donor ASCs were positive for CD29 (93.70 ± 2.1%), CD73 (91.35

± 1.2%), and CD90 (98.43 ± 0.9%) and negative for CD45 (0.32 ±

0.5%) and IgG isotype (0.75 ± 0.9%) and showed typical morphology

in culture (Figures 2A-C; n=3). Cell viability was confirmed by

Calcein AM (Figure 2B). ASCs, but not their EXO, significantly

suppress allo-reactivity (proliferation index) of recipient T cells

against BN cells in MLR assays (Allo 2.2 ± 0.58; Figure 2D;

Supplementary Figure 1; n=3; Allo: ASC 1:2 1.2 ± 0.13, 1:1 1.22 ±
frontiersin.org
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0.13, 10:1 1.35 ± 0.2; Allo:exo 10:1 2.22 ± 0.49 1:1 2.21 ± 0.46 1:10 2.1

± 0.38; Allo: ASC 10:1 p<0.01, 1:1 and 1:2 p<0.0001 vs. Allo).
3.2 Local and systemic ASCs attenuate
progression of onset rejection but are
unable to achieve complete reversal as
opposed to tacrolimus/dexamethasone

While control animals all reached grade III rejection

(Figure 3A) within 5 days after cessation of immunosuppression

(median 3 days), in subjects receiving ASCs at grade II, the

progression to grade III rejection was significantly delayed with 8

of 10 and 9 of 10, in LASC and SASC, respectively, reaching grade

III rejection within day 8 of follow-up (median 8 days for both

LASC and SASC; p<0.0001 vs. CTRL, p<0.01 and 0.001 vs. TAC;

Figure 3B). Compared with that, no animal of TAC group receiving

IS treatment (standard of care) progressed to grade III rejection

(median undefined, p<0.0001 vs. CTRL): Seven animals out of eight

reversed to grade 0, whereas one was still at grade II at endpoint.

ASCs were able to significantly postpone progression of grade II to

grade III rejection in the LASC (7.1 ± 1.1 days) and SASC (7.6 ± 1 days)

groups, compared with controls with no cellular therapy (2.9 ± 1.0

days; p<0.01; Figure 3C). The rejection timepoint and therapy follow-

up for every single animal is summarized in Supplementary Figure 2.
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3.3 Viable ASCs are found in the allograft
after local or systemic administration and
reduce pro-inflammatory cytokine blood
levels during acute rejection in vivo

Cytokine levels were measured in all the groups preoperatively, at

grade II rejection prior to therapy and at endpoint. Blood levels of pro-

inflammatory cytokines such as G-CSF (11.03 ± 3.03 pg/mL), MCP-1

(3,122 ± 299 pg/mL), MCP-3 (4,899 ± 225 pg/mL), M-CSF (13.35 ±

0.80 pg/mL), MIP-1a (1,171 ± 70 pg/mL), MIP-3a (22.91 ± 8.79 pg/

mL), IL-1a (1,432 ± 1,541 pg/mL), IL-1b (428 ± 338 pg/mL), IL-2 (316

± 140 pg/mL), IL-18 (1,746 ± 313 pg/mL), IP-10 (2,158 ± 170 pg/mL),

and Rantes (278 ± 13 pg/mL) all showed an increase from grade II to

grade III rejection in CTRL, compared with naïve values (all p<0.05 or

lower; values in pg/mL; Figure 4; Supplementary Figure 3). Of these, G-

CSF (2.784 ± 0.63 and 1.574 ± 1.05 pg/mL), MIP-1a, MIP-3a, IL-1a
(616.2 ± 1127 and 213 ± 369 pg/mL), IL-1b (175.5 ± 194 and 106 ± 73

pg/mL), IL-18 (786 ± 6.5 and 720 ± 154 pg/mL), and Rantes (169 ± 2

and 189 ± 29 pg/mL) were significantly reduced in the therapeutic

groups LASC and SASC, respectively, similarly to the TAC group (all

p<0.05 or lower, pg/mL). GROKC showed a similar trend in SASC and

TAC (83 ± 7 and 57 ± 14.30 pg/mL) but even higher values than CTRL

in LASC (193 ± 34 vs. 289 ± 64.10 pg/mL). IFN-y was significantly

suppressed in SASC and TAC, compared with naïve levels (41 ± 29.6

and 40 ± 20.7 vs. 76.6 ± 17.6 pg/mL; p<0.05).
FIGURE 2

Cell characterization. Donor-specific ASCs were isolated from BN rats and culture-expanded up to passages 2–3 (A) and their viability assessed by
Calcein AM assays (B). Flow cytometry (n=3) phenotyping revealed typical marker expression (CD29, CD73, and CD90) and negativity for CD45 (C).
In mixed lymphocyte reaction assays (n=3), ASCs and ASC-derived EXO at different concentrations were tested for suppression of alloreaction
between irradiated donor BN splenocytes and recipient PBMCs (Allo) (D). Pictures taken at 10× magnification, bar = 50 µm. ASC, adipose-derived
stem cell; BN, brown Norway; EXO, exosomes. ** p<0.01, **** p<0.0001.
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Anti-inflammatory cytokines IL-4 (LASC 25.5 ± 16.9 and SASC

28.1 ± 22.1 pg/mL) and TSG-6 (LASC 0.25 ± 0.1 and SASC 0.17 ±

0.1, O.D.) both were increased after cell therapy compared with

CTRL (IL-4 19 ± 0.7 pg/mL and TSG-6 0.14 ± 0.05 O.D.; IL-4

p>0.05, TSG-6 LASC p<0.01, SASC p>0.05).

In tissue samples of the allograft at endpoint, PKH-26-labeled

ASCs were found in muscle tissue of SASC animals, but not CTRL

animals (as exemplary shown in Supplementary Figure 4).

Similarly, in LASC animals, PKH-26-labeled ASCs were found in

skin tissue and in the inguinal fat pad at the interface to the allograft

(Supplementary Figure 4).
3.4 Pathohistological assessment and
grading of allograft samples reveals no
relevant improvement after cell therapy
compared with controls, as opposed to
complete reversal in the IS group

Mean Banff scores for HE-stained skin samples (Figure 5A)

were 3.78 ± 0.44 for CTRL, 3.57 ± 0.78 for LASC, 3.29 ± 0.49 for

SASC, and 0.38 ± 0.52 for TAC (Figure 5B; p<0.001 vs. CTRL,

p<0.01 vs. LASC, p<0.05 vs. SASC). Skin necrosis mean scores were
Frontiers in Immunology 06
2.78 ± 0.44 in CTRL, 2.38 ± 1.19 in LASC, 2.38 ± 0.75 in SASC, and

0 ± 0 in TAC (p<0.01 vs. CTRL and LASC, p<0.01 vs. SASC); skin

lymphocyte infiltration mean scores were 2.45 ± 0.73, 2.25 ± 1.03,

and 1.75 ± 0.89 for CTRL, LASC, and SASC, respectively, compared

with 0.38 ± 0.52 in TAC (p<0.01 vs. CTRL and LASC); mean scores

for vasculopathy-like alterations were 2.29 ± 1.11 in CTRL, 1.71 ±

1.11 in LASC, 1.71 ± 0.76 in SASC, and 0.13 ± 0.35 in TAC (p<0.01

vs. CTRL and SASC). Pretreatment skin samples confirmed early

acute rejection (histologically grades I–II) with no significant

difference between the groups.
3.5 Local and systemic administered ASCs
significantly revert and attenuate allograft
vasculitis in rejecting skin and muscle
arterioles, similar to the IS group

The I/M ratio, measured as depicted in Figure 6A, significantly

increased in skin samples during grade II rejection (BL; 0.94 ± 0.25,

p<0.0001 vs. naïve; Figure 6B) with respect to naïve values (0.37 ±

0.09) and slightly decreased after reaching grade III rejection in

animals of the CTRL group (0.70 ± 0.11, p<0.001 vs. naïve). In

animals receiving local or systemic ASCs, the I/M ratio was
FIGURE 3

In vivo outcome and allograft rejection. Appearance of rejection-free interval (grade 0), to moderate rejection (grade II—timepoint for cell therapy)
and severe rejection (grade III—endpoint) are depicted in picture (A). Kaplan–Meier survival curves for ASC-treated groups (SASC and LASC), TAC
and CTRL (****p <0.0001 vs. CTRL; ## and ###p<0.01 and p<0.001 vs. TAC; (B) Numbers of elapsed days for progression from grade II to grade III
rejection are depicted in graph (C) (**p<0.01 vs. CTRL). ASC, adipose-derived stem cell; CTRL, controls; LASC, local ASC group; SASC, systemic ASC
group; TAC, FK-506-treated group.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1581599
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Schweizer et al. 10.3389/fimmu.2025.1581599
considerably reverted to values near naïve vessels at endpoint

(SASC 0.51 ± 0.11 and LASC 0.40 ± 0.05, p>0.05 vs. naïve). The

TAC group revealed similar values to naïve samples as well (0.39 ±

0.08, p>0.05 vs. naïve, LASC and SASC).

Similarly, also the I/M ratio found in arterioles of muscle

samples was significantly increased in CTRL (0.64 ± 0.08,

p<0.0001) compared with naïve (0.26 ± 0.02) and therapeutic

groups (SASC 0.36 ± 0.04 p<0.0001, LASC 0.45 ± 0.1452 p<0.001,

TAC 0.32 ± 0.06 p<0.0001; Figure 6C).

The I/M ratio measured in large arteries, i.e., graft femoral arteries,

showed no significant difference between naïve (0.15 ± 0.015), CTRL

(0.06 ± 0.02), and the cell therapy groups (SASC 0.87 ± 0.05, LASC

0.10 ± 0.04, p>0.05; Figure 6D). However, TAC revealed a statistically

significant higher I/M ratio (0.26 ± 0.15, p<0.0001). Differentiation

between arterioles smaller or larger than 40 µm revealed a similar

pattern as described above, without significant differences between the

two groups (showed in Supplementary Figure 5).
3.6 Local and systemic administered ASCs
reduce endothelial activation (vWF) and
IgM deposition in and around allograft
femoral arteries

Endothelial vWF expression in femoral arteries was increased in

CTRL (76.27 ± 31.11) and significantly lower in SASC and LASC

(52.24 ± 18.47 and 53.12 ± 13.54, both p<0.05), whereas TAC had
Frontiers in Immunology 07
higher levels in a similar fashion to CTRL (71.91 ± 21.08, p>0.05;

Figures 7A, B). Endothelial vWF expression in skin arterioles

showed no significant differences between CTRL and therapeutic

groups SASC, LASC, and TAC (p>0.05); however, the expression in

smaller arterioles (<40µm) was approximately 10× higher than in

larger ones (Supplementary Figure 6).

Perivascular IgM deposition was increased in CTRL (13,538 ±

1,038), SASC (13,778 ± 334), and LASC (13,892 ± 1,105) animals

compared with naïve (12,670 ± 642) and, especially, TAC (11,946 ±

908) animals (p<0.05 TAC vs. CTRL, p<0.01 TAC vs. SASC and

LASC; Figure 7C). Perivascular IgM deposition in skin arterioles

showed a similar trend with CTRL significantly higher than NAÏVE

and t h e r a p e u t i c g r o up s (CTRL p<0 . 0 5 v s . TAC ;

Supplementary Figure 7).

Intraluminal IgM expression around femoral arteries was

comparable with naïve animals (4.9 ± 1.86) and the therapeutic

groups (SASC 3.8 ± 1.15, LASC 5.66 ± 1.89, and TAC 3.25 ± 0.47),

whereas it was significantly higher in CTRL animals (10.02 ± 6.9,

p<0.05 vs. SASC and TAC; Figure 7D).
4 Discussion

Herein, we provide first insights exploring the ability of donor-

derived ASCs administered in two different modalities in mitigation

of onset acute rejection in an established rodent VCA model. While

both locally and intravenously injected ASCs bear potential in the
FIGURE 4

In vivo pro- and anti-inflammatory cytokine profile. Pro- and anti-inflammatory cytokine blood levels prior and at onset of acute rejection, and at
endpoint after therapy (values in pg/mL or O.D.). *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. ASC, adipose-derived stem cell; BL, baseline = at
grade II rejection, prior to therapy; CTRL, controls; O.D., optical density; LASC, local ASC group; SASC, systemic ASC group; TAC, FK-506-treated
group. Red line = naïve mean value threshold.
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setting of acute rejection in terms of modulation of rejection-related

inflammation and a protective effect on allograft vasculature, the

explored cell therapy protocol disclosed its limits when it comes to

suppression and reversal of acute rejection and allograft survival in

its actual form.

Indeed, ASC therapy alone was able to postpone, but not to

suppress progression of rejection: while most control animals

reached rejection grade III within 2–3 days from diagnosis of

grade II rejection, animals treated with ASCs reached grade III

significantly later (7–8 days), and few animals still at grade II

rejection at follow-up day 8 (chosen as endpoint with the

intention to assess tissue and blood samples in the acute phase).

The present dosing and repetitive ASC administration were chosen

according to previous own and other reports (17, 26), where we

could show that repeated cell administration brings further benefit

compared with a single dose. The total cell dosage in our protocol

was determined in accordance with other reports (14, 17, 27, 28).

We did not test different doses in this study; however, this

therapeutic scheme could be adapted to daily injections and/or

higher cell doses with potential increased benefit, as shown in

preventive and tolerogenic strategies in VCA (17) or in cardiac

allotransplantation (29). In the clinical setting, one would start

earlier with cell therapy (during rejection grades I–II) and possibly

supported by a low-dose drug IS regimen. We started cellular

therapy at rejection grade II to challenge cell therapy and better

discriminate between the groups; additionally, grade II rejection is

easier to diagnose, since in this VCA model, grade I rejection can

occur with only mild swelling, possibly overlapping with

postoperative swelling. One limitation is that we did not assess
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histological grading prior to initiation of therapy, and we assessed

pretreatment skin samples only retrospectively, although

confirming grade I–II rejection with no significant intergroup

difference.

Under the line, ASCs alone seem insufficient for complete

reversal of rejection without the addition of drug-based IS,

regardless whether delivered locally or systemically. However,

Vandermeulen et al. found no synergistic effect applying bone

marrow-derived MSCs in a rat model of liver transplantation,

when compared with Everolimus alone (30). Casiraghi et al.

found in a murine kidney transplant model that timing of

syngeneic MSC infusion is crucial, given that administration of

MSCs and complement antagonists during transplantation was able

to induce regulatory T cells (T regs) and MSC homing to lymphatic

tissues, but infusion 2 days later did not (31). Direct autologous

ASC administration through portal infusion at the time of

transplantation without standard IS has been found beneficial in

rodent liver transplantation by T reg induction and cytokine

regulation, reducing acute rejection and significantly prolonging

graft survival (32). Similar findings were published by Watanabe

et al. in rat lung transplantation, underscoring the synergistic effects

of ASCs and tacrolimus, compared with ASCs alone (33). They,

however, did not investigate howmuch IS could be reduced with the

aid of cell therapy, keeping a similar positive effect on control

of rejection.

In human liver transplantation, MSCs (1 × 10 (6) cells/kg)

administered i.v. were able to reduce acute rejection-related serum

markers and histopathological rejection findings (34) through

upregulation of T regs and increasing the T reg/T helper ratio.
FIGURE 5

Pathohistological assessment of allograft skin samples. Exemplary pictures of HE-stained skin samples harvested from the allograft at endpoint for
the different groups are provided in A. Mean scores for Banff grading, skin necrosis, infiltration, and vasculopathy are depicted in B for the different
groups. Pictures taken at 5× magnification, bar = 100 µm. *p<0.05, **p<0.01, ***p<0.001. ASC, adipose-derived stem cell; CTRL, controls; LASC,
local ASC group; SASC, systemic ASC group; TAC, FK-506 group.
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On the other hand, another clinical report showed the contrary in

liver transplantation (35). This discrepancy between the studies is

probably also due to different isolation, culture, and administration

methods of cell therapies and different antigenicity of the organs.

MSC therapy could show synergistic effects with other cell types,

such as T regs, as reported in the setting of acute brain injury (36),

but there is no report exploring this in transplantation or VCA

thus far.

Noteworthily, more recent reports highlight different potential

cell therapies that go beyond the use of MSCs/ASCs, such as T regs,

macrophage regulatory cells, or dendritic cells (26). T regs are a very

promising cell type that could help in transplant rejection due to their

immunomodulatory function and might be able to promote allograft

tolerance, although it is unclear if they would be helpful in the hostile

milieu during manifest acute rejection (37). There is some evidence

that T regs can synergistically improve MSCs’ immunomodulatory

function; thus, future research should perhaps focus on cellular

therapies that include different kinds of cells to improve their

efficacy in mediating or mitigating acute rejection (37), possibly in

combination with immunotherapies (e.g., ustekinumab and

secukinumab (38)). Based on previous animal experiments, a group

investigated the safety and utility of expanded autologous T regs in

mitigation or control of early transplant inflammation in kidney
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transplant recipients, with promising results and no adverse events

(39). Similarly, in a pilot study, Todo et al. found that administration

of ex vivo expanded T regs promoted weaning of liver transplant

patients from immunosuppression in a stable manner in 70% of

patients (40). A phase I/IIa clinical trial reported a significant

beneficial effect of T reg administration and success in reduction

from triple- or double-IS therapy to monotherapy in 73% of kidney

transplant patients by reduction of T-cell activation by T regs (41).

Reestablishment of immune cell homeostasis after T reg therapy was

effective and safe, allowing stable monotherapy, with no increased

episodes of acute rejection and less infectious sequelae than under

traditional IS (42). Macrophage regulatory cells are another set of cells

capable of dampening allogeneic rejection responses and potentially

allowing minimization of conventional IS therapy. They have been

used safely in a pilot study in human kidney transplantation, reducing

maintenance IS in most patients; however, this was not explored in

the setting of acute rejection (43). Clearly, antigenicity of skin and

mucosa containing allografts is thought to be much more challenging

than SOT such as liver and kidney, and as stated before, most reports

explored the use of cell therapies for weaning of IS but not at the time

of ongoing acute rejection.

The advantage of using donor- over recipient-derived cells is

not yet elucidated from an immunological perspective; from a
FIGURE 6

The role of ASCs in allograft vasculitis. The intima/media ratio was measured in allograft arterioles as depicted in (A) The intima/media ratio in skin
(B) and muscle (C) arterioles, and femoral arteries (D) is represented for the different groups at endpoint and in naïve animals. An additional sample
(BL = baseline) was taken for skin assessment prior to start of cell or FK-506 therapy. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. ASC, adipose-
derived stem cell; CTRL, controls; LASC, local ASC group; SASC, systemic ASC group; TAC, FK-506 group. Red line = naïve mean value threshold.
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clinical point of view, the advantage is that a large quantity of ASCs

can be retrieved from brain-dead donors at the time of VCA harvest

and expanded or even frozen in high aliquots for later use, the

reason why we opted for this source and timing. Donor-derived

ASCs were able to reduce the alloresponse in MLRs at different

concentrations after their expansion, as previously shown (14, 17,

44, 45); however, sole ASC-derived EXO were not able to suppress

the alloresponse in our hands (46).

Local use of ASCs in rat VCAs has been found more effective

than systemic administration as a tolerance-inducing

immunomodulatory regimen (47). The present study first shows

that ASCs are capable of exerting beneficial therapeutic effects even

when administered locally into hostile microenvironments such as

grade II rejection, which is characterized by moderate but

significant cellular infiltrates and tissue inflammation. This state

of inflammation, on the other hand, could promote anti-

inflammatory properties of MSCs and/or provide guidance for

homing of the cells when administered systemically through local

secretion of chemoattracting factors (48). For example, the

immunomodulatory function of MSC is activated by IFN-y (49);

thus, IFN-y-conditioned MSCs could be a promising approach (50).

Enhancing cell durability and resilience in inflamed tissue may be
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achieved by applying hypoxic or alternative conditioning to ASCs

during culture, expansion, and pre-administration, as suggested

previously (51–53). We expected increased efficacy of locally

injected ASCs compared with systemic administration, supposing

that they would engraft and exert their beneficial effect “on site”:

however, our data did not show any significant difference between

the two route of administration.

Intracellular PKH-26-labeled cells were found in the graft at

endpoint, suggesting that at least part of the cells injected

intravenously homed and engrafted at the site of need. To avoid

excessive entrapment in filtering organs and life-threatening lung

embolies, intravenous injections occurred very slowly (54). As a

limitation, this is only a descriptive finding and does not assess the

quantity of cells that were injected intravenously and the percentage

that was found in the graft, out of scope in the present study. After

local injection, cells were found in both fat pad and allograft skin

several days after injection: other reports have shown that topically

applied cells remain at the site of injection and as identified by

bioluminescence technology (55, 56).

Blood cytokine analysis revealed intriguing results: pro-

inflammatory cytokines significantly increased in controls without

therapy (G-CSF, IL-1a, IL-1b, Rantes, IP-10, IL-18), as it would be
FIGURE 7

Endothelial activation in allograft greater (femoral) arteries. Endothelial activation (vWF) in graft femoral arteries are represented for each group
(A) and exemplary fluorescence microscopy pictures provided in (B). Perivascular (C) and intraluminal (D) IgM deposition in large allograft arteries is
depicted for the different groups. *p<0.05, **p<0.01. ASC, adipose-derived stem cell; CTRL, controls; IgM, immunoglobulin M; LASC, local ASC
group; SASC, systemic ASC group; TAC, FK-506 group; vWF, von Willebrand factor. Red line = naïve mean value threshold.
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expected during acute rejection. However, in animals receiving

immunomodulating ASC therapy, a significant set of pro-

inflammatory cytokines was reduced and had values toward those

under drug-based IS therapy (TAC). This highlights and confirms

ASCs’ capacity to regulate the immune system even during acute

rejection, although in the present study this was not sufficient for

clinical reversal of rejection. IL-18, which promotes transplant

rejection, was significantly reduced in ASC groups (57, 58):

indeed, IL-18 upregulates IP-10 (CXCL10) and promotes

recruitment of activated T cells (Th1), which is in line with

increased IP-10 levels mostly in the control group as found in our

study (59). IL-18 induces Rantes (CCL5), which in turn promotes

recruitment of Th1 T cells, and was clearly decreased in animals

receiving ASCs compared with controls. Similarly, Friedman et al.

reported values for Rantes, MIP-1a, MIP-3a, and chemokine IP-10

that align with our findings (58). MCP-1, MCP-3, and IP-10 were

significantly increased at baseline (grade II), confirming our

previous findings and aligning with other authors’ observations,

identifying them as early rejection markers (19, 58, 59): these were

significantly reduced after ASC treatment. IFN-y was found

decreased in graft samples compared with naïve skin also by

Brandacher’s group (60).

Interestingly, blood IL-4 and TSG-6 levels, known having anti-

inflammatory properties, were higher in ASC groups compared with

CTRL, underscoring their immunomodulating action (61, 62). IL-4,

produced by Th2 cells, regulates immune responses by regulatory T

cells and is primarily anti-inflammatory: it was not increasingly

upregulated compared with naïve values, but blood levels were

higher than at grade II rejection and in controls (63). TSG-6, an

anti-inflammatory cytokine upregulated upon TNF-a secretion, was

significantly increased in the LASC group, comparable with levels in

the TAC group. This correlated with a better outcome, with three

animals at grade II at the endpoint, compared with just one in the

systemic group (61). Strikingly, IL-10 was not increased in the ASC

groups compared with controls, consistent with another study (64).

This could be due to the use of culture-expanded ASCs rather than

the stromal vascular fraction. Inhibition of IL-10 production is a

critical factor in the ability of FK-506 to reverse ongoing allograft

rejection (65). It is important to note that the effects of these cytokines

are complex and context-dependent, and they can act in different

ways in different biological systems.

Pathohistological analysis of tissues samples according to Banff

criteria (24) histologically confirmed the clinical gradings for all

groups, showing cellular rejection for all animals other than the

TAC group, despite the ASC groups having slightly, not significant,

lower scores. Signs for vasculitis-like alterations in skin samples as

assessed by our group-blinded pathologist were identified in CTRL,

LASC, and SASC, with no relevant difference between the groups,

but not in TAC (25).

We further assessed arterioles of skin samples by Elastin-

specific staining for vascular alterations (e.g., intimal thickening)

quantitatively, as opposed to the qualitative and semiquantitative

assessment by our pathologist (17). The I/M ratio, as expression of

intimal proliferation, significantly increased in skin arterioles of

grade II rejecting animals, whereas in grade III rejecting animals,
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intima thickness decreased again in CTRL animals. One putative

reason might be the acutely inflamed intimal layer being thicker

(i.e., “endothelialitis” or “intimal arteritis”) than an already

deteriorating intima during rejection grade III (25). ASC-treated

animals revealed significant lower I/M ratios in skin and muscle

arterioles, similar to vessels in the drug-based reversal group (TAC)

and naïve animals, highlighting and confirming the positive effect of

ASCs on “graft vasculitis” during acute rejection (17). vWF

expression as a marker for endothelial activation did not correlate

with the pattern found for intimal thickening in arterioles,

suggesting that other mechanisms might be involved. However,

we noticed increased intravascular IgM deposition in arterioles of

CTRL animals, suggesting vascular damage due to antibody-

mediated rejection, which was reduced in the cell therapy and

TAC groups. We acknowledge the limitation that we did not

additionally assess IgG deposition in this study, which would

potentially further confirm the antibody-mediated mechanism of

vascular deterioration.

We found a different picture in femoral arteries: while there

were no significant differences between the therapeutic groups and

control animals, FK-506-treated animals had significantly higher I/

M ratios, accompanied by higher vWF expression in these vessels.

Tacrolimus-associated thrombotic microangiopathy has been

described as rare but severe complication in the past (66, 67), but

the mechanism in our setting remains as interesting as unclear. In

clinical pediatric heart transplantation, increased vWF levels

correlated well with GV (68). In addition, also in large arteries,

IgM deposition was significantly higher in CTRL animals compared

with other groups. The different degrees of endothelial activation

and intimal thickening in the different branches and levels of the

vascular three are something novel and never been shown for VCA

and could be part of the “split rejection” phenomenon, as described

by Pomahac (69). Tissue and systemic cytokine and chemokine

profiles could play an important role in early diagnosis of GV (70)

and show distinct patterns in GV. Disruption of anticoagulant

pathways and fibrin deposition is predictive for development of

early GV (71), and there are many cytokines that are upregulated

during rejection and are suspected of promoting GV, such as

MCP1- and 3 (72, 73), RANTES, and IP-10 (74, 75). IL-1b and

18 are involved in complement-endothelial activation (76, 77). All

these factors were significantly upregulated in CTRL and reduced in

the ASC groups and correlated with increased intimal hyperplasia

in graft skin and muscle arterioles of controls, so this could hold

true also in the setting of acute, T-cell-mediated rejection. In fact,

we would like to point out that GV usually is a term associated with

vascular alteration and deterioration in the setting of chronic,

antibody-mediated rejection: in the short-term setting of this

study, we believe that graft vasculitis (or “endothelialitis”) is a

better term to describe the vascular alterations found during acute

rejection and needs to be distinguished from “graft vasculopathy”

(25). Our results are in line with recent emerging evidence that

acute T cell-mediated rejection can be associated with lymphocytic

vasculitis, as described also in the consensus paper of the 15th Banff

Conference with regard to heart transplantation, which could be

correlated with intimal thickening, as observed in our study (21,
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78). In fact, endothelial cells hold a key role in acute rejection, can

act as antigen-presenting cells, and are involved in both cell- and

antibody-mediated rejection. They are the first location where the

complex interplay between donor and recipient cells takes place;

before the immune cells, merely CD8 effector T cells progressively

infiltrate the allograft (38).

In conclusion, despite some promising findings in terms of

cytokine regulation and vascular protection, the use of ASCs as

stand-alone treatment of acute rejection is insufficient as of now

without aid of classic IS. The benefit of different timepoints, higher

dosage, combination of local and systemic delivery, or combination

with other cell types, e.g., T regs, should be further investigated.
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