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Extracellular vesicles (EVs) are lipid membrane-bound vesicles involved in cell-

cell communication, particularly in the context of cancer. Immunotherapy, a

rapidly evolving field in oncology, is a type of cancer treatment relying on the

body’s own immune system to fight mutated cancer cells. Recently, the

significance of immunotherapeutic resistance has been increasingly

acknowledged owing to the heightened prevalence of cancer and its

commonly advanced stage upon diagnosis. However, the complexity and

heterogeneity of tumor cells pose challenges to immunotherapy, and the role

of EVs in immunotherapeutic resistance remains unclear. Recent studies focused

on the role of EVs as heterogeneous groups of nanoparticles in intercellular

communication, particularly within the tumor microenvironment (TME). EVs,

which include exosomes, shed microvesicles, while apoptotic bodies carry a

diverse range of molecular cargo, including proteins, nucleic acids, lipids, and

other bioactive molecules. The complexity and versatility of EVs make them a

fascinating area of study, with promising implications for the future of

immunology and medicine. This brief review highlights the involvement of EVs

in immunotherapeutic resistance (e.g., PD-L1 transfer, miRNA-mediated

pathways) with a focus on their biogenesis, secretion, and functional roles in

cancer, underscoring their potential as diagnostic and therapeutic tools.
KEYWORDS

extracellular vesicles, immunotherapeutic resistance, tumor microenvironment, cell
communication, cancer progression
1 Introduction

Extracellular vesicles (EVs) are membranous particles released by various cell types

including cancer cells; they play a pivotal role in intercellular communication (1, 2). EVs

mediate cellular signaling by transferring bioactive molecules between cells, thereby

modulating cellular behavior and contributing to tumor progression, survival, and

metastasis (3, 4). Moreover, cancer cells exploit EVs as vehicles for (5–7) ting drug-
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resistant proteins or genetic material, thus facilitating the

dissemination of resistance mechanisms within the tumor

microenvironment and neighboring cells, ultimately leading to

therapeutic failure. Furthermore, cancer-derived EVs can

modulate the immune response by suppressing the immune cell

activity, thereby establishing an immunosuppressive tumor

microenvironment that facilitates tumor evasion from immune

surveillance (8, 9). Consequently, these effects have garnered

increasing attention with respect to immunotherapeutic resistance.

Cancer is a multifaceted disease characterized by dysregulated

cellular proliferation and invasive behavior (10). A pivotal hallmark

of cancer cells is their capacity to engage in intricate crosstalk with

the surrounding microenvironment, including immune cells,

stromal cells, and the extracellular matrix (11). This dynamic

communication primarily occurs through the secretion of EVs,

which exert regulatory effects on recipient cells, thereby modulating

and shaping immune response (12, 13). Over the recent decades,

extensive research has revealed diverse roles of EVs in cancer

biology, particularly in immunotherapeutic resistance (14, 15).

Recent reports offer a comprehensive overview of the complex

interplay between EVs and resistance to cancer immunotherapy

(16). This highlights the multifaceted nature of this relationship,

emphasizing the intricate mechanisms by which EVs influence

immune responses and contribute to therapeutic resistance (17).

EVs play sophisticated roles in immune evasion and creation of

an immunosuppressive microenvironment (18). Notably, cancer

cells utilize EVs to export proteins or antigens, thereby evading

immune detection and reducing their susceptibility to

immunotherapies that target these specific antigens (19). This

insight underscores the cunning tactics employed by cancer cells

to subvert the body’s natural defense mechanisms (20).

Furthermore, the review points out the significant role of EVs in

shaping the tumor microenvironment by de l iver ing

immunosuppressive molecules like TGF-b and PD-L1, which

inhibits T cell activity and highlights the strategic deployment of

EVs to dampen the immune response (21). Additionally, this review

delves into the ability of EVs to transfer drug-resistance genes or

proteins, leading to the emergence of drug-resistant cancer cell

subpopulations. This aspect of EV function is particularly alarming

as it suggests a mechanism for the spread of resistance within

tumors, complicating the efficacy of immunotherapeutic

strategies (22).

In addition, this review discusses the potential of EVs to

modulate immune checkpoint molecule expression, which is a

critical factor in resistance to immunes (23). This modulation can

be further discussed in terms of its implications for the success of

immunotherapies that rely on these checkpoints (24). Finally, the

review emphasizes the dual role of EVs in instructing immune cells,

such as dendritic cells, to either enhance or suppress anti-tumor

immune responses. This duality is crucial for understanding how

EVs influence the outcomes of adoptive cell transfer therapies to

engineer immune cells for the effective targeting of cancer cells

(14, 25).

Overall, this article provides a robust foundation for

understanding the intricate relationship between EVs and
Frontiers in Immunology 02
immunotherapeutic (26). A more detailed review could further

explore the nuances of this relationship, strategic maneuvers of

cancer cells, and challenges posed to the development of

effective immunotherapies.
2 Subtypes of EVs involved in
immunotherapy resistance

Based on their biogenesis and biofunctions, EVs are primarily

classified into exosomes, shed microvesicles, and apoptotic

bodies (Figure 1).
2.1 Exosomes

Exosomes are small EVs (30–150 nm in diameter) that originate

from the endosomal compartment and are generated by the inward

budding of the plasma membrane, followed by the formation of

multivesicular bodies (MVBs). Subsequently, MVBs merge with the

plasma membrane to release exosomes into the extracellular space

(27). Exosomes contain several types of specific surface markers,

such as tetraspanins (CD9, CD63, and CD81), heat shock proteins

(Hsp70 and Hsp90), MVB synthesis proteins (ALG-2-interacting

protein X [Alix] and tumor susceptibility gene 101 [Tsg101]), and

membrane transporters and fusion proteins (annexins and flotillin)

(28). The maturation of MVBs involves the recruitment of specific

proteins such as the endosomal sorting complex required for

transport, which plays a crucial role in the scission of

intraluminal vesicles (ILVs) into the MVB lumen. Exosomes are

then released into the extracellular space upon the fusion of MVBs

with the plasma membrane (29, 30).

In the intricate tapestry of cancer therapeutics, exosomes have

emerged as formidable contributors to immunotherapy resistance in a

spectrum of malignancies. Regarding their roles in gynecological

cancers, exosomes harvested from cisplatin-resistant ovarian cancer

cells encapsulate higher concentrations of cisplatin than their cisplatin-

sensitive counterparts, thereby fortifying their resistance to

chemotherapy (31). These vesicles are laden with an abundance of

drug efflux pumps such as MRP2, ATP7A, and ATP7B, which are

instrumental in chemoresistance (32). In breast cancer, adriamycin-

resistant cells segregate the drug into exosomes, circumventing the

anticipated nuclear accumulation. Moreover, exosomal conveyance of

P-glycoprotein (P-gp) induces a chemoresistant phenotype in breast

cancer cells (33). Docetaxel-resistant prostate cancer cells release

exosomes with increased P-gp levels, outstripping them from their

sensitive kin. Exosomes originating from gemcitabine-resistant triple-

negative breast cancer cells demonstrate an uncanny ability to impart

resistance to more susceptible cells (34). hey also play a role in the

development of drug resistance by shuttling proteins, microRNAs, and

a plethora of biomolecules capable of modulating therapeutic

responses (35).

Engineered exosomes, designed to express the hepatocellular

carcinoma antigen a-fetoprotein, have unveiled a potent anti-

tumor response by dampening immunosuppressive cytokines and
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amplifying the presence of IFN-g-expressing CD8+ T cells (36).

Exosomes derived from bone marrow mesenchymal stem cells

augment chemosensitivity to cisplatin by delivering miR-199a-3p

(37), which targets LRRC1 and mitigates drug resistance. Lung

cancer cell-derived exosomes orchestrate drug resistance by

conveying resistance-associated proteins and RNA. The presence

of androgen receptor splice variant 7 within exosomal RNA has

been correlated with resistance to hormonal therapy in prostate

cancer, underscoring the potential of exosomal biomarkers for

predicting treatment outcomes (38–40). Exosomes emanating

from cancer-associated fibroblasts (CAFs) play a pivotal role in

chemoresistance by fostering colorectal cancer cell stemness and

epithelial-mesenchymal transition, which are pivotal in resistance

to therapy. The transfer of exosomal miR-92a-3p from CAFs to

colorectal cancer cells enhances stemness and epithelial-

mesenchymal transition, thereby contributing to chemoresistance

to 5-FU/L-OHP (41).

In the discourse on exosomes and their multifaceted roles in

cancer, the majority of research underscores their pro-resistance

functions; however, few studies have illuminated their contrasting

effects. For instance, exosomes from A549 cells, a cisplatin-resistant

human lung adenocarcinoma cell line, induce resistance to therapy by
Frontiers in Immunology 03
upregulating mTOR expression (42). This suggests that targeting the

mTOR pathway is a potential strategy to overcome this resistance.

However, it’s important to recognize that these effects are not always

simultaneous or reversible. In colorectal cancer, exosomes secreted by

cancer cells induce resistance to 5-FU and oxaliplatin by activating

the Wnt/b-catenin pathway, which promotes the stabilization and

nuclear translocation of b-catenin (43). The inhibition of this

pathway may be instrumental in reducing drug resistance.

Furthermore, triple-negative breast cancer cells release exosomes

that induce resistance to docetaxel and gemcitabine in

nontumorigenic breast cancer cells (MCF10A). This resistance is

mediated by the upregulation of the PI3K/AKT, MAPK, and HIF1A

pathways in MCF10A cells (44). In hepatocellular carcinoma, the

interaction between the high-mobility group box 1 gene, the RICTOR

molecule in the mTOR pathway, and members of the miR-200 family

promote glutamine metabolism and tumorigenesis (45). This

interaction can reduce the efficacy of anti-PD-L1 immunotherapy

in hepatocellular carcinoma. The ORAI1 calcium channel regulates

intracellular calcium concentration and affects the secretion of

exosomes carrying PD-L1 immune molecules. Silencing the ORAI1

channel in tumor cells inhibits the secretion of PD-L1 exosomes,

increases CD8+ cells, and impedes tumor progression (46).
FIGURE 1

Extracellular vesicles (EVs) communicate with the immune cells in tumor microenvironment.
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These studies highlight the intricate roles of exosomes in

modulating immune responses and drug resistance in cancer and

shed light on the complexity of exosomal functions and the need for

a nuanced understanding of their mechanisms which may pave the

way for the development of novel therapeutic interventions.
2.2 Shed microvesicles

Shed microvesicles (SMVs), ranging from 100 nm to 1 mm in

diameter, directly bud from the plasma membrane. Microvesicles, a

subtype of EVs, unlike exosomes, originate without involvement of

the endosomal compartment. They are also referred to as the

ectosome and originate from outward protrusions of the plasma

membrane. Several proteins have been identified as microvesicle-

specific, including CD40, ADP-ribosylation factor 6 (ARF6),

selectins, phosphatidylserine, and Rho family members.

CAFs secrete EVs rich in annexin A6, which, in gastric cancer cells,

stabilize b1 integrin and upregulate the expression of focal adhesion

kinase (FAK)-Yes-associated protein (YAP), thereby enhancing cell

survival post-cisplatin treatment (47, 48). This suggests a strategic role

for EVs in modulating the tumor microenvironment. Furthermore,

exosomal transfer of miR-21 from adipocytes to ovarian cancer cells

mitigated paclitaxel-induced apoptosis by downregulating apoptotic

peptidase activating factor mRNA. This highlights the potential role of

EVs in the intercellular communication that influences

chemosensitivity. In hepatocellular carcinoma (HCC), sorafenib

resistance is induced by the delivery of hepatocyte growth factor

(HGF) through EVs, which activates the HGF/c-MET/PI3K/AKT

signaling pathway. This pathway activation underscores the

significance of EVs in resistance mechanisms and suggests that

inhibiting them could be a strategy to mitigate resistance (42, 49).

Macrophage-derived EVs transmit miR-365, which confers

gemcitabine resistance to pancreatic adenocarcinoma cells both in

vitro and in vivo (50). This raises the possibility that modulating the

cargo of EVs could be a viable approach to overcome drug resistance.

CAF-derived exosomal miR-92 significantly promoted T-cell

apoptosis and conferred immunotherapy resistance in breast cancer

cells. miRNA-92 binds to LATS2, which interacts with YAP1.

Chromatin immunoprecipitation confirmed that YAP1 binds to the

enhancer region of PD-L1 after nuclear translocation, thereby

promoting its transcriptional activity. This revealed a complex

regulatory network involving EVs in immune evasion. Hypoxic

conditions induce the production and secretion of circEIF3K-

containing exosomes from CAFs, which reduces miR-214

expression and upregulates PD-L1 expression, leading to enhanced

colorectal cancer cell proliferation, migration, metastasis, and

immune escape. This further emphasizes the role of EVs in tumor

progression and immune modulation (51, 52).

The following examples highlight the complex interactions

between CAFs, EVs, and the tumor microenvironment, and how

they contribute to immunosuppression and drug resistance. In EOC,

the CAF-derived protein FMO2 facilitates lymphocyte infiltration;

higher levels of FMO2 are associated with worse prognosis,

suggesting its potential as a biomarker for predicting
Frontiers in Immunology 04
immunotherapy sensitivity. Hypoxia also induces the secretion of

immunosuppressive factors such as TGF-b, VEGF, and PD-L1 from

CAFs, which exert an inhibitory effect on T cell-mediated

cytotoxicity. This implies the generation of an immunosuppressive

microenvironment fostered by CAFs and the potential for targeting

these factors to enhance immunotherapeutic outcomes. In colorectal

cancer, CD133-containing microvesicles have been identified as

promoters of cancer progression by inducing the M2-like

polarization of tumor-associated macrophages, a process that could

be targeted to combat resistance to immunotherapy. Resistance to

sorafenib in invasive HCC cell lines can be attributed to the delivery

of HGF via extracellular EVs, which activate the HGF/c-MET/PI3K/

AKT signaling pathway. Inhibition of this pathway can potentially

mitigate sorafenib resistance (53–55).

Acknowledging the contribution of microvesicles in conferring

resistance to immunotherapies is crucial. However, they also

present an exceptional opportunity for therapeutic interventions.

EVs play a pivotal role in modulating the immune system functions

by transporting pro-survival molecules with the potential to induce

immune tolerance, thereby facilitating the evasion of immune

surveillance by cancer cells (56). Targeting the pro-survival

molecules encapsulated within EVs could significantly augment

the efficacy of immunotherapeutic approaches. By inhibiting the

immunosuppressive effects of microvesicles and these pro-survival

molecules, we aim to enhance the effectiveness of immunotherapies

and advance personalized and potent cancer treatments.
2.3 Apoptotic bodies

Apoptotic bodies, the largest among EVs with sizes ranging

from 50 nm to 5 mm, are generated during the twilight hours of

apoptosis (57). As the cell undergoes its final stages, its membrane

blebs and fragments, releasing bodies laden with cellular remnants.

Apoptotic bodies stand out because of their substantial girth

compared with their smaller counterparts, exosomes, and

microvesicles. Annexin V and histones are apoptotic body-

specific proteins (58, 59).
3 Biofunction of EVs in cancer

EVs play a pivotal role in the intricate interplay between the

immune system and cancer, particularly in their relationship with

immunotherapeutic resistance. EVs are small messengers that can

influence how our immune cells behave, which is a major concern

in cancer growth and spread. They carry various molecules that can

either calm the immune response against tumors or create a

welcoming environment for cancer cells to thrive. Cancer cells

use EVs for their advantage through sending out signals that

promote their own growth and spread (15, 60, 61).

The potential of EVs in cancer treatment is an exciting research

area. Similar to the creation of a vaccine, EVs can be trained to carry

cancer-fighting agents. There is ongoing research to determine whether
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EVs from dendritic cells can boost the immune response to cancer (62–

64). The relationship between EVs and cancer resistance is complex.

Cancer cells use EVs to dodge immune attacks, create an environment

that suppresses the immune system, and confer resistance to other

cancer cells. EVs can also instruct immune cells how to respond to

cancer, sometimes by downregulating them (65).
4 EVs and immune cells

EVs are multifaceted players in the immune system and have the

potential to serve as biomarkers and therapeutic agents (66). The

influence of EVs on immune cells is a topic of profound interest

because these vesicles have a significant impact on both the innate

and adaptive arms of the immune system through a myriad

mechanisms. EVs are not merely passive bystanders but also active

participants in the modulation of immune responses, through

activating, suppressing, or even facilitating communication

between various immune cells (Figure 2). This multifaceted role is

particularly evident in the cargo they carry, which reflects their cell

of origin and functional state, and encompasses proteins, lipids,

miRNAs, and other bioactive molecules that can profoundly

influence the activation, differentiation, and effector functions of
Frontiers in Immunology 05
immune cells (67, 68). EVs should be recognized as pivotal

messengers in the immune system, conveying crucial information

among immune cells, and thereby fine-tuning immune responses

while maintaining delicate homeostasis. The diversity of proteins,

nucleic acids, and other bioactive molecules they transport

underscores their indispensable role in orchestrating the intricate

and tightly regulated processes that underpin immune defenses

(69, 70).

Dendritic cells (DCs), which are integral to innate immunity,

primarily function as antigen-presenting cells. EVs transfer

immune signals between DCs and tumor cells, with potential

implications for vaccines targeting tumor immune escape. The

presence of phosphatidylserine on the membranes of tumor-

derived EVs can bind to CD300a on DCs, reducing IFN-b
production and influencing the regulatory T cell (Treg)

population. Tumor-associated macrophages and neutrophils

(TAMs and TANs), which are prominent scavengers of tumor

immunity, communicate with tumor cells through EVs, guide

tumor progression, and present promising therapeutic targets.

TDEVs facilitate TAM infiltration and participate in establishing

an inflammatory immune environment. Finally, EVs act as

messengers between tumor cells and natural killer cells,

potentially serving as steppingstones in novel therapies (71, 72).
FIGURE 2

The subtypes of extracellular vesicles (EVs) involved in immunotherapy resistance.
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EVs play a multifaceted role in the tumor microenvironment

(TME), influencing cancer cell behavior and immune response

within the tumor microenvironment.

In the realm of immune functions, EVs, especially those derived

from antigen-presenting cells, harbor major histocompatibility

complex (MHC) molecules that are instrumental in presenting

antigens to T cells and modulating adaptive immune responses.

This mechanism is of paramount importance for initiating specific

immune responses against pathogens or tumors (73, 74).

Furthermore, EVs can display immune checkpoint molecules

such as programmed death ligand 1 and cytotoxic T lymphocyte

antigen 4 on their surface, interacting with receptors on T cells and

natural killer cells to inhibit their activity or induce apoptosis, thus

playing a critical role in immune evasion in some cancers. It is

important to highlight the immunosuppressive properties of certain

immune cell-derived EVs. For instance, regulatory T cell-derived

EVs (Treg-EVs) carry immunosuppressive molecules like CTLA-4

and TGF-b, which contribute to maintaining immune tolerance and

preventing autoimmune reactions, thereby highlighting their role in

immune regulation. EVs released by neutrophils, macrophages, and

other immune cells contain bioactive molecules such as cytokines,

chemokines, and lipid mediators, which can either promote or

resolve inflammatory reactions. This implicates them in the

pathophysiology of various diseases and positions them as

potential therapeutic targets for modulating inflammation (75, 76).

In the context of cancer immunotherapy, EVs have

demonstrated their potential to deliver antigens and

immunomodulatory molecules to enhance anti-tumor immune

responses. A striking example is the release of EVs by chimeric

antigen receptor (CAR) T-cells carrying surface CARs, which

recognize and induce the death of tumor cells expressing CAR-

specific tumor antigens (77).This innovative approach

demonstrates the therapeutic potential of EVs in cancer.

Moreover, studies have revealed that EVs render target cells more

susceptible to inflammatory signals and induce systemic immune

responses. They can even render non-responsive cells susceptible to

inflammatory agonists, with their inflammatory activity remaining

unaffected by soluble receptor antagonists, which is a significant

finding for understanding the role of EVs in inflammation (78). A

deeper understanding of their biogenesis, cargo, and functional

roles is essential to gain insights into the immune system functions

and uncover novel therapeutic avenues.
5 Immunotherapeutic resistance and
EVs

Current immunotherapies mainly focus on the effector arm of

the immune system, such as reactivating T cell responses by

blocking immune checkpoints, blocking immune checkpoints in

cancer immunotherapy, activating adaptive immune responses

using tumor vaccines, or directly transferring engineered T cells

to tumors (79). For example, Universal immunotherapeutic strategy

for hepatocellular carcinoma with exosome vaccines that engage
Frontiers in Immunology 06
adaptive and innate immune responses (80). Understanding and

overcoming this resistance are crucial for improving patient

outcomes and the overall success of immunotherapies (81, 82).

The primary reason for overcoming immunotherapeutic resistance

is the limited effectiveness of the current immunotherapies. Despite the

achieved significant progress in cancer treatment, a substantial number

of patients do not respond to immune checkpoint inhibitors or

eventually develop resistance, leading to disease progression. First,

EVs act as diligent postmen of the TME, shuttling genetic

information and various bioactive cargos between different cell types

within this microenvironment. This communication network is crucial

for maintaining the malignant capacity of tumor cells and plays a

significant role in tumor progression and immunotherapeutic

dysfunction. For instance, colorectal cancer-derived EVs containing

miRNAs can modulate the behavior of recipient cells, thereby

influencing the tumor fate. CAFs, a predominant component of

stromal cells in the TME, contribute to tumor progression and

chemoresistance through their metabolic patterns and secretion of

cytokines and chemokines. EVs are indispensable in this reciprocal

symbiotic dialogue between tumor cells and CAFs, often converting

normal fibroblasts into CAFs through TGF-b or STAT pathways.

When we consider the interaction between tumors and endothelial

cells, EVs have emerged as initiators of metastasis. They facilitate

distant metastasis by affecting the proliferation, migration, and

permeability of endothelial cells. For example, in prostate cancer,

PGAM1 is transported to human umbilical vein endothelial cells

through EVs, thus influencing their metastatic potential (83, 84).

EVs play a role in the resistance to various anticancer therapies.

They increase drug efflux, decrease drug toxicity, and enhance DNA

repair, contributing to chemoresistance. EVs derived from

mesenchymal stem cells contribute to the development of

therapeutic resistance to chemoresistance, targeted therapy, and

immunotherapy. CAR-T cell activity is suppressed by EVs from

cancer-associated fibroblasts (CAFs) that deliver immunosuppressive

cytokines (e.g., TGF-b, IL-10), fostering a TME enriched with

regulatory T cells (Tregs) and myeloid-derived suppressor cells

(MDSCs) (85).EVs act as double-edged swords in these therapies.

Tumor-derived EVs (TDEVs) carry functional PD-L1, which binds

PD-1 on T cells, mimicking immune checkpoint interactions and

blunting ICI efficacy (86). EVs also scavenge tumor-associated

antigens (TAAs), reducing antigen availability for dendritic cell

(DC) priming and adaptive immune activation. Additionally, The

role of the TME in resistance is further complicated by its

heterogeneity, with different regions within the same tumor

potentially having distinct immune landscapes (87, 88). This

heterogeneity can lead to differential responses to therapy and

outgrowth of resistant clones.

EVs drive resistance through diverse mechanisms that

compromise immune cell function and enhance tumor survival:

(1) Immune suppression via cargo transfer, TDEVs deliver immuno

suppressive molecules (e.g., TGF-b, adenosine) to expand Tregs and
MDSCs, creating an inhibitory TME. Exosomal miR-21 from

adipocytes downregulates apoptotic pathways in ovarian cancer

cells, conferring resistance to paclitaxel (89). (2) Antigen masking
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and immune evasion EVs shed TAAs (e.g., HER2, MUC1), reducing

antigen visibility and limiting T cell recognition. CAF-derived EVs

transfer miR-92a-3p to colorectal cancer cells, promoting stemness

and resistance to 5-FU/oxaliplatin by activating Wnt/b-catenin
signaling. Exosomal PD-L1 suppresses CD8+ T cell activity, while

ORAI1 calcium channel inhibition reduces PD-L1 exosome

secretion, restoring T cell infiltration (90, 91). (3) Activation of

pro-survival pathways: Hepatocyte growth factor (HGF) in EVs

activates the HGF/c-MET/PI3K/AKT axis in hepatocellular

carcinoma (HCC), driving resistance to sorafenib. (4) Drug Efflux

and Metabolic Reprogramming: EVs export chemotherapeutics

(e.g., cisplatin) via drug efflux pumps (e.g., MRP2, P-gp).

Exosomal circEIF3K from hypoxic CAFs reduces miR-214 levels,

upregulating PD-L1 and promoting immune escape in colorectal

cancer (92).

Despite their role in resistance, EVs hold promise for improving

immunotherapy outcomes through strategic engineering: (1) EV-

Based Immune Activation: Dendritic Cell-Derived EVs Loaded with

TAAs, these EVs act as vaccines to prime cytotoxic T cells and

enhance antigen presentation (93). CAR-T Cell-Derived EVs display

CARs on their surface, enabling bystander killing of antigen-negative

tumor cells and overcoming tumor heterogeneity (94, 95). (2)

Reversing Resistance Mechanisms: silencing exosomal PD-L1 or

miR-92a-3p restores T cell activity and checkpoint inhibitor

sensitivity (96–98). Engineered EVs carrying CRISPR-Cas9 can

knockout resistance genes (e.g., b-catenin) in recipient cells (99).

(3) Targeted Delivery Systems: EVs loaded with immunostimulatory

molecules (e.g., IFN-g, IL-12) reprogram the TME to support anti-

tumor immunity. Hybrid EVs fused with liposomes enhance drug

delivery to tumors while minimizing off-target effects (100).

In summary, the interplay between EVs and immunotherapeutic

resistance underscores their dual role as both adversaries and allies in

cancer treatment. While EVs facilitate immune evasion and therapy

resistance through immunosuppressive cargo and pathway

activation, their engineering potential offers innovative strategies to

enhance ICIs, CAR-T therapies, and personalized medicine. Future

research should focus on deciphering EV heterogeneity and

optimizing delivery platforms to fully exploit their therapeutic

capabilities (101).
6 Conclusion

EVs are multifaceted players in the cancer landscape that

influence tumor biology, immune responses, and therapeutic

outcomes. The realm of cancer immunotherapy has been

invigorated by the advent of EVs, which have emerged as potent

vehicles for the delivery of antigens and immunomodulatory

molecules, thereby amplifying anti-tumor immune responses.
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This development is particularly noteworthy, given the

remarkable capacity of EVs released by CAR-T cells to carry

surface CARs, enabling them to specifically target and induce the

death of tumor cells bearing CAR-matching tumor antigens. This

innovative strategy not only underscores the therapeutic potential

of EVs in oncology but also represents a significant stride in the field

of targeted cancer therapies.

Furthermore, the sensitization of target cells to inflammatory

signals and eliciting systemic immune responses by EVs are crucial.

The ability of EVs to convert nonresponsive cells into inflammatory

agonist-susceptible cells, with their inflammatory activity remaining

impervious to soluble receptor antagonists, is a groundbreaking

finding. This aspect of EV biology is particularly intriguing as it

sheds light on its role in inflammation and suggests that it may play

a key role in modulating immune responses in a variety of

pathological contexts.

Further study should confront the following three understudied

dimensions to advance EV-based therapeutics: a. Spatiotemporal

Heterogeneity of EV Cargo. Current studies predominantly focus on

bulk EV analysis, neglecting subpopulation-specific functions. For

example, apoptotic bodies versus exosomes exhibit divergent roles in

mediating radiation resistance versus chemotherapy tolerance.

Single-vesicle profiling technologies could unravel this complexity.

b. EV-Driven Metabolic Reprogramming: Emerging evidence

suggests that CAF-EVs transfer lactate dehydrogenase A (LDHA)

and glutamine synthetase to tumor cells, fostering an acidic,

nutrient-depleted microenvironment that impairs T-cell glycolysis

and cytotoxicity. c. Host-Microbiota-EV Axis: Gut microbiota-

derived EVs modulate systemic immunity by regulating PD-L1

expression on dendritic cells. However, their impact on ICB

resistance remains unexplored—a critical omission given the

clinical correlation between dysbiosis and immunotherapy failure.

As we delve deeper into the understanding of EV biogenesis,

cargo, and functional roles, it becomes increasingly clear that these

vesicles are not just passive participants but also active mediators in

the complex interplay of the immune system. This deeper

understanding is vital for deciphering the intricacies of immune

function and paving the way for innovative therapeutic strategies.

Harnessing EVs for cancer treatment holds immense promise, and

continued research on their mechanisms of action will undoubtedly

yield valuable insights and potential clinical applications.
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