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Background: Gliomas are highly aggressive, life-threatening tumors with poor

prognosis, and remain a leading cause of mortality among brain cancers.

Although the role of mitochondrial proteins in cancer has garnered increasing

attention, their specific functions in the nervous system, particularly in gliomas,

remain poorly understood.

Methods:We integrated single-cell RNA sequencing with cellular assays and flow

cytometry to investigate the molecular characteristics and cellular interactions

within glioblastoma subpopulations during tumor progression.

Results: Single-cell RNA sequencing revealed several differentially expressed

genes (DEGs) within glioblastoma subpopulations. Trajectory analysis identified

CHCHD2P9 as a pivotal marker for the terminal subpopulation. Moreover,

elevated expression of CHCHD2P9 was found to correlate with poorer clinical

outcomes. Subsequent cellular experiments further explored the underlying

mechanisms driving these observations.

Conclusions: CHCHD2P9 is significantly overexpressed in glioma patients, and

its differential expression plays a crucial role in regulating glioma cell proliferation

and migration. A CHCHD2P9-based risk model holds promise as both a

prognostic biomarker and a potential therapeutic target, providing novel

insights into the pathogenesis of gliomas and opening avenues for

personalized treatment strategies.
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1 Introduction

Glioblastoma multiforme (GBM) represents the most prevalent

and aggressive subtype of primary brain malignancies, comprising

approximately 50% of all glioma cases and presenting substantial

challenges in both diagnosis and therapeutic management.

Epidemiological data indicate a global annual incidence of 4 to 5

cases per 100,000 individuals, with age-adjusted incidence rates

exhibiting regional variability (1, 2). Epidemiological data indicate a

global incidence of 4–5 gliomas per 100,000 individuals annually,

with age-adjusted rates (3, 4). Histologically, GBM is characterized

by substantial cellular heterogeneity, rapid mitotic activity, and

infiltrative growth patterns, all of which contribute to its complexity

and resistance to conventional therapies (5, 6). The standard

treatment for GBM—comprising surgical resection, radiation

therapy, and chemotherapy—remains largely ineffective in

preventing tumor recurrence and improving long-term survival,

with median survival after diagnosis typically less than 24 months.

The molecular underpinnings of GBM involve extensive

dysregulation of key signaling pathways, including those

governing cell proliferation, apoptosis, and DNA repair, which

are further compounded by chromosomal instability (7). Despite

the advent of innovative therapies, such as immune checkpoint

inhibitors, targeted molecular therapies, and gene-editing strategies,

their clinical application is still in the experimental phase, hindered

by challenges including the selective permeability of the blood-brain

barrier (BBB) and the lack of reliable prognostic biomarkers. The

urgent need for more effective treatments highlights the importance

of further elucidating the molecular and immune landscape of

gliomas, as well as identifying novel therapeutic targets that can

overcome existing treatment barriers (8, 9).

Mitochondrial dysfunction is increasingly recognized as a

hallmark of both neurodegenerative diseases and cancer.

Members of the CHCHD gene family, such as CHCHD2 and

CHCHD10, encode mitochondrial proteins that play important

roles in regulating cellular energy homeostasis, oxidative stress

responses, and apoptosis (10, 11). Mitochondria, as the

powerhouse of the cell, are crucial for maintaining cellular

homeostasis, including energy production, oxidative stress

response, and apoptosis regulation (12, 13). CHCHD2P9,

annotated as a pseudogene (coiled-coil-helix-coiled-coil-helix

domain containing 2 pseudogene 9), shares high sequence

similarity with CHCHD2 and is predicted to contain similar

structural domains. However, current databases such as UniProt

and GeneCards do not provide definitive evidence that CHCHD2P9

encodes a functional protein, and its role remains largely

uncharacterized in both physiological and pathological contexts.

Some studies have reported RNA expression of CHCHD2P9 in

specific tissues, suggesting that it may exert biological effects

through non-coding RNA mechanisms or through its sequence

homology with protein-coding genes. Recent bioinformatic analyses

and emerging evidence suggest potential involvement of

CHCHD2P9 in processes such as neuronal differentiation,
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synaptic plasticity, and neuroinflammatory responses. These

observations, though preliminary, raise the possibility that

CHCHD2P9 may modulate neurodegenerative processes, either

through RNA-mediated regulation or inferred protein-like activity.

Furthermore, mitochondrial dysfunction—a common feature

in gliomas—is often driven by altered expression of mitochondrial-

related genes. While the role of CHCHD2 and related proteins in

tumorigenesis has been more clearly elucidated, the functional

contribution of CHCHD2P9 in glioma remains poorly

understood. Given its putative mitochondrial association and

sequence homology, CHCHD2P9 warrants further investigation

as a potentially novel regulatory molecule in glioma biology,

although current evidence does not yet support its classification

as a bona fide mitochondrial protein (14).

The advent of high-resolution single-cell RNA sequencing

(scRNA-seq) has fundamentally transformed the study of cellular

heterogeneity, enabling detailed characterization of individual cell

states and their interactions in both physiological and pathological

settings (15, 16). This technology offers unparalleled resolution in

identifying cellular subpopulations within tumors, thereby

providing critical insights into the molecular underpinnings of

glioma progression, including mitochondrial dysfunction and

metabolic reprogramming (17, 18). Moreover, scRNA-seq

facilitates the in-depth analysis of complex intercellular

communication networks, particularly those involving tumor

cells, immune infiltrates, and neurons within the glioma

microenvironment. These investigations have shed light on key

neuroimmunological interactions that influence tumor behavior,

such as immune modulation by tumor-associated immune cells and

neuroimmune crosstalk contributing to glioma invasiveness (19,

20). The integration of single-cell transcriptomics with spatial

transcriptomics further enhances this approach by allowing

researchers to construct high-resolution tumor atlases. These

atlases delineate the spatial architecture of cellular clusters and

their associated signaling pathways, elucidating critical drivers of

tumor growth and invasion (21, 22). Beyond mechanistic

discoveries, single-cell multiomic technologies are poised to

revolutionize glioma treatment strategies. By enabling the

identification of tumor-specific neoantigens, immune checkpoint

signatures, and other predictive biomarkers, these platforms can

inform the development of personalized immunotherapeutic

interventions (23, 24). Notably, scRNA-seq permits the precise

identification of immune cell subsets—including tumor-associated

macrophages, T lymphocytes, and dendritic cells—whose

interactions with tumor cells are pivotal to the success of

immunotherapies. These insights into the tumor-immune

interface are essential for the advancement of precision oncology,

particularly in tailoring immunotherapeutic approaches to target

specific glioma subtypes or overcome immune evasion mechanisms

(25). Collectively, the integration of single-cell technologies with

immunological profiling provides a comprehensive framework for

dissecting glioma biology and paves the way for next-generation,

precision-driven therapeutic strategies.
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2 Methods

2.1 Data source

The single-nucleus RNA sequencing (snRNA-seq) data used in

this study were obtained from the Gene Expression Omnibus

(GEO) database (https://www.ncbi.nlm.nih.gov/geo/) under

accession number GSE103224 (26). The dataset includes specific

samples, namely GSM2758471, GSM2758472, GSM2758473,

GSM2758474, GSM2758476, GSM2758477, and GSM2940098.

Additionally, RNA sequencing data for various cancer types were

retrieved from The Cancer Genome Atlas (TCGA) through the

Genom i c Da t a Common s (GDC) po r t a l ( h t t p s : / /

portal.gdc.cancer.gov/). These datasets were integrated for single-

cell bioinformatics analyses to assess gene expression profiles and

characterize cellular diversity, with a particular focus on glioma.
2.2 Data standardization and quality
control

The single-cell RNA sequencing (scRNA-seq) data were

processed and analyzed using the Seurat package (v4.3.0) within

the R programming environment (v4.2.0). Rigorous quality control

(QC) procedures were implemented to ensure high-quality data and

minimize noise from low-quality cells or potential doublets.

DoubletFinder (v2.0.3) was used to detect and exclude potential

doublets, and the following filtering criteria were applied: number

of detected genes (nFeature) between 300 and 4,500, total read

counts (nCount) between 500 and 100,000, and mitochondrial gene

expression fraction less than 5%. These thresholds were designed to

eliminate low-quality or contaminated cells (27).

For the bulk RNA-seq analysis, gene expression profiles from

The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome

Atlas (CGGA) were included. Raw count and normalized

expression data were downloaded, and samples without complete

clinical information were excluded. To address technical variation

and platform differences between datasets—particularly those

arising from RNA-seq and microarray platforms—batch effect

correction was conducted using the sva package’s ComBat

function (v3.44.0), which is specifically suited for cross-platform

integration. Data were log2-transformed and normalized prior to

downstream analysis.

Following quality control, the single-cell expression matrix was

normalized using Seurat’s default method to account for differences

in sequencing depth and capture efficiency. The top 2,000 highly

variable genes (HVGs) were identified and retained for subsequent

analyses. Harmony (v0.1.1) was used for further batch effect

removal across different single-cell experimental conditions,

thereby enhancing the biological comparability of the samples.

Dimensionality reduction was performed using principal

component analysis (PCA), and the top 30 principal components

(PCs) were selected to represent the major sources of variation in

the dataset. Uniform Manifold Approximation and Projection
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(UMAP) was applied to visualize cellular heterogeneity in two-

dimensional space.

Cell type annotation was conducted based on known marker

genes retrieved from the literature and the CellMarker database

(http://xteam.xbio.top/CellMarker/). Cell clustering was

subsequently performed, and the proportion of each annotated

cell population was quantified and visualized 282828.

To explore the clinical significance of CHCHD2P9, glioma

patients from both TCGA and CGGA datasets were stratified into

high and low CHCHD2P9 expression groups based on the median

expression value. This median-based cutoff ensures robust group

sizes and is commonly used in survival and clinical correlation

studies. The clinical relevance of this grouping strategy was further

assessed through Kaplan–Meier survival analysis and Cox

regression to confirm its prognostic value (28).
2.3 Identification of differentially expressed
genes and functional pathway analysis

Differentially expressed genes (DEGs) for each cell type were

identified using Seurat’s “FindAllMarkers” function. The Wilcoxon

rank-sum test was employed to compare gene expression profiles

across different clusters, as it is well-suited for non-parametric

analysis of non-normalized expression data. The DEGs were

selected based on two criteria: (1) a minimum log fold change

(logFC) of 0.25 to ensure meaningful differences in expression levels

between groups, and (2) the expression of the gene in at least 25% of

the cells in the respective cluster, ensuring that the selected genes

were sufficiently prevalent within the population.

To further explore the biological relevance and associated

pathways of the DEGs, functional enrichment analysis was

conducted using the “clusterProfiler” R package (version 0.1.1).

This analysis provided insights into the enriched biological

pathways, aiding in the interpretation of the functional roles of

the DEGs in the context of the tissue or disease under study. The

enrichment results were visualized through dot plots and bar charts

for a more intuitive representation of the biological processes and

signaling pathways involved.
2.4 Visualization of cell clusters and
subpopulations

To investigate cellular heterogeneity within glioma, a

comprehensive analysis of glioma cells was performed. The raw

data were normalized to correct for sequencing depth discrepancies,

ensuring comparability across samples. After normalization, the

2,000 most variable genes (HVGs) were selected to represent the

highest variability in expression across the glioma cell population.

These genes were subsequently standardized to ensure consistent

scaling for further analyses.

The Harmony algorithm (v0.1.1) was applied to address

potential batch effects from sample collection or processing,
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integrating data from multiple batches while preserving biological

differences. PCA was performed, retaining the top 30 principal

components (PCs) that captured the majority of variance in the

dataset. These PCs were then used for clustering analysis to group

cells based on shared gene expression profiles, facilitating the

identification of unique subpopulations within the glioma

cell population.

UMAP, a non-linear dimensionality reduction technique, was

applied to visualize the cellular diversity and identify distinct cell

clusters, reflecting different functional or phenotypic states within

the glioma tumor microenvironment.
2.5 Identification of malignant cells using
inferCNV

Copy number variation (CNV) analysis was performed to

distinguish malignant tumor cells from non-tumor cells using the

inferCNV tool. Vascular endothelial cells were selected as the

reference group due to their genomic stability in glioma. CNV

profiles were generated for each cell subpopulation to identify

chromosomal aberrations indicative of malignant transformation.

Subpopulations with significant deviations from the reference

CNV profile, particularly those with focal amplifications or

deletions, were classified as glioblastoma (GBM) cells. These

GBM cells were further analyzed to examine their genomic

instability and their potential association with other cellular

features such as gene expression patterns and phenotypic traits,

providing a comprehensive understanding of the malignant

glioma subpopulation.
2.6 Differential gene expression of
subpopulations

The differential gene expression across different glioma cell

subpopulations was assessed using Seurat’s “FindAllMarkers”

function. Genes with significant differential expression were

selected based on fold change and statistical significance, and

these genes were further analyzed to explore their functional roles.
2.7 Investigating differentiation pathways in
glioma cell subpopulations

To comprehensively characterize the differentiation trajectories

and dynamic phenotypic transitions among glioma cell

subpopulations, an integrative approach utilizing three

independent computational tools was employed.

Initially, cytoTRACE was applied to infer the differentiation

potential and stemness of individual cells based on gene expression

entropy and transcriptional diversity. This algorithm estimates a

stemness score for each cell by evaluating genes associated with

undifferentiated cellular states, allowing for the hierarchical
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positioning of glioma subpopulations along a continuum from

stem-like to more differentiated phenotypes.

Subsequently, Monocle2 (v2.24.0) was utilized to reconstruct

single-cell developmental trajectories using the DDRTree

dimensionality reduction method. Variable genes with high

expression dispersion across cells were identified using the

FindVariableFeatures function to serve as input for trajectory

construction. Pseudotime analysis was conducted to model the

temporal progression of cellular states, enabling the visualization

of differentiation pathways and identification of branch points

representing potential lineage bifurcations.

To further refine lineage relationships, Slingshot (v2.6.0) was

applied to the reduced-dimensional embedding of glioma

subpopulations. A minimum spanning tree (MST) framework

was employed to define global connectivity among cellular

clusters . The getLineages function was used to infer

developmental lineages and pseudotemporal ordering, facilitating

the mapping of putative differentiation paths and lineage

hierarchies within the tumor ecosystem.

This integrative strategy combining cytoTRACE, Monocle2,

and Slingshot provided robust insights into the differentiation

dynamics, lineage commitment, and phenotypic heterogeneity of

glioma cell subpopulations.
2.8 Cell communication

To investigate intercellular communication within the

glioblastoma tumor microenvironment, the CellChat R package

(v1.6.1) was employed. This analysis identified key receptor-ligand

interactions across different cell populations, providing insights into

how tumor and stromal cells coordinate signaling activities. The

resulting communication networks were analyzed to uncover

patterns of intercellular signaling, contributing to understanding

tumor progression, immune evasion, and microenvironment

remodeling in glioblastoma.

Potential therapeutic targets for modulating intercellular

communication were identified by analyzing the intensity and

direction of signaling between cell populations.
2.9 Development and assessment of
prognostic models

To identify potential prognostic biomarkers for glioma, marker

genes obtained from glioma cohorts were subjected to univariate

survival analysis using the “survival” R package. This analysis

assessed the relationship between gene expression patterns and

patient survival outcomes.

Following univariate analysis, Lasso regression was used to

select genes with the highest predictive value, reducing model

complexity and preventing overfitting. These genes were then

incorporated into a multivariate Cox proportional hazards

regression model, evaluating their collective prognostic significance.
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The risk score for each patient was computed using the formula:

RiskScore=(Gene1×Coefficient1)+(Gene2×Coefficient2)+…

+(Genen×Coefficientn).

Patients were stratified into high- and low-risk groups based on

the median risk score, and overall survival differences between

groups were assessed using Kaplan–Meier survival curves and the

log-rank test. To validate the proportional hazards (PH)

assumption underlying the Cox model, Schoenfeld residuals were

examined using the cox.zph function in the survival package (v3.5-

5). No significant violation of the PH assumption was observed.

To evaluate the independent prognostic value of the risk model,

a multivariate Cox proportional hazards regression analysis was

performed, incorporating established clinical covariates, including

patient age, WHO tumor grade, IDH mutation status, and MGMT

promoter methylation status. These variables were selected based

on their known relevance to glioma prognosis. The adjusted hazard

ratios (HRs) and corresponding 95% confidence intervals (CIs)

were reported.

In addition, the prognostic accuracy of the model was assessed

using time-dependent receiver operating characteristic (ROC)

curves, and the area under the curve (AUC) was calculated at 1-,

3-, and 5-year survival endpoints to evaluate the model’s

predictive performance.
2.10 Immune cell infiltration in the tumor
microenvironment

Immune cell infi l trat ion within the gl ioma tumor

microenvironment was comprehensively evaluated using multiple

computational algorithms to ensure methodological robustness and

minimize tool-specific bias. Specifically, CIBERSORT (v1.06),

TIMER2.0, xCell, and ESTIMATE (v1.0.13) were applied to infer

the relative abundance of 22 immune cell types and stromal

components across tumor samples. The results derived from these

distinct tools were cross-compared to enhance the reliability of

immune composition estimates. The correlations between immune

cell infiltration patterns and CHCHD2P9 expression levels, as well

as overall patient prognosis, were systematically analyzed.

To investigate mechanisms of immune evasion, the Tumor

Immune Dysfunction and Exclusion (TIDE) algorithm was also

employed, generating TIDE scores for each sample to quantify the

degree of immune dysfunction and exclusion within the tumor

microenvironment. Comparisons of immune infiltration and

immune evasion scores were conducted between high- and low-

risk groups stratified by the prognostic model.

Furthermore, to complement the GO and KEGG enrichment

results, Gene Set Enrichment Analysis (GSEA, v4.3.2) was

performed using the “clusterProfiler” R package (v4.6.2) to

identify enriched biological pathways without relying on arbitrary

differential expression thresholds. This unbiased approach provided

additional insight into the biological processes associated with

CHCHD2P9 expression.
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2.11 Differential expression and functional
enrichment analysis in bulk data

To identify differentially expressed genes (DEGs) between high-

risk and low-risk glioma groups, gene expression analysis was

performed using the DESeq2 package in R. DEGs were identified

with the following criteria: |logFC| > 2 and a p-value < 0.05,

allowing for the detection of genes with significant expression

changes across the two risk groups. DESeq2 employs a negative

binomial distribution to model RNA-sequencing data, ensuring

robust statistical analysis for differential gene expression.

Subsequent to DEG identification, functional enrichment

analyses were conducted to explore the biological significance of

these genes. Gene Ontology (GO) analysis categorized the DEGs

into three major functional domains: biological processes (BP),

molecular functions (MF), and cellular components (CC).

Additionally, Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathway analysis was performed to identify the key

molecular pathways involved, thus providing a more

comprehensive understanding of the biological changes in high-

risk glioma patients compared to low-risk counterparts.

Gene Set Enrichment Analysis (GSEA) was also employed to

explore the coordinated expression of gene sets associated with pre-

defined biological processes or pathways. GSEA identifies pathways

that are differentially activated or repressed between risk groups,

even when individual genes do not show significant

expression changes.

These combined enrichment analyses facilitated the

identification of critical biological pathways and functional

categories contributing to glioma progression and risk

stratification, shedding light on the molecular mechanisms

underlying glioma and providing potential targets for novel

therapeutic strategies.
2.12 Somatic mutation analysis

To assess the mutational landscape of gliomas, somatic

mutation data were retrieved from The Cancer Genome Atlas

(TCGA) database. The focus of the analysis was on frequently

mutated genes and those included in the risk stratification model,

with the aim of identifying recurrent mutations and exploring their

functional relevance.

The tumor mutational burden (TMB) was calculated for each

glioma sample using the “maftools” R package, a tool specifically

designed for processing and visualizing cancer genomic data. TMB

was defined as the number of non-synonymous mutations per

megabase of the genome, which serves as an important metric for

characterizing the mutational profile of individual tumors. Glioma

samples were subsequently categorized into high-TMB and low-

TMB subgroups based on the median TMB value to investigate

potential correlations with clinical outcomes.
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Kaplan-Meier survival curves were constructed to compare

overall survival (OS) between high-TMB and low-TMB groups,

and statistical significance was assessed using log-rank tests,

providing insights into the potential of TMB as a prognostic

biomarker in glioma.

Furthermore, copy number variation (CNV) profiles of the

model genes were analyzed to identify genomic alterations

associated with glioma progression. CNV analysis was performed

to detect amplifications and deletions in genes of interest, further

elucidating the genomic instability driving glioma development.

The relationship between CNV alterations and patient prognosis

was also examined to explore their potential impact on tumor

progression and clinical outcomes.
2.13 Drug sensitivity analysis

To evaluate the drug sensitivity of glioma samples, the

pRRophetic R package (version 0.5) was used to predict drug

responses based on gene expression data. The half-maximal

inhibitory concentration (IC50) for a range of chemotherapy

drugs was computed for each glioma sample. IC50 values, which

represent the drug concentration required to inhibit 50% of cell

viability, provide a crucial measure of drug efficacy.

IC50 values were calculated for multiple commonly used

chemotherapy agents, enabling the profi l ing of tumor

responsiveness to various drugs. This approach allowed for the

identification of glioma samples with differing sensitivities to

specific chemotherapeutic compounds, contributing to a better

understanding of drug efficacy within the cohort.

The drug sensitivity data were further analyzed in conjunction

with molecular features of the tumors, including gene expression

profiles and mutation statuses. This analysis explored potential

associations between molecular characteristics and chemotherapy

response, facilitating the identification of drugs that could be more

effective in specific glioma subgroups, thus paving the way for

personalized treatment strategies based on tumor molecular profiling.
2.14 Cell culture

The U-87 MG (human glioblastoma) and LN229 (human

glioma) cell lines were obtained from ATCC (Manassas, VA,

USA). Cells were cultured in high-glucose DMEM (Gibco,

Thermo Fisher Scientific, Waltham, MA, USA) supplemented

with 10% fetal bovine serum (FBS) and 1% penicillin-

streptomycin (both Gibco, Thermo Fisher Scientific, Waltham,

MA, USA). Cultures were maintained at 37°C in a humidified 5%

CO2 atmosphere.

For subculture, cells were passaged when they reached

approximately 80% confluence. This was achieved by

trypsinization with 0.25% trypsin-EDTA (Gibco, Thermo Fisher

Scientific, Waltham, MA, USA). The resulting cell suspensions were

diluted with fresh culture medium and subcultured at a 1:3 ratio.
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For experiments, cells were seeded in 6-well (Corning, Corning,

NY, USA) or 96-well (Corning, Corning, NY, USA) plates at

appropriate densities based on the specific experimental

requirements. The culture medium was refreshed every 2–3 days,

and all experiments were conducted using cells within passage

numbers 3–15.
2.15 Cell transfection

To specifically knock down CHCHD2P9 expression, two short

hairpin RNAs (shRNAs) were designed and synthesized by Ribobio

(Guangzhou, China). The shRNAs were selected for high efficiency

and specificity. Transfection of shRNAs was performed using

Lipofectamine 3000 (Invitrogen, Thermo Fisher Scientific,

Waltham, MA, USA), following the manufacturer’s guidelines.

Briefly, Lipofectamine 3000 and shRNA plasmid were

combined in Opti-MEM medium (Gibco, Thermo Fisher

Scientific, Waltham, MA, USA) and incubated at room

temperature for 20 minutes to form transfection complexes.

These complexes were introduced into cells cultured in complete

medium. Cells were then incubated for 6 hours at 37°C in a 5% CO2

incubator. After incubation, the transfection mixture was replaced

with fresh culture medium. The effectiveness of gene knockdown

was evaluated 48–72 hours post-transfection by RNA extraction

and subsequent analysis.
2.16 RNA extraction and quantitative PCR
analysis

Total RNA was extracted from cultured cells using TRIzol

reagent (Thermo Fisher Scientific, Cat. No. 15596018), following

the manufacturer’s protocol. RNA was separated by chloroform

extraction and precipitated with isopropanol. The RNA pellet was

washed with 75% ethanol and resuspended in RNase-free water.

RNA concentration and purity were determined using a NanoDrop

spectrophotometer (Thermo Fisher Scientific, Wilmington, DE,

USA), and RNA integrity was confirmed via agarose

gel electrophoresis.

For complementary DNA (cDNA) synthesis, 1 mg of total RNA
was reverse-transcribed using the PrimeScript™ RT Reagent Kit

(Vazyme Biotech, Nanjing, China, Cat. No. R232-01), following the

manufacturer’s instructions. The reverse transcription reaction was

performed in a 20 mL volume, with an incubation at 37°C for 15

minutes, followed by 85°C for 5 seconds to terminate the reaction.

Quantitative real-time PCR (qPCR) was performed using SYBR

Green qPCR Master Mix (Vazyme Biotech, Cat. No. Q111-02) on

the Roche LightCycler 480 System (Roche Diagnostics, Mannheim,

Germany). PCR conditions included an initial denaturation at 95°C

for 10 minutes, followed by 40 cycles of 95°C for 15 seconds and 60°

C for 30 seconds. A melting curve analysis was conducted to

confirm the specificity of the amplified products.
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Relative gene expression was calculated using the 2−DDCt
method, with b-Actin as the internal control gene. Primer

sequences for target genes and b-Actin were custom-designed and

synthesized by Tsingke Biotech (Beijing, China), and are listed in

Supplementary Table 1.
2.17 Cell viability assay

Cell viability was assessed using the Cell Counting Kit-8 (CCK-

8) assay (Vazyme Biotech, Nanjing, China, Cat. No. A311-01). Cells

were seeded into 96-well plates at a density of 1 × 10³ cells/well, with

a final volume of 100 mL per well. Following a 24-hour incubation at

37°C in a 5% CO2 atmosphere, 10 mL of CCK-8 reagent was added

to each well, and cells were incubated at 37°C for 2 hours.

Cell viability was determined by measuring absorbance at 450

nm using a microplate reader (Thermo Fisher Scientific, Waltham,

MA, USA). Absorbance was measured at 0, 24, 48, 72, and 96 hours,

allowing for the construction of a cell growth curve to analyze

proliferation dynamics.
2.18 Colony formation assay

To evaluate the colony-forming ability of cells, a total of 1000

cells were seeded in each well of 6-well plates and cultured for

approximately 14 days to allow colony formation. Cells were

maintained in complete culture medium, which was replaced

every 2–3 days. After the 2-week incubation period, colonies were

examined using a light microscope at low magnification to assess

the presence of visible cell clusters.

Following visual inspection, the cells were gently washed with

phosphate-buffered saline (PBS) to remove any residual culture

medium. The colonies were then fixed with 4% paraformaldehyde

(PFA; Solarbio, Beijing, China) at room temperature for 15 minutes.

After fixation, colonies were stained with a 0.1% crystal violet

solution (Solarbio, Beijing, China) for 20 minutes at room

temperature to enhance visibility. Excess dye was removed by

washing with PBS, and the samples were air-dried at

room temperature.

For colony quantification, crystal violet-stained colonies were

manually counted. Only colonies containing 50 or more cells were

included in the count. The colony count per well was recorded, and

data were expressed as the mean ± standard deviation (SD) from at

least three independent experiments.
2.19 Wound healing assay (scratch assay)

After transfection, cells were seeded into 6-well plates and

cultured in complete medium until they reached approximately

95% confluency. A uniform linear scratch was created in the cell

monolayer using a sterile 200 μL pipette tip. Following the scratch,

the wells were gently rinsed twice with phosphate-buffered saline

(PBS) to remove any dislodged cells and debris. The cells were then
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maintained in serum-free medium to prevent cell proliferation

during the wound healing process.

The cells were incubated in serum-free medium for 48 hours at

37°C in a 5% CO2 incubator. Wound area images were captured at

specific locations immediately after wounding (0 hours) and after

48 hours of incubation using a phase contrast microscope (model).

To ensure consistency, images were taken from the same locations

at both time points.

The width of the scratch was measured using ImageJ software

(National Institutes of Health, Bethesda, MD, USA). The percentage

of wound closure was calculated using the formula:

Percentage of wound closure =(Scratch width at 0hScratch

width at 0h−Scratch width at 48h)×100%.

The results were expressed as the mean ± standard deviation

(SD) from a minimum of three independent experiments.
2.20 Transwell migration assay

Cell migration was assessed using Transwell chambers

(Corning, Corning, NY, USA). For each assay, 2 × 104 cells in

200 μL of serum-free medium were seeded into the upper

compartment of the Transwell chamber. To assess extracellular

matrix (ECM)-dependent migration, the upper chamber was

pretreated with or without Matrigel (BD Biosciences, Franklin

Lakes, NJ, USA) according to the experimental design. Matrigel

(100 μg/mL) was applied and polymerized at 37°C for 1 hour, while

control wells were left untreated.

The Transwell chambers were incubated for 48 hours at 37°C in

a 5% CO2 incubator, with a chemotactic gradient established by

adding medium containing 10% fetal bovine serum (FBS) to the

lower chamber. After incubation, non-migratory cells retained on

the upper surface of the membrane were gently removed using a

cotton swab.

Cells that migrated to the lower surface of the membrane were

fixed with 4% paraformaldehyde (PFA, Solarbio, China) for 15

minutes at room temperature, followed by staining with 0.1%

crystal violet (Solarbio, China) for 20 minutes. The membranes

were rinsed with PBS to remove residual dye and air-dried at

room temperature.

The migrated cells were quantified by counting the crystal

violet-positive cells in five randomly captured fields under a light

microscope (model). Representative images were captured for

documentation. Migration capacity was expressed as the average

number of cells per field, and results from three independent

experiments were reported as the mean ± standard deviation (SD).
2.21 Assessment of apoptosis

Cell apoptosis was quantified using the Annexin V-FITC/PI

Apoptosis Detection Kit (Yeasen Biotech, China), following the

manufacturer’s instructions. Briefly, harvested cells were washed

with PBS and resuspended in 1× binding buffer at a concentration

of 1 × 106 cells/mL. The cell suspension was stained with 5 μL each
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of Annexin V-FITC and propidium iodide (PI), followed by a 15-

minute incubation at room temperature in the dark.

Apoptosis was analyzed immediately after staining using a

CytoFLEX flow cytometer (Beckman Coulter, USA), with 10,000

events acquired per sample. Apoptotic populations were classified

as early apoptotic (Annexin V+/PI-) and late apoptotic/necrotic

(Annexin V+/PI+). The total apoptotic rate was calculated as the

sum of both early and late apoptotic populations.

Data analysis was performed using CytExpert software

(Beckman Coulter, USA), and results were expressed as the

percentage of apoptotic cells relative to the total population. All

values are represented as the mean ± standard deviation (SD) from

at least three independent replicates.
2.22 Statistical analysis

Statistical analyses were performed using R software (v4.1.3, R

Foundation) for biological data processing and GraphPad Prism

(v8.0, GraphPad Software) for experimental data analysis. Data

from at least three independent replicates are expressed as mean

± SD.

For two-group comparisons, statistical significance was assessed

using Student’s t-test. Multi-group comparisons were analyzed by

one-way ANOVA followed by Tukey’s post-hoc test for multiple

comparisons. Significance levels were set at *P < 0.05, **P < 0.01,

and ***P < 0.001. All tests were two-tailed, with P < 0.05 considered

statistically significant.
3 Results

3.1 Cellular heterogeneity in glioma
progression

To investigate the cellular composition of gliomas, we

performed single-nucleus RNA sequencing (snRNA-seq) on

tumor samples obtained from seven glioma patients. After

rigorous quality control and filtering, 19,232 high-quality cells

were selected for further analysis. Through dimensionality

reduction and clustering, 21 distinct clusters were identified,

which were subsequently categorized into eight major cell types:

oligodendrocytes (1,639 cells), astrocytes (2,982 cells), microglia

(3,578 cells), smooth muscle cells (332 cells), endothelial cells (257

cells), T cells (135 cells), glioma cells (8,262 cells), and myeloid cells

(2,047 cells).

The dataset included 5,011 cells from recurrent gliomas and

14,221 cells from WHO grade IV gliomas. UMAP analysis revealed

the distribution of these cell types across various cell cycle phases: S

phase (3,912 cells), G1 phase (12,498 cells), and G2M phase (2,822

cells) (Figure 1A). A bar plot (Figure 1B) depicts the proportional

distribution of these cell types across samples from five grade IV

glioma patients and two recurrent glioma patients.

UMAP plots (Figure 1C) were generated to visualize the cell

distributions according to nCount_RNA, nFeature_RNA, G2M
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score, and S score. Analysis of cell type-specific marker gene

expression revealed distinct profiles for each cell type, with the

top ten marker genes for each type displayed in a bubble

chart (Figure 1D).

A word cloud (Figure 1E) highlights the enriched Gene

Ontology (GO) biological process (GO-BP) terms for each cell

type. Differentially expressed genes (DEGs) were visualized in

volcano plots (Figure 1F), and a bubble chart (Figure 1G)

illustrates the GO-BP enrichment analysis of DEGs across the cell

types. Notably, glioma-associated microglia showed enrichment in

pathways related to Parkinson’s disease, while glioma cells were

primarily associated with pathways involved in ribosomal function

and coronavirus-related diseases (Figure 1H).
3.2 Intratumoral heterogeneity of glioma
cells

Through clustering and dimensionality reduction techniques,

five distinct subpopulations within glioma cells were identified. To

distinguish malignant from normal cells in glioblastoma (GBM),

the inferCNV algorithm was applied to assess genomic copy

number variations (CNVs) at the single-cell level. Cells exhibiting

elevated CNV levels were classified as GBM cells (Supplementary

Figure 1). The five glioma subpopulations were as follows: C0

CHCHD2P9+ glioma cells (2,821 cells), C1 MALT1+ glioma cells

(2,124 cells), C2 MT1G+ glioma cells (1,614 cells), C3 SOX4+

glioma cells (1,575 cells), and C4 ISG15+ glioma cells (128

cells) (Figure 2A).

To visualize the distribution of these subpopulations, a bar plot

was generated from the samples offive grade IV glioma patients and

two recurrent glioma patients (Figure 2B). The C0 CHCHD2P9+

glioma subpopulation was predominantly present in the

GSM2758474 patient. Variability in subpopulation proportions

across samples was further depicted using a box plot (Figure 2C).

Differential expression of marker genes across the five glioma

subpopulations was visualized in a bubble chart (Figure 2D), and a

heatmap illustrated the specific marker genes for each

subpopulation. A separate heatmap was generated to assess the

enrichment of these subpopulations in WHO grade IV versus

recurrent gliomas (Figure 2E). Expression levels of stemness-

related genes were also evaluated across the five glioma

subpopulations (Figure 2F).

Volcano plots were used to highlight the DEGs specific to each

glioma subpopulation (Figure 2G), while a heatmap was generated

to display the results of Gene Ontology Biological Process (GO-BP)

enrichment analysis for these DEGs (Figure 2H).
3.3 Visualization of glioma cell
subpopulations via cell tracking and
pseudo-temporal analysis

To explore the differentiation and developmental dynamics

among the five glioma cell subpopulations, a cell trajectory
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FIGURE 1

Cellular diversity and gene expression analysis in glioma progression. (A) UMAP visualization of cell cycle distribution across glioma samples from
seven patients, showing cells in the S phase (3,912 cells), G1 phase (12,498 cells), and G2M phase (2,822 cells). (B) Bar plot depicting the relative
proportions of eight major cell types (oligodendrocytes, astrocytes, microglia, smooth muscle cells, endothelial cells, T cells, glioma cells, and
myeloid cells) in glioma samples from five WHO grade IV glioma patients and two recurrent glioma patients. (C) UMAP plot illustrating the
distribution of all cells based on nCount_RNA, nFeature_RNA, G2M score, and S score. (D) Bubble chart showing the top ten cell type-specific
marker genes for each of the eight major cell types identified by snRNA-seq. (E) Word cloud highlighting the enriched Gene Ontology (GO)
biological process (GO-BP) terms for each of the eight major cell types. (F) Volcano plot displaying differentially expressed genes (DEGs) across the
eight major cell types. (G) Bubble chart depicting the GO-BP enrichment analysis of DEGs across the eight cell types. (H) Pathway enrichment
analysis of the glioma-associated microglia subgroup and glioma cell subgroup, revealing significant enrichment in pathways related to Parkinson’s
disease in microglia and ribosomal function and coronavirus diseases in glioma cells.
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FIGURE 2

Intracellular heterogeneity of glioma cells. (A) Identification of five distinct glioma subpopulations based on dimensionality reduction and clustering
analysis: C0 CHCHD2P9+ (2,821 cells), C1 MALT1+ (2,124 cells), C2 MT1G+ (1,614 cells), C3 SOX4+ (1,575 cells), and C4 ISG15+ (128 cells). (B) Bar
plot showing the distribution of the five glioma subpopulations across samples from five WHO grade IV glioma patients and two recurrent glioma
patients. (C) Box plot illustrating variations in the proportions of the five glioma subpopulations across different glioma samples. (D) Bubble chart
visualizing differential expression of marker genes across the five glioma subpopulations. (E) Heatmap depicting the specific marker genes for each
glioma subpopulation. (F) Heatmap showing the enrichment of glioma subpopulations in WHO grade IV versus recurrent gliomas. (G) Volcano plot
highlighting differentially expressed genes (DEGs) within each glioma subpopulation. (H) Heatmap of Gene Ontology (GO) biological process (GO-
BP) enrichment analysis for the DEGs across the five glioma subpopulations.
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analysis was performed (Figures 3A, B). The analysis revealed a

differentiation pathway beginning with the C1 subpopulation,

progressing through C2, C3, and C4, and ultimately culminating

in the C0 subpopulation (Figure 3C).

A ridge plot (Figure 3G) was used to represent the pseudo-

temporal ordering of these subpopulations. UMAP analysis

displayed the distribution of cells from each subpopulation across

various differentiation states (Figure 3D), and a bar plot showed the

percentage distribution of cells within each subpopulation across

these states (Figure 3E). Key genes associated with CytoTRACE

were identified and visualized (Figure 3F).

Monoclonal trajectory analysis further revealed two distinct

branches within the pseudo-temporal sequence. The first branch led

towards State 5, while the second branch extended towards State 2,

which further bifurcated into two sub-branches, one leading to State

4 and the other to State 3 (Figure 3H).

This temporal ordering indicated that the C3 SOX4+ glioma

subpopulation is associated with early tumorigenesis, differentiating

into other subpopulations as tumor progression occurs. Ultimately, C0

CHCHD2P9+ and C2MT1G+ subpopulations are formed. Expression

patterns of key marker genes for the five subpopulations were

visualized along the pseudo-temporal sequence using UMAP and

scatter plots (Figures 3I, J), demonstrating that the C3 SOX4+

subpopulation predominantly occupies the initiation point of the

trajectory, while the C0 CHCHD2P9+ and C2 MT1G+

subpopulations are located at the terminal end.
3.4 Slingshot analysis of glioma cell
subpopulation pseudo-temporal
trajectories

Slingshot analysis was employed to investigate the differentiation

pathways of the glioma cell subpopulations. This analysis identified

two distinct lineage pathways originating from the C4 subpopulation.

In the first lineage (Lineage 1), the path progresses from C4 to C2, C1,

and ultimately to C3. The second lineage (Lineage 2) follows a similar

progression but converges at C0 (Figure 3K). These differentiation

patterns were visualized along the pseudo-temporal axis, showing a

continuous distribution towards both the C0 and C3 subpopulations,

reflecting the bifurcation of the two lineages (Figure 3L). Scatter plots

further illustrated the distribution of subpopulations along the entire

pseudo-temporal sequence, clearly highlighting their differentiation

along both Lineage 1 and Lineage 2 (Figure 3M).
3.5 Cell-cell communication and PDGF
signaling pathway analysis using CellChat

CellChat was utilized to explore intercellular communication

within gliomas by mapping a network of interactions among various

cell types, including glioma subpopulations, oligodendrocytes, myeloid

cells, astrocytes, smooth muscle cells (SMCs), and endothelial cells. The
Frontiers in Immunology 11
intensity and frequency of these interactions were visualized through

line thickness and weight, respectively (Figure 4A).

The non-negative matrix factorization approach in CellChat

identified three primary signaling patterns: (1) communication

initiated by endothelial cells, (2) glioma subpopulation-driven

signaling, and (3) interactions involving oligodendrocytes and

myeloid cells (Figure 4B). Glioma signaling was primarily

associated with Pattern 2, encompassing pathways such as PSAP

and PDGF, while incoming signals were characterized by VEGF,

NCAM, and PDGF (Figure 4C).

Heatmaps were created to visualize the strength of interactions

across all signaling pathways (Figure 4D), and ligand-receptor

networks were analyzed to identify key signals within glioma

subpopulations (Figure 4E). Interaction analysis between glioma

cells and SMCs was further explored using dot plots (Figure 4F).

Centrality analysis revealed that the C0 CHCHD2P9+ glioma

subpopulation plays a central role in PDGF signaling (Figure 4G).

Violin plots demonstrated increased expression of PDGF signaling

components in C0 CHCHD2P9+ glioma cells, while SMCs exhibited

high PDGFRB expression, suggesting a significant interaction

between these cell types (Figure 4H). A hierarchical diagram

confirmed the association between C0 CHCHD2P9+ glioma cells

and SMCs in the PDGF signaling pathway (Figure 4I). Finally, a

circular plot illustrated PDGF signaling across all twelve cell types

(Figure 4J), complemented by a heatmap offering further insights into

these interactions (Figure 4K).
3.6 Development and assessment of the
predictive model

Univariate survival analysis of characteristic genes from the C0

CHCHD2P9+ subpopulation identified six prognostic markers—

TMEM176A, OLIG1, NMB, NELL1, GSTK1, and CST3—which

were significantly associated with patient prognosis (Figure 5A). To

optimize model performance and reduce feature redundancy, Lasso

regularization was applied, resulting in a refined six-gene prognostic

signature. Model validation through penalty parameter analysis

confirmed the robustness of the selected features (Figure 5B).

Stratification of patients based on the developed risk score

revealed significant survival differences, with low-risk patients

exhibiting better clinical outcomes compared to high-risk patients

(Figure 5C). Individual gene analysis demonstrated that higher

expression of OLIG1 and NMB correlated with favorable

prognosis, whereas elevated expression of the remaining markers

was associated with poor prognosis (Figure 5D). The composite risk

score showed a strong inverse relationship with patient survival, with

higher scores predicting progressively worse outcomes (Figure 5E).

Quantitative expression profiling and correlation analysis

confirmed the varying prognostic effects of the individual markers

(Figure 5F). OLIG1 and NMB expression were positively correlated

with overall survival, while the other markers were negatively

associated (Figure 5G). Time-dependent receiver operating
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FIGURE 3

Visualization and Slingshot analysis of glioma cell subpopulations via cell tracking and pseudo-temporal trajectories. (A, B) Cell trajectory analysis
showing the differentiation relationships among the five glioma subpopulations, revealing the progression from the C1 subpopulation to C2, C3, C4,
and ultimately C0. (C) Differentiation progression of glioma subpopulations, illustrating the transition from C1 to C0, with C2, C3, and C4 as
intermediate states. (D) UMAP plot displaying the distribution of cells from each subpopulation across various differentiation states. (E) Bar plot
showing the percentage distribution of cells within each glioma subpopulation across the different differentiation states identified in (D).
(F) Visualization of key genes associated with CytoTRACE across the glioma subpopulations, indicating their expression patterns. (G) Ridge plot
representing the pseudo-temporal ordering of glioma subpopulations along the trajectory. (H) Monoclonal trajectory analysis tracing the
developmental origins of glioma subpopulations, revealing two distinct branches: Lineage 1, progressing from C4 to C2, C1, and C3, and Lineage 2,
progressing from C4 to C2, C1, and converging at C0. (I) UMAP plot visualizing the expression patterns of key marker genes for the five glioma
subpopulations along the pseudo-temporal trajectory. (J) Scatter plot depicting the expression patterns of key marker genes for the five glioma
subpopulations along the entire pseudo-temporal sequence, highlighting the C3 SOX4+ subpopulation at the initiation point and the C0 CHCHD2P9
+ and C2 MT1G+ subpopulations at the terminal end. (K) Slingshot analysis revealing two distinct lineage pathways originating from the C4 ISG15+
glioma subpopulation: Lineage 1 progressing towards C3 and Lineage 2 converging at C0. (L) Visualization of differentiation trajectories along the
pseudo-temporal axis, showing the bifurcation of Lineage 1 and Lineage 2 towards the C0 and C3 subpopulations, respectively. (M) Scatter plot
depicting the distribution of glioma subpopulations along the entire pseudo-temporal sequence, illustrating their differentiation along Lineage 1 and
Lineage 2 pathways.
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FIGURE 4

Cell-cell communication and PDGF signaling pathway analysis using CellChat. (A) Communication network visualization showing intercellular
interactions among glioma subpopulations, oligodendrocytes, myeloid cells, astrocytes, smooth muscle cells (SMCs), and endothelial cells. Line
thickness represents interaction strength, and weight represents the quantity of interactions. (B) Major signaling patterns identified by CellChat using
non-negative matrix factorization, revealing three primary pathways: (1) outgoing communication from endothelial cells, (2) signaling from glioma
subpopulations, and (3) signaling from oligodendrocytes and myeloid cells. (C) Glioma signaling driven by Pattern 2, highlighting key pathways such
as PSAP and PDGF, with incoming signals involving VEGF, NCAM, and PDGF. (D) Heatmap visualizing the interaction strength of all signaling
pathways within the glioma communication network. (E) Ligand-receptor network analysis to identify key signaling molecules involved in
intercellular communication within glioma subpopulations. (F) Dot plot analysis showing interactions between glioma cells and smooth muscle cells
(SMCs), highlighting key communication events. (G) Centrality analysis identifying the C0 CHCHD2P9+ glioma subpopulation as central to PDGF
signaling. (H) Violin plots showing elevated expression of PDGF signaling components in C0 CHCHD2P9+ glioma cells, with high PDGFRB
expression in SMCs, suggesting significant interactions between these cell types. (I) Hierarchical diagram illustrating the interactions within the PDGF
signaling pathway, confirming the association between C0 CHCHD2P9+ glioma cells and SMCs. (J) Circular plot depicting PDGF signaling across all
twelve cell types, showing the global communication landscape in glioma. (K) Heatmap providing detailed insights into the interactions involved in
PDGF signaling across the glioma cell types.
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FIGURE 5

Construction and validation of the prognostic model for C0 CHCHD2P9+ glioma subpopulation. (A) Univariate Cox regression analysis of the top
100 marker genes of the C0 CHCHD2P9+ glioma subpopulation, identifying six genes (TMEM176A, OLIG1, NMB, NELL1, GSTK1, and CST3)
significantly associated with patient prognosis. (B) Lasso regression analysis applied to the identified genes, resulting in the six-gene signature,
CHCHD2P9+ Glioma Score, validated through a lambda plot. (C) Survival analysis demonstrating that patients with a low CHCHD2P9+ glioma score
have significantly better outcomes than those with a high score. (D) Survival analysis of individual genes showing that higher expression of OLIG1
and NMB correlates with improved survival, while lower expression of the other genes is associated with worse prognosis. (E) Inverse correlation
between CHCHD2P9+ glioma score and survival, with higher scores linked to poorer outcomes. (F) Scatter plots visualizing the gene expression
levels of the six prognostic genes in the CHCHD2P9+ glioma score. (G) Correlation analysis showing that overall survival (OS) is positively correlated
with OLIG1 and NMB expression, while the other genes show a negative correlation with OS. (H) ROC curves evaluating the predictive accuracy of
the CHCHD2P9+ glioma score for 1-year, 3-year, and 5-year survival, with AUC values of 0.672, 0.755, and 0.712, respectively. (I) Box plot illustrating
differences in gene expression between high and low CHCHD2P9+ glioma score groups. (J) Multivariate Cox regression analysis confirming that the
CHCHD2P9+ glioma score is an independent prognostic factor for glioma patients (p < 0.001). (K) Nomogram incorporating gender, race, risk
grouping, and age to predict 1-year, 2-year, and 3-year survival probabilities for glioma patients.
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characteristic (ROC) analysis demonstrated strong predictive

performance, with area under the curve (AUC) values of 0.672,

0.755, and 0.712 for 1-, 3-, and 5-year survival predictions,

respectively (Figure 5H). Comparative expression analysis

between risk groups further confirmed the model’s ability to

effectively discriminate survival outcomes (Figure 5I).

Multivariate survival analysis identified the risk score as an

independent prognostic factor (p < 0.001) (Figure 5J). To facilitate

clinical application, a comprehensive predictive tool was developed,

incorporating demographic and molecular features to provide

personalized survival probability estimates at 1, 2, and 3

years (Figure 5K).
3.7 Tumor immune microenvironment
characterization

Comparative analysis of immune cell distribution patterns

across glioma subgroups, stratified by CHCHD2P9 expression
Frontiers in Immunology 15
levels, was performed using hierarchical clustering (Figure 6A).

Quantitative assessment of tumor-infiltrating immune populations

through computational deconvolution revealed distinct immune

cell proportions among 22 subtypes in each expression subgroup

(Figures 6B, C). The high-expression cohort demonstrated

elevated infiltration of specific myeloid populations, including

monocytic cells, non-polarized macrophages, and neutrophilic

granulocytes (Figure 6D).

Bivariate correlation analysis using hybrid visualizations

showed significant associations between immune infiltration

patterns and glioma subpopulation characteristics. CHCHD2P9

expression levels were positively correlated with monocyte-

derived cells and classically activated macrophages, while

negatively associated with non-activated macrophages, quiescent

mast cells, and other immune subsets (Figure 6E).

Quantitative evaluation of tumor microenvironment

components revealed significant differences between expression

subgroups. The high-expression cohort exhibited elevated

composite scores reflecting stromal content, immune infiltration,
FIGURE 6

Immune infiltration analysis in glioma based on CHCHD2P9+ glioma score. (A) Heatmap showing the differential expression of immune cells
between the high and low CHCHD2P9+ glioma score groups. (B, C) Proportions of 22 immune cell types in each group, as determined by the
CIBERSORT algorithm, highlighting differences in immune cell composition between high and low CHCHD2P9+ glioma score groups. (D) Bar plot
demonstrating significant differences in immune cell composition, with higher levels of monocytes, M0 macrophages, and neutrophils in the high
CHCHD2P9+ glioma score group. (E) Lollipop plot illustrating the correlation between immune cell infiltration and glioma subpopulation marker
scores. Positive correlations are observed with monocytes and M1 macrophages, while negative correlations are seen with M0 macrophages, resting
mast cells, and several other immune cell types. (F) Comparison of stromal, immune, and ESTIMATE scores between the high and low CHCHD2P9+
glioma score groups, with significantly higher scores in the high score group. (G) Tumor purity analysis showing that the high CHCHD2P9+ glioma
score group exhibits higher tumor purity compared to the low score group. *P<0.05, **P<0.01, *** P < 0.001, and ****P<0.0001.
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and overall tumor microenvironment complexity. Tumor cellularity

assessment indicated a greater proportion of neoplastic cells in

samples with elevated CHCHD2P9 expression compared to those

with low expression (Figures 6F, G).
3.8 Differential gene expression and
functional enrichment analysis

To investigate the variations in gene expression between glioma

samples with high and low CHCHD2P9+ scores, differential

expression was assessed through a volcano plot (Figure 7A), and

gene expression patterns were visualized in a heatmap (Figure 7D).

Functional enrichment analysis of differentially expressed genes

(DEGs) revealed that these genes were predominantly associated

with chemokine activity, receptor-ligand interactions, and

chemokine receptor binding (Figure 7B), suggesting their

involvement in inflammatory responses and immune modulation

within the tumor microenvironment.

KEGG pathway analysis identified significant enrichment in

pathways related to interleukin-17 signaling, viral protein-cytokine

interactions, and cytokine-receptor interactions (Figure 7C),

highlighting key immune-related signaling pathways that may

contribute to glioma progression. Additionally, Gene Set

Enrichment Analysis (GSEA) of Gene Ontology (GO) biological

processes (GO-BP) further confirmed the enrichment of these genes

in biologically significant pathways related to immune responses

and cell signaling (Figure 7E).
3.9 Genomic alteration profiling

To examine potential relationships between genomic alterations

and the immune landscape, we conducted a comparative mutation

analysis across glioma subgroups stratified by CHCHD2P9

expression levels. This analysis focused on the most frequently

mutated genes in mesenchymal cell populations, with the upper

panel depicting sample-specific mutation profiles, and the right

panel showing aggregate mutation frequencies across the

cohort (Figure 7F).

Genomic instability was assessed through chromosomal

aberration profiling, presented as a quantitative bar graph,

revealing moderate amplification events in model genes, without

substantial genomic loss (Figure 7G). A comparative analysis of

genomic alteration frequencies between subgroups with high and

low CHCHD2P9 expression, visualized through density

distribution plots, indicated no statistically significant differences

in mutation rates (Figure 7H). Furthermore, correlation analysis

between the genomic alteration load and CHCHD2P9 expression

levels revealed no significant association (Figure 7I).

Classification of tumor samples based on genomic alteration

load and CHCHD2P9 expression levels identified four distinct

subgroups. Kaplan-Meier survival analysis demonstrated

significant prognostic differences between these subgroups, with
Frontiers in Immunology
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patients exhibiting low CHCHD2P9 expression and minimal

genomic alterations having the most favorable clinical outcomes.

Conversely, cases with high CHCHD2P9 expression and low

genomic alteration burden were associated with the poorest

survival rates (Figure 7J).
3.10 Drug sensitivity analysis

To evaluate variations in drug sensitivity between glioma

groups with high and low CHCHD2P9+ scores, drug sensitivity

profiles were generated and visualized using a violin plot

(Figure 7K). The analysis revealed that the high CHCHD2P9+

score group exhibited a significantly lower IC50 value for dasatinib,

indicating an increased sensitivity to this drug compared to the low

score group.
3.11 Genetic silencing of CHCHD2P9
inhibits glioma cell growth and motility

Computational analysis identified distinct expression patterns of

CHCHD2P9 across different glioma subtypes, challenging its

conventional annotation as a non-functional pseudogene. To further

elucidate its biological functions, RNA interference technology was

employed to specifically silence CHCHD2P9 expression in glioma cell

models. Lentiviral-mediated delivery of short hairpin RNAs (shRNAs)

successfully generated stable knockdown lines in both LN229 andU87

glioma cells, with silencing efficiency verified by quantitative PCR

(Supplementary Figure 2).

Wound closure assays demonstrated significantly impaired

migration in CHCHD2P9-deficient U87 cells compared to their

wild-type counterparts, indicating a critical role for CHCHD2P9 in

promoting glioma cell motility. This result was further corroborated

by Transwell migration assays, which revealed a substantial

decrease in the transmigration capacity of CHCHD2P9-deficient

cells (Figure 8A). Parallel experiments conducted in LN229 cells

yielded similar results, suggesting that CHCHD2P9 influences

glioma cell migration across different cellular contexts (Figure 8B).

Next, the proliferative capacity of glioma cells was assessed through

clonogenic survival assays. CHCHD2P9-depleted cells exhibited

significantly reduced colony-forming efficiency, suggesting impaired

long-term growth potential (Figure 8C). Cellular metabolic activity,

measured by CCK-8 assays, showed a corresponding decrease in both

LN229 and U87 cells following CHCHD2P9 silencing, indicating

compromised cell viability (Figures 8D, E).

To investigate the mechanisms underlying these phenotypic

changes, we assessed apoptosis using flow cytometry. CHCHD2P9-

deficient cells exhibited a significantly higher apoptotic index

compared to both untreated and negative control cells

(Figures 8F, G), implicating CHCHD2P9 in the regulation of

glioma cell survival. These results suggest that CHCHD2P9 may

play a critical role in modulating apoptotic pathways and

promoting glioma cell survival and motility.
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FIGURE 7

Differential gene expression, functional enrichment, mutation analysis, and drug sensitivity in glioma based on CHCHD2P9+ glioma score.
(A) Volcano plot showing differential gene expression between high and low CHCHD2P9+ glioma score groups. (B) Gene Ontology (GO) enrichment
analysis of differentially expressed genes, highlighting significant associations with chemokine activity, receptor-ligand interactions, and chemokine
receptor binding. (C) Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showing significant enrichment of genes in pathways
related to interleukin-17 signaling, viral protein-cytokine interactions, and cytokine-receptor interactions. (D) Heatmap visualizing gene expression
patterns between high and low CHCHD2P9+ glioma score groups. (E) Gene Set Enrichment Analysis (GSEA) of GO biological processes (GO-BP),
highlighting enriched biological pathways. (F) Mutation analysis showing the top 20 genes with the highest mutation frequencies in mesenchymal
cells across both high and low CHCHD2P9+ glioma score groups. The upper panel displays mutation burden for each sample, while the right panel
shows overall mutation proportions. (G) Chromosomal copy number variation (CNV) analysis, presented in a bar graph, revealing a slight increase in
CNVs for model genes, with no significant decrease. (H) Violin plot comparing mutation burden between high and low CHCHD2P9+ glioma score
groups, with no significant differences observed. (I) Scatter plot showing the correlation between mutation burden and CHCHD2P9+ glioma scores,
with no significant association. (J) Survival analysis based on mutation burden and CHCHD2P9+ glioma scores, revealing that the low CHCHD2P9+
glioma score–low TMB group had the highest survival rate, while the high CHCHD2P9+ glioma score–low TMB group had the poorest survival rate.
(K) Violin plot showing drug sensitivity profiles, with significantly lower IC50 values for dasatinib in the high CHCHD2P9+ glioma score group,
indicating increased sensitivity. *P<0.05, **P<0.01, *** P < 0.001.
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FIGURE 8

Knockdown of CHCHD2P9 suppresses proliferation, migration, and induces apoptosis in glioma cells. (A) Scratch wound healing assay and transwell
migration assay demonstrating a significant reduction in wound closure and a marked decrease in the number of migrating in CHCHD2P9
knockdown U87 cells compared to control cells, indicating impaired migratory ability. (B) Scratch wound healing assay and transwell migration assay
showing a significant reduction in wound closure and a marked decrease in the number of migrating CHCHD2P9 knockdown LN229 cells relative to
controls, suggesting reduced migratory capacity. (C) Colony formation assay revealing a significant reduction in colony formation in CHCHD2P9
knockdown U87 and LN229 cells, indicating decreased proliferative activity. (D) CCK-8 assay showing a significant decrease in absorbance in
CHCHD2P9 knockdown LN229 cells, suggesting reduced cell viability. (E) CCK-8 assay demonstrating decreased cell viability in CHCHD2P9
knockdown U87 cells compared to controls, confirming proliferative impairment. (F, G) Flow cytometry analysis showing a significant increase in the
apoptosis rate in CHCHD2P9 knockdown U87 and LN229 cells compared to controls, indicating that CHCHD2P9 knockdown induces apoptosis in
glioma cells. *** P < 0.001.
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4 Discussion

Gliomas, particularly high-grade gliomas, represent a significant

clinical challenge due to their aggressive nature, substantial

heterogeneity, and high mortality rates. The complexity of

neurobiological research presents substantial challenges, especially

when investigating gliomas, which are highly aggressive and often

fatal brain tumors (29). Despite advances in surgical approaches,

radiation therapy, and chemotherapy, the treatment of gliomas

remains difficult due to their inherent resistance to conventional

therapies, as well as the physical barrier imposed by the blood-brain

barrier (BBB) (30). These tumors’ ability to adapt to treatment

pressures and their aggressive growth patterns necessitate the

identification of novel therapeutic strategies. As research continues

to evolve, there is an increasing appreciation of the role that cellular

organelles, particularly mitochondria, play in the pathogenesis of

gliomas. While the functions of mitochondria in glioma cells remain

an active area of investigation, growing evidence suggests that

mitochondria are integral in regulating critical cellular processes

such as metabolism, apoptosis, and drug resistance. However, the

precise mechanisms by which mitochondrial dysfunction contributes

to glioma progression remain incompletely understood. This is, in

part, due to the complex nature of tumor biology and the challenges

inherent in studying dynamic organellar alterations within the tumor

microenvironment (TME) (31, 32). Recent advancements in single-

cell technologies have provided unprecedented insights into the

cellular heterogeneity of gliomas, offering a detailed view of the

tumor microenvironment and revealing distinct cellular populations

that contribute to glioma progression. Single-cell RNA sequencing

(scRNA-seq), for instance, has enabled the identification of previously

unrecognized cellular subsets within gliomas, facilitating a deeper

understanding of their functional roles in tumor development and

progression (33, 34). This technology is also opening new possibilities

for precision medicine, by uncovering the intricate interactions

between tumor cells and their surrounding stromal elements,

including immune cells and vasculature. Through this approach, we

identified the C0 CHCHD2P9+ glioma subpopulation as a critical

contributor to glioma advancement, emphasizing the potential of this

population as a prognostic biomarker and a therapeutic target. The

elevated expression of CHCHD2P9 within this cellular subset suggests

its potential role in regulating glioma cell differentiation, lineage

commitment, and the maintenance of tumor aggressiveness (35).

These technologies are anticipated to expedite the elucidation of

glioma pathogenesis and play a role in the development of more

targeted and efficacious therapies.

Our findings revealed that the C0 CHCHD2P9+ population

predominantly occupies terminal differentiation states, which

correlates with its involvement in advanced tumor stages (14).

Pseudo-temporal reconstruction and trajectory inference analyses

further supported the notion that these cells serve as pivotal nodes

in the differentiation networks of glioma cells. These results are

consistent with recent studies suggesting that gliomas exhibit a highly

dynamic and heterogeneous differentiation landscape, where certain

subpopulations, such as C0 CHCHD2P9+ cells, may drive tumor

progression by occupying differentiated states that are resilient to
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therapy and contribute to tumor recurrence. Furthermore,

intercellular communication analysis highlighted the prominent

role of this subpopulation in platelet-derived growth factor

(PDGF)-mediated signaling, particularly through interactions with

vascular smooth muscle cells. Given PDGF’s well-established role in

promoting angiogenesis and supporting tumor growth, these findings

suggest that CHCHD2P9+ cells might contribute to glioma’s

malignant phenotype by facilitating neoplastic expansion and

enhancing metastatic potential through increased vascularization

(36). The activation of the PDGF pathway in this context

reinforces the importance of targeting this signaling axis as a

potential therapeutic strategy in glioma management (36, 37).

The association between CHCHD2P9 expression and PDGF

signaling underscores the complex interplay between metabolic

reprogramming, cell motility, and the immune landscape in

glioma progression. Given the critical involvement of PDGF

signaling in glioma pathogenesis, therapeutic modulation of this

pathway holds significant promise (38, 39). CHCHD2P9+ cells

demonstrated associations with PDGF-mediated signaling and

displayed enrichment patterns suggesting involvement in

immunologically relevant pathways. Single-cell and CIBERSORT

analyses revealed that higher CHCHD2P9 expression correlated

with features of an immunosuppressive tumor microenvironment,

including an increased presence of tumor-associated macrophages

and reduced infiltration of cytotoxic immune cells. These

observations indicate a potential role for CHCHD2P9 in shaping

immune cell dynamics within gliomas; however, causal

relationships remain unproven. It is also possible that

CHCHD2P9 serves as a biomarker of a more aggressive and

immune-evasive glioma subtype, rather than directly driving

immune evasion mechanisms. Future studies involving direct

immunological assays (e.g., cytokine profiling, co-culture systems)

are necessary to clarify these relationships.

Our investigation into the biological functions of CHCHD2P9,

a mitochondrial-associated protein, further elucidated its role in

glioma cell growth dynamics and motility. Through loss-of-

function studies, including RNA interference approaches, we

demonstrated that CHCHD2P9 significantly influences glioma

cell migration and proliferation. These results align with previous

studies highlighting the pivotal role of mitochondrial proteins in

regulating cellular motility, a key determinant of glioma

invasiveness and metastasis. Mitochondria are central to energy

production and cellular signaling, and their dysfunction can impair

essential processes such as cell division, migration, and apoptosis.

Our findings suggest that CHCHD2P9 is critical for maintaining

mitochondrial integrity and cellular motility, which are essential for

glioma invasiveness and tumor progression (40). The impairment

of migration and clonogenic survival following CHCHD2P9

silencing underscores its role in sustaining glioma cell viability

and growth potential. These observations are consistent with the

broader understanding that mitochondrial dysfunction plays a key

role in tumor cell survival, particularly in the context of highly

aggressive malignancies such as gliomas.

Beyond its established role in promoting migration and

proliferation, our findings demonstrate that silencing CHCHD2P9
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significantly compromises glioma cell viability, highlighting its

critical function in sustaining tumor cell survival. Mitochondria

are central to cellular energy production, redox balance, and

apoptotic regulation, and the observed reduction in cell viability

upon CHCHD2P9 knockdown suggests that this gene may play an

essential role in maintaining mitochondrial integrity and metabolic

homeostasis in glioma cells. Intriguingly, CHCHD2 family

members have been previously implicated in the regulation of

mitochondrial protein complexes and oxidative phosphorylation.

CHCHD2P9 is annotated as a processed pseudogene, and although

it lacks protein-coding potential, it may exert regulatory functions

through non-coding RNA mechanisms. Similar to other

pseudogenes, CHCHD2P9 transcripts may act as competitive

endogenous RNAs (ceRNAs), sequestering microRNAs and

thereby modulating the expression of target genes, including its

parental gene CHCHD2. This mode of action has been observed in

various cancers, where pseudogene-derived RNAs influence tumor

behavior by affecting signaling cascades, gene expression networks,

or cellular stress responses. While our current study does not

provide direct evidence for such regulatory interactions, the

possibility that CHCHD2P9 functions in this capacity warrants

further investigation.

Nonetheless, this study is not without limitations. Our in vitro

work primarily utilized two classical glioma cell lines, LN229 and

U87, which, while informative, may not fully capture the

heterogeneity observed in patient-derived tumors. Moreover,

while our computational analyses suggest associations between

CHCHD2P9 expression and immune-suppressive features in the

glioma microenvironment, these findings remain correlative. We

acknowledge the lack of direct experimental validation, such as

immune cell co-culture or cytokine assays, which are required to

substantiate the hypothesized immune modulatory effects. Thus,

the proposed links between CHCHD2P9 and immune evasion

should be interpreted as speculative and warrant future

mechanistic investigation (41, 42).

In conclusion, our study provides compelling evidence that

CHCHD2P9 plays a crucial role in regulating glioma cell growth,

motility, and survival, with significant implications for glioma

pathogenesis. The involvement of CHCHD2P9 in mitochondrial

processes positions it as a potential therapeutic target for gliomas,

particularly in the context of targeting mitochondrial dysregulation.

Future studies should focus on further characterizing the molecular

interactions of CHCHD2P9 in glioma cells, exploring its diagnostic

potential, and evaluating its therapeutic relevance in clinical

settings. In addition, given the potential immune modulatory role

of CHCHD2P9+ cells within the glioma TME, targeting this

population may offer new strategies for enhancing the efficacy of

immunotherapies in glioma treatment.
5 Conclusions

In conclusion, our study identifies CHCHD2P9 as a key

mitochondrial-related protein involved in glioma progression.
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Functional assays show that CHCHD2P9 silencing significantly

impairs glioma cell proliferation and migration, suggesting its

crucial role in tumorigenesis. Notably, its impact extends beyond

tumor cell dynamics, potentially influencing the tumor

microenvironment through signaling pathways such as PDGF.

These findings highlight CHCHD2P9 as a promising therapeutic

target in glioma treatment. Future research should focus on

elucidating its molecular pathways, particularly its interaction

with immune cells in the tumor microenvironment, to develop

novel strategies aimed at enhancing immune responses and

targeting mitochondrial dysfunction in glioma therapy.
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SUPPLEMENTARY FIGURE 1

The classification of GBM cells. According to the inferCNV results, we defined
cells with high CNV levels as GBM cells.

SUPPLEMENTARY FIGURE 2

CHCHD2P9 gene transfection knock-down low efficiency verification.

Compared with untransfected cells, the mRNA level of CHCHD2P9 gene
was significantly decreased in the transfected knockdown group.
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