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Background: Multiple sclerosis (MS) is a chronic neuroinflammatory disorder

characterized by demyelination and immune dysregulation, and microglia play a

central role in disease progression. Despite this, the specific microglial gene

signatures contributing to MS remain inadequately characterized.

Methods: We utilized an experimental autoimmune encephalomyelitis (EAE)

mouse model and performed RNA sequencing to identify differentially

expressed Messenger RNAs (DEmRNAs), Long Non-Coding RNAs (DElncRNAs),

Circular RNAs (DEcircRNAs), andmicroRNAs (DEmiRNAs) in microglia. A machine

learning approach incorporating five distinct algorithms was applied to select a

robust multigene signature. The biological functions of the included genes were

assessed through Gene Ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) enrichment analyses and validated by quantitative reverse

transcription PCR (qRT-PCR). Additionally, molecular docking studies were

conducted to explore potential interactions with approved MS therapeutics.

Results: Six DEmRNAs were identified as key microglia-associated biomarkers:

Neutrophilic Granule Protein (NGP), Histone Cluster 1 H2B Family Member J

(HIST1H2BJ), Phenazine Biosynthesis-Like Domain-Containing Protein 1

(PBLD1), Muscleblind-Like Protein 3 (MBNL3), Lymphocyte Antigen 180

(CD180), and Coagulation Factor X (F10). All six genes were found to be

upregulated in EAE microglia compared to phosphate-buffered saline (PBS)

treated mice. These genes are primarily involved in immune-related pathways,

including Toll-like receptor (TLR) signaling, and interact with MS therapeutics

such as teriflunomide. Among the identified DEcircRNAs, circGAS2 (mmu-circ-

0001569) was significantly upregulated, suggesting its potential regulatory role in

microglial function. The expression trends of these biomarkers were validated via

quantitative reverse transcription PCR (qRT-PCR) and Western blot analysis.
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Conclusions: This study provides a comprehensive microglial gene signature for

EAE, highlighting the involvement of TLR pathways and circRNA-mediated

regulation in MS pathogenesis. These findings provide a foundation for future

research into microglia-targeted therapies and diagnostic tools for MS.
KEYWORDS

RNA sequencing, microglia, multiple sclerosis (MS), experimental autoimmune
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Introduction

Multiple sclerosis (MS) is a chronic neuroinflammatory disease

characterized by demyelination and neuronal damage that results in

significant neurological disability (1). Microglia, the resident immune

cells of the central nervous system (CNS), are central toMS pathology,

as they contribute to both neuroinflammation and repair processes (2,

3). Emerging evidence highlights the complexity of microglial

activation states, which are shaped by interactions with infiltrating

immune cells and the local microenvironment (4–7).

Experimental autoimmune encephalomyelitis (EAE), the gold-

standard preclinical model for studying immune-mediated

neuroinflammation in MS (6), was selected for its unique ability to

recapitulate adaptive immune-driven demyelination and microglial-

immune crosstalk, features absent in toxin-induced models (e.g.,

cuprizone) (7). In this model, microglia transition through three

critical phases. During the early induction phase (days 0–12 post-

immunization), microglia initiate immune surveillance via proliferation

and mitochondrial oxidative stress, priming the CNS for inflammation

(8, 9). The acute inflammatory phase (peak stage, days 12–20) features
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peak demyelination driven by reactive oxygen species (ROS) bursts and

M1-polarized (classically activated) microglial polarization, with

CX3CR1-CX3CL1 axis-mediated leukocyte infiltration (10, 11).

However, the chronic phase (days 20+) most closely models

progressive MS, as microglia exhibit dynamic phenotype switching:

TREM2/APOE-mediated lipid clearance and P2Y12R-PI3K/Akt

signaling promote repair, while P2X7R-NLRP3 inflammasome

activation perpetuates tumor necrosis factor-a (TNF-a) and

interleukin-1b (IL-1b)/IL-18 secretion and chronic inflammation (5,

11–13).

At the transcriptomic level, RNA sequencing studies have

uncovered profound heterogeneity in microglial activation states

across MS lesions. In chronic active MS lesions, microglia adopt

distinct transcriptional profiles, including lipid-phagocytic and iron-

retentive subsets, marked by upregulated TREM2, APOE, and

Complement C1q (C1Q) genes, which drive lipid metabolism,

complement activation, and interferon responses (6, 8). In normal-

appearing white matter, microglia exhibit pre-lesional activation, with

upregulated glycolysis and iron homeostasis genes in gray matter and

lipid metabolism genes in white matter, mirroring lesion-specific

pathology (1, 14). Integration of transcriptomic data from the Gene

Expression Omnibus (GEO) highlights immune-related pathways

(e.g., JAK-STAT, PI3K-Akt) (15, 16) and identifies hub genes

including IL17A, STAT3 and CXCR4 as critical regulators of

neuroinflammation and remyelination failure (15, 17, 18). These

findings underscore the dynamic transcriptional landscape of

microglia inMS, offering potential biomarkers and therapeutic targets.

Emerging evidence highlights the pivotal role of non-coding

RNAs (ncRNAs) in modulating immune crosstalk during EAE.

Circular RNAs (circRNAs), such as circ_0000518 act as miRNA

sponges to exacerbates M1 polarization of microglia/macrophages

via the FUS/CaMKKb/AMPK pathway (19). Similarly, long non-

coding RNAs (lncRNAs), such as NEAT1, KCNQ1OT1, and

miRNAs orchestrate adaptive immune responses by targeting key

pathways (20). Furthermore, epitranscriptomic modifications, such

as APOBEC/ADAR-mediated RNA editing, are significantly

reduced during EAE progression, impairing microglial anti-

inflammatory responses and worsening axonal damage (21).

These ncRNA networks not only drive pathogenic immune cell

polarization but also offer therapeutic avenues, as demonstrated by

EphB3 inhibitors suppressing astrocyte-microglia interactions and
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ameliorating EAE (22). Collectively, RNA crosstalk represents a

critical layer of regulation in autoimmune encephalomyelitis,

linking genetic susceptibility to inflammatory neurodegeneration.

In this study, we employed RNA sequencing and machine

learning (ML) approaches to identify microglial gene signatures

and explore the differential expression of non-coding RNA,

including circRNAs and lncRNAs, in the peak stage of EAE.

Through differential expression analysis, functional enrichment,

and molecular docking studies, we sought to uncover potential

biomarkers and regulatory pathways relevant to MS. Additionally,

we validated the expression of key biomarkers via both quantitative

real-time PCR (qRT–PCR) and Western blot analysis, and explored

their interactions with existing MS therapies. Our findings provide a

foundation for future research into the molecular mechanisms of

microglia in MS and their therapeutic targeting.

Materials and methods

Animals and disease modeling

Female C57BL/6 mice (n = 16, 8 weeks old, 20 ± 2 g) were housed

under standard conditions, and mouse experiments were conducted

with ethical approval from the Kunming Medical University Ethics

Committee, adhering to Animal Research: Reporting of In Vivo

Experiments (ARRIVE) guidelines. The mice were divided into

phosphate-buffered saline (PBS) treated mice and EAE groups (n = 8

per group). EAE was induced via subcutaneous immunization with an

antigen emulsion containing 1 mg of Myelin Oligodendrocyte

Glycoprotein amino acids 35–55 (MOG35-55) peptide (Sigma-

Aldrich) dissolved in 0.5 mL PBS and emulsified 1:3 (v/v) with

complete Freund’s adjuvant (CFA, Sigma-Aldrich) using two glass

syringes connected by a three-way stopcock for 2 hours. Each mouse

received four subcutaneous injections (0.1 mL/site) at the inguinal

region and three dorsal sites. Pertussis toxin (PTx, 200 ng per dose;

Sigma-Aldrich) was administered intraperitoneally on days 0, 2, and 7

post-immunization to amplify neuroinflammation. Control mice

received PBS injections following the same protocol. Disease

progression was monitored daily using a clinical scoring system (0: no

symptoms; 5: moribund state), and brain tissues were harvested at peak

disease severity (14 days post-induction, EAE clinical scoring 3–4).

Isolation of microglia

Microglia (CD11b+/CD45int) were isolated from brain tissues

using a 30%/70% Percoll density gradient (800×g, 25 min, brake off)

to enrich viable cells while minimizing myelin debris. After

centrifugation, single-cell suspensions were stained with FITC-

conjugated anti-CD11b antibody (clone M1/70, 1:200 dilution,

Abcam Cat# ab24874) and PE-conjugated anti-CD45 antibody

(clone EM-05, 1:100 dilution, Abcam Cat# ab269346) for 30 minutes

at 4°C in the dark, followed by fluorescence-activated cell sorting

(FACS) on a Beckman Coulter Moflo Astrios EQs (100 mm nozzle, 25

psi). The gating strategy (illustrated Supplementary Figure S1) excluded

debris (FSC-A/SSC-A plot), dead cells (propidium iodide-negative,

>95.81% viability), and non-microglial populations, retaining CD11b
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+/CD45int microglia (6.69% of total live cells). Post-sort reanalysis

confirmed >99% purity (CD11b+/CD45int re-gating) and high sample

integrity (RNA quality number >8.5, Agilent Bioanalyzer).
RNA sequencing and analysis

After establishing the animal model, we used bioinformatics

approaches to identify hub genes and investigate the microglia-EAE

relationship. Flowchart of the study was illustrated in Figure 1. RNA

sequencing (RNA-seq) was performed on 16 microglia samples (8

EAE and 8 controls). Stranded RNA-seq libraries were sequenced

on the Illumina NovaSeq 6000 platform using a 150 bp paired-end

(PE150) configuration, generating 70–80 million raw reads per

sample. Raw data were processed through stringent quality

control: (1) removal of low-quality reads (reads with >50% bases

having Phred score <20), (2) trimming of adapter sequences, (3)

elimination of reads containing >5% ambiguous ‘N’ bases, and (4)

filtering of host genome-derived contaminants by alignment to

GRCm38. After filtering, clean data with Q30 ≥90% were retained

for downstream analysis. Data processing included demultiplexing

(bcl2fastq), alignment (HISAT2), and differential expression

analysis (DESeq2). The resulting RNA-seq data were deposited in

the GEO database for further access ib i l i ty (ht tps : / /

www.ncbi.nlm.nih.gov/geo/) under accession number GSE253318.
Identification of differentially expressed
mRNAs, lncRNAs and circRNAs in the
microglia of EAE mice

To explore the potential mechanisms and biological significance

of differentially expressed genes (DEGs) in EAE mice, we first used

the edgeR package (23) to analyze the DEmRNAs, DElncRNAs and

DEcircRNAs as illustrated in the study flowchart (Supplementary

Figure S2). Differentially expressed circRNAs (DEcircRNAs),

lncRNAs (DElncRNAs), microRNAs (DEmiRNAs), and mRNAs

(DEmRNAs) were identified using a unified threshold of False

Discovery Rate (FDR) < 0.05 and |log2FoldChange| > 1. Genes

meeting these criteria were defined as significantly upregulated

or downregulated.

The ggplot2 package (version 3.4.2) was used to visualize the

results by constructing heatmaps, and the pheatmap package

(version 1.0.12) was used to generate volcano plots. The

expression levels of mRNAs and lncRNAs in each sample are

presented as fragments per kilobase of transcript per million

mapped reads (FPKM) values and the quantity of circRNAs in

each sample is presented as reads per billion mapped reads (RPB)

values as detailed in Supplementary Tables S1-S3.
Construction of competing endogenous
RNA networks

The predicted interactions between the screened DElncRNAs

and miRNAs, DEcircRNAs and miRNAs, and miRNAs and
frontiersin.org
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DEmRNAs were predicted using the miRcode database (http://

www.mi rcode .o rg / ) , the miRanda da taba se (h t tp : / /

mirtoolsgallery.tech/mirtoolsgallery/node/1055) and the miRwalk

database (24) (http://mirwalk.umm.uni-heidelberg.de/),

respectively. These regulatory relationships were further validated

using TargetScan, miRDB (25) and miRTarBase (26). Only

interactions predicted by multiple databases were included. The

combined miRNA-DElncRNA, miRNA-DEcircRNA and miRNA-
Frontiers in Immunology 04
DEmRNA interactions were used to construct the ceRNA network.

The network diagram was generated using the ggplot2 package

and Cytoscape.

To analyze posttranscriptional relationships between key

genes and miRNAs, we identified miRNAs associated with the

key genes through the miRNet database (27). An mRNA–miRNA

regulatory network was then constructed and visualized

with Cytoscape.
FIGURE 1

Flowchart of the research process. Data sources: self-generated RNA-seq, EAE mice brain tissue (GSE253318) and public microarray datasets: EAE
mice spinal cord-GSE150562; EAE mice spinal cord-GSE60847; EAE & cuprizone mice brain-GSE241781. DE, differential expression; LASSO, least
absolute shrinkage and selection operator; NB, naive Bayes; MLP, multilayer perceptron; avNNet, model-averaged neural network; PLS, partial least
squares; PRIM, patient rule induction method; PPI, protein–protein interaction.
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Functional and pathway enrichment
analysis of the DEGs

To investigate the functions and pathways enriched in the

DEGs, we performed Gene Ontology (GO) analysis covering all

three categories, including biological process (BP), molecular

function (MF), and cellular component (CC), as well as Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathway enrichment

analyses using the clusterProfiler R package (version 4.8.3) (28). The

background gene set included all protein-coding genes annotated in

the mouse genome (Ensembl GRCm38). Enrichment significance

was adjusted for multiple testing using the Benjamini-Hochberg

method (FDR < 0.05), while DEGs were identified with FDR-

corrected q-values provided by OE Biotech Co., Ltd.
Protein–protein interaction network
analysis of the DEGs

We investigated the interactions between the DEmRNAs

involved in the ceRNA network and a variety of factors, including

transcription factors (TFs), miRNAs, small molecule drugs, and

RNA binding proteins (RBPs). The PPI network of the DEGs was

assembled utilizing the Search Tool for the Retrieval of Interacting

Genes/Proteins (STRING) database (https://www.string-db.org/)

(29). We subsequently exported the PPI data from the Search

Tool for the Retrieval of Interacting Genes/Proteins (STRING)

database using the parameters 0.4, 0.7, and 0.9 followed by

visualization using Cytoscape (30). Furthermore, by employing

the CytoHubba plugin (31), we further identified the critical

subnetwork and hub genes within the PPI network.
Identification of the DEGs via machine
learning

To identify consensus DEGs with high accuracy and stability, we

integrated fiveML algorithms, each contributing unique strengths to the

analysis. Elastic Net (a linear regression method combining L1 and L2

regularization) and Least Absolute Shrinkage and Selection Operator

(LASSO) regression (32) [implemented via the glmnet package (33)]

were used for feature selection. Elastic Net addressed multicollinearity

by balancing L1 and L2 penalties, while LASSO applied L1

regularization to eliminate redundant predictors (34). Random Forest

(RF), an ensemble tree-based method, ranked gene importance through

bootstrap aggregation and entropy reduction, capturing non-linear

relationships between genes and EAE phenotypes (35). To improve

feature selection robustness, the Boruta algorithm, a wrapper method

based on RF, iteratively compared original gene features to permuted

“shadow” features, retaining only genes consistently outperforming

noise (36). Linear regression served as a baseline model to identify

genes with linear associations to disease status.

Hyperparameter optimization used stratified fivefold cross-

validation with grid search. The dataset was stratified into five

class-balanced folds, iteratively training on four folds and validating

on one. Elastic Net (a: 0.1–0.9; l: 10−4–10²) and LASSO (l: 10−4-
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10²) were tuned via glmnet (37). LASSO results were visualized

through cross-validation error curves and coefficient trajectory

plots. Random Forest optimized mtry (√p, p/3, p/2) and tree

count (500–2000) (34), while Boruta used default settings (36).

Linear regression served as a baseline. The process was repeated 10

times with random seeds to ensure stability, and consensus DEGs

were derived from consistent feature rankings.

Genes consistently selected by all five algorithms were

aggregated into a final multigene signature. This signature was

used to train predictive models for EAE classification and

outcome prediction.

Public data collection and processing

We evaluated three EAE gene expression datasets from the GEO

database (https://www.ncbi.nlm.nih.gov/geo/) (38): GSE150562 (n =

29) (39), comprisingmicroarray datasets from 24 EAEmice and 5 PBS-

treated mice; GSE60847 (n = 12) (40), including 6 EAE and 6 PBS-

treated mice; and GSE241781 (n = 16) (41), with samples from 6 EAE

mice, 6 cuprizone-fed MS model mice, and 4 PBS-treated mice. All

datasets contained CD11b+ microglia transcriptomes. Raw data were

retrieved using the GEOquery R package (v2.68.0) (42) and

preprocessed through quality control (probe filtering), normalization

(quantile/log2), and batch correction. Probes with > 20% missing

values were removed. For the Affymetrix MoGene-2.0-ST arrays

(GPL16570; GSE150562 and GSE241781), quantile normalization

was applied, while the Illumina MouseWG-6 v2.0 beadchip

(GPL17543; GSE60847) data underwent log2 transformation. Batch

effects in GSE241781 were mitigated using the ComBat algorithm (R

sva package). Processed datasets were retained for downstream analysis

(metadata in Supplementary Table S4).

Gene sets were obtained from the Molecular Signatures

Database (MSigDB; https://www.gsea-msigdb.org/gsea/msigdb/)

(43). The c5.go.v2023.2.Hs.symbols.gmt file provided GO terms,

and the c2.cp.kegg.v7.4.symbols.gmt file supplied KEGG pathway

gene sets for subsequent functional enrichment analysis.

Screening and verification of biomarkers
distinguishing healthy mice and mice with
EAE

The EAE response classification model was trained with the

multigene signature using six ML algorithms: multilayer perceptron

(MLP), naive Bayes (NB), partial least squares (PLS), linear

regression (glmnet), a model-averaged neural network (avNNet),

and a patient rule induction method (PRIM). This diverse selection

of models ensures that both linear and nonlinear patterns in the

data are effectively captured while maintaining a balance between

predictive accuracy and interpretability. For each ML algorithm

with parameters, we use fivefold cross-validation (CV) to adjust the

hyperparameters to optimize the performance of the model. To

ensure robustness, we repeated the optimization process 10 times

using different random seeds for each individual resampling.

The classifier, comprising a multigene signature derived from

the aforementioned algorithmic model, was analyzed using
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validation datasets. The algorithm demonstrating the best

classification efficacy in the validation set was selected to

construct the EAE predictive model.
Shapley Additive exPlanations values and
residual analysis

To evaluate the interpretability and stability of the ML models,

we employed the DALEX (Descriptive mAchine Learning

EXplanations) package (44, 45), leveraging SHAP values and

residual analysis as complementary approaches. SHAP values

were calculated to quantify the contribution of each DEmRNA to

individual model predictions. SHAP values for each DEmRNA were

aggregated to evaluate their collective impact on model prediction,

prioritizing genes with consistent directional effects on predictions.

Residuals, defined as the differences between predicted and

observed values, were computed for each model to evaluate

stability. The distributions of residuals were visualized using

boxplots, and models with lower median absolute residuals were

identified as more stable and robust. This dual approach provided

valuable insights into both the reliability and interpretability of the

ML models used in our study.
Molecular docking of the 6 key DEGs

Owing to accessibility-related challenges in the collection of

brain samples from MS patients, the EAE animal model is a critical

tool in the exploration of pharmaceuticals for MS treatment. Six

DEGs in microglia were further analyzed for potential interactions

with MS medications. Drug-target information was retrieved from

the DrugBank database, and Structure Data Format (SDF) files for

the drug s were re t r i e ved f rom PubChem (h t tp s : / /

pubchem.ncbi.nlm.nih.gov/). Target protein structures (PDB files)

corresponding to the six DEGs were acquired from the Protein Data

Bank (PDB; https://www.rcsb.org/).

Molecular docking calculations were subsequently performed

with AutoDock 4.2.6. The Q site, defined as a putative ligand-

binding pocket near the catalytic domain of the target protein, was

enclosed within a 60 × 60 × 60 Å grid box to define the docking

search space. The Lamarckian genetic algorithm was applied with 50

iterations, and default parameters were used for van der Waals and

electrostatic scaling. Binding affinities were evaluated by selecting the

lowest energy conformation from the largest cluster of docking poses.
qRT–PCR validation

RNA was extracted from 16 microglia samples (8 EAE and 8

controls) using TRIzol and assessed for concentration, purity, and

integrity. cDNA synthesis was performed with the riboSCRIPT

Starter Kit, followed by qRT-PCR using SYBR Green chemistry on

an ABI 7500 system. The mouse primer sequences are shown in

Table 1. The reactions were conducted in triplicate, and gene
Frontiers in Immunology 06
expression was analyzed using the 2-DDCt method with GAPDH

as the internal control. Statistical significance between EAE and

control groups was determined using an unpaired Student’s t-test

(data normality confirmed via Shapiro-Wilk test), with p < 0.05

considered significant.
Western blot analysis

Total proteins were extracted from EAE microglia using RIPA

lysis buffer and PMSF (Beyotime, Shanghai). Protein samples were

separated via 10% polyacrylamide gel electrophoresis, transferred to

PVDF membranes (Immobilon, Thermo Fisher), and blocked with

5% non-fat dry milk for one hour. Membranes were incubated

overnight with primary antibodies at 4°C, followed by a one-hour

incubation with secondary antibodies at room temperature.

Membrane analysis was performed using the ChemiDoc XRS+

imaging system (Bio-Rad). Antibodies targeting NGP (ab232676,

1:1000), HIST1H2BJ (ab157425, 1:1000), PBLD1 (ab215299,

1:1000), MBNL3 (ab243124, 1:1000), CD180 (ab113874, 1:1000),

and F10 (ab228544, 1:1000) were from Abcam; GAPDH (5174,

1:1000) antibody were from Cell Signaling Technology.
Statistical analysis

All the data processing and statistical analyses were conducted

with R 4.0.2 software. The significance of differences between two

continuous variables was assessed via an independent Student’s t

test or the Wilcoxon rank-sum test for comparisons of two groups.

The chi-square test or Fisher’s exact test was used to evaluate the

significance of differences between two groups of categorical

variables. Receiver operating characteristic (ROC) curve analysis

was performed with the pROC R package. All the statistical tests

were two-tailed, and p < 0.05 was considered to indicate statistical

significance. Western blot band intensities were quantified via

ImageJ software (NIH) through densitometric analysis, with

background subtraction and normalization to internal controls

(GAPDH), using triplicate biological replicates.
Results

Analysis of the DEmRNAs, DElncRNAs and
DEcircRNAs

We employed the edgeR algorithm to detect mRNAs, lncRNAs,

and circRNAs exhibiting significant differential expression between

microglia derived from EAE mice and those derived from PBS-treated

mice. Specifically, we identified 141 significantly upregulated mRNAs

and 27 significantly downregulated mRNAs (Supplementary Figures

S3A, D; Supplementary Table S5) in EAE mice compared with the

PBS-treated mice. Among the identified lncRNAs, 154 were

significantly upregulated, and 193 were significantly downregulated

(Supplementary Figures S3B, E; Supplementary Table S6). Moreover,
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we identified a total of 359 significantly upregulated circRNAs and 476

significantly downregulated circRNAs (Supplementary Figures S3C, F;

Supplementary Table S7).
Potential ceRNA networks and functional
enrichment analysis

We further examined the regulatory associations among the

differentially expressed mRNAs, lncRNAs, and circRNAs. Our

findings revealed the pivotal roles of miRNAs in the lncRNA–

miRNA–mRNA ceRNA interaction network, revealing notable

interconnectedness within the network (Figure 2). For example,

the miRNA mmu-miR-1224-5p (highlighted in red in Figure 2A)

was found to target and regulate seven lncRNAs, including

XR_001778501–1 and TCONS_00045621 (labeled with asterisks in

Figure 2A). Additionally, within the circRNA–miRNA–mRNA

ceRNA network, we observed significant interactions among the

miRNA nodes (Figure 2B; Supplementary Table S8).

To determine the chromosomal positions of the DEmRNAs,

DElncRNAs, and DEcircRNAs within the ceRNA network and to

understand the relative spatial distribution of these interacting

molecules, we initially analyzed the localization data obtained

from ENCODE (file: Mus_musculus.GRCm39.110.gtf) for

visualization using TBtools. Our findings revealed that the

DElncRNAs located on chromosomes 8, 9, 11, and 14 were

relatively more abundant than those located on other

chromosomes (Supplementary Figure S4; Supplementary Table
Frontiers in Immunology 07
S9). Conversely, DEmRNAs and DEcircRNAs within the ceRNA

network were dispersedly distributed across various chromosomes

without evident clustering patterns (Supplementary Figure S4).

GO analysis revealed significant enrichment of the DEmRNAs

in the ceRNA network (FDR < 0.05) in 313 immune-related terms,

including leukocyte adhesion, lipopolysaccharide response, and

neutrophil migration (Figure 3A; Supplementary Table S10).

KEGG analysis identified significant enrichment (FDR < 0.05) in

immune pathways such as IL-17 signaling, cytokine receptor

interactions, and Toll-like receptor (TLR) signaling (Figure 3B;

Supplementary Table S11). Notably, these pathways shared gene

nodes, suggesting that the DEmRNAs modulate various biological

pathways in EAE progression (Figure 3C). Therefore, these

DEmRNAs are likely to be involved in microglial activation and

adhesion, positioning them as potential biomarkers and therapeutic

targets for MS.

We examined the expression profiles of the DEmRNAs in the

ceRNA network and found that most were upregulated in EAE

mice, except for Leucine-rich repeat-containing G protein-coupled

receptor 6 (LGR6) and Homeobox A3 (HOXA3) genes (Figures 3D,

E). Further analysis of expression correlation among the

differentially expressed mRNAs, lncRNAs, and circRNAs revealed

distinct patterns. Notably, the expression trends of LGR6 and

HOXA3 with DElncRNAs differed markedly from those of other

DEmRNAs (Supplementary Figure S5A), a pattern also observed

between DEmRNAs and DEcircRNAs (Supplementary Figure S5B).

Correlation analysis of DEcircRNAs and DElncRNAs suggested

potential underlying mechanisms (Supplementary Figure S5C).
TABLE 1 Primer sequences used in the study.

GENE Name Accession No. Primer Sequence (5’→3’)
Length
(bp)

Company

b-actin(m)-F
NM_007393.5

CTGGAGAAGAGCTATGAG 141 Beijing Tsingke Biotech
Co., Ltd.b-actin(m)-R GATGGAATTGAATGTAGTTTC

NGP (m) -F
NM_008694.2

AACTAAGATATGAGGAGATT 124 Beijing Tsingke Biotech
Co., Ltd.NGP (m) -R ATATTGGTAGCAGGATTC

Hist1h2bj (m) -F
NM_178198.3

GTCTACAAGGTGCTGAAG 80 Beijing Tsingke Biotech
Co., Ltd.Hist1h2bj (m) -R TTCACGAACGAGTTCATG

CD180 (m) -F
NM_008533.2

ATGGATGACGAAGATATTAGT 75 Beijing Tsingke Biotech
Co., Ltd.CD180 (m) -R CTGTAGGTTGATGCTCTC

PBLD1 (m) -F
NM_001359529.1

TGAAGTTGAAGACTTGATA 77 Beijing Tsingke Biotech
Co., Ltd.PBLD1 (m) -R TTCTGGTATCTGTAGAGTA

F10 (m) -F
NM_001242368.1

TTATGAAGAGGTCCGTGAA 75 Beijing Tsingke Biotech
Co., Ltd.F10 (m) -R TCGCCGTCTTTATATTTGG

MBNL3 (m) -F
NM_001310515.1

CTGATAATTCTGTGACAATCTG 83 Beijing Tsingke Biotech
Co., Ltd.MBNL3 (m) -R GGGAGGAGGATGAAAGTA

m-mmu_circ_0001569_F1

mmu_circ_0001569 (CircBase)

CAACAAGCCTGCCAAGGTG 140

RIBOBIOm-
mmu_circ_0001569_R1

GGCAGCAAATTAGCTTCATGTCT 140
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FIGURE 2

ceRNA network analysis of the self-generated RNA-seq dataset (EAE mice brain-GSE253318). (A) lncRNA–miRNA–mRNA ceRNA network interaction
analysis. Key annotations: mmu-miR-1224-5p (highlighted in red) targets seven lncRNAs, including XR_001778501–1 and TCONS_00045621
(marked with asterisks). Node size reflects interaction degree; edges represent predicted miRNA-target binding. (B) circRNA–miRNA–mRNA ceRNA
network interaction analysis.
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FIGURE 3

Integrated analysis of functional enrichment and key mRNA expression in the ceRNA network of self-generated RNA-seq dataset (EAE mice brain-
GSE253318). (A) GO functional enrichment analysis (BP, CC, MF). (B) KEGG pathway enrichment analysis. (C) Network diagram of significantly
enriched KEGG pathways and associated genes. (D) Heatmap of key mRNA expression in the ceRNA network (red: high expression; blue: low
expression; values normalized to z-scores). (E) Box plot of differential expression of key mRNAs across experimental groups (ns, not significant; *FDR
< 0.05, **FDR < 0.01, ***FDR < 0.001). GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; BP, biological process; CC, cellular
component; MF, molecular function.
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Interaction analysis of the EAE DEmRNAs
involved in the ceRNA network for
biological function prediction

We investigated the interactions among the DEmRNAs

involved in the ceRNA network and a variety of factors, including

TFs, miRNAs, small molecule drugs, and RBPs. The PPI network

constructed for the DEmRNAs and TFs revealed interactions,

particularly for Lymphocyte Antigen 180 (CD180) and

Muscleblind-Like Protein 3 (MBNL3), which not only interact

with each other but are also closely associated with TFs. Notably,

the mRNAs CD180 and Interleukin 23 Subunit Alpha (IL23a)

frequently interacted with TFs (Supplementary Figures S6A, S7).

The constructed mRNA–drug interaction network identified

Phenazine Biosynthesis-Like Domain-Containing Protein 1

(PBLD1) and Neutrophilic Granule Protein (NGP) as potential

drug targets (Supplementary Figures S6B, S7). Furthermore, the

DEmRNA–RBP interaction network revealed that the mRNAs

Coagulation Factor X (F10), Cyclin-Dependent Kinase Inhibitor

2B (CDKN2B), Fibrinogen Alpha Chain (FGA), Cone-Rod

Homeobox (CRX), Epiregulin (EREG), IL23a, and LGR6 may

interact with several RBPs. (Supplementary Figures S6C, S7).
Identification of EAE biomarkers and
validation with 3 public datasets

A total of five ML algorithms, namely, the elastic net, LASSO,

RF, Boruta, and linear regression algorithms, were applied to

further identify key DEmRNAs. Nine significantly DEGs were

identified by LASSO regression (Supplementary Figure S8A);

elastic network analysis identified 10 genes (Supplementary

Figure S8B); linear regression and the RF algorithm identified 25

genes each (Supplementary Figures S8C, D); and the Boruta

algorithm identified 12 significant genes (Supplementary Figure

S8E). As shown in the UpSet diagram (Supplementary Figure S8F),

a total six genes were commonly identified by each method, namely,

NGP, Histone Cluster 1 H2B Family Member J (HIST1H2BJ),

PBLD1, MBNL3, CD180, and F10. All six genes were upregulated

in the in-house dataset, with |log2FC| values of 1.56, 1.08, 1.44, 1.01,

1.20, and 1.63, respectively (p < 0.05) (Supplementary Table S5).
Construction and validation of ML models
for determination of the microglia-
associated multigene signature

We employed six ML algorithms (NB, MLP, avNNet, PLS,

PRIM, and glmnet) to assess the predictive performance of a six-

DEmRNA signature for EAE. All models demonstrated high area

under the curve (AUC) values (NB: 1, MLP: 1, avNNet: 1, PLS:

0.938, PRIM: 0.875, glmnet: 1) (Supplementary Figure S8G),

along with favorable C-indexes and F1 scores (Supplementary

Figures S8H; Supplementary Table S12), indicating robust

predictive performance.
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Validation in three independent EAE datasets further

confirmed the accuracy of the model. For the GSE150562 dataset,

PLS, MLP, and avNNet models achieved high AUC values (PLS:

0.892, MLP: 0.892, avNNet: 0.833) (Supplementary Figure S8I),

with PLS and MLP models showing AUCs as high as 0.892 but with

lower F1 scores (Supplementary Figure S8J), indicating stable

performance. In the GSE60847 dataset, PLS (AUC = 0.833) and

avNNet (AUC = 0.792) models displayed superior predictive

efficacy (Supplementary Figure S8K), with higher C-indexes and

F1 scores than other models (Supplementary Figure S8L).

For the GSE241781 dataset, the MLP (AUC = 0.917) and avNNet

(AUC = 0.938) models showed optimal performance (Supplementary

Figure S8M), with higher C-indexes and F1 scores than other

algorithms (Supplementary Figure S8N). These results suggest that

the avNNet model exhibited the most consistent predictive ability,

while the PLS and MLP models were somewhat less stable.
Interpretability and stability determined by
SHAP values and residual analysis

We used the DALEX package to assess the explanatory capacity

of each DEmRNA within the prediction models (Supplementary

Figures S8O-V). The NB model had the lowest residual, with the

median residual closely approximating 0, indicating its stability and

robust predictive performance (Supplementary Figures S8O, P).

The predictive efficacy of the six-gene signature was evaluated

across the avNNet, PLS, and MLP models, which demonstrated

high prediction scores (0.721, 0.815, and 0.811, respectively). SHAP

values were calculated to determine the contribution of each

DEmRNA, with NGP consistently showing the highest

contribution across all models (7.122 for avNNet, PLS, and MLP)

(Supplementary Figures S8Q-V).

The combination of residual and SHAP value analyses confirmed

the robustness, stability, and interpretability of the models. Residual

analysis validated the stability, particularly for the NB model, while the

SHAP values highlighted the biological relevance of individual

biomarkers. These results affirm the consistency and interpretability

of the predictions of the avNNet, PLS, andMLPmodels, reinforcing the

predictive power of the six-gene signature and identifyingNGP as a key

contributor to the model predictions.
Molecular docking of the 6 key microglia-
associated DEGs

Molecular docking was conducted to identify potential

interactions between MS drugs and the six DEGs. Data from

DrugBank indicated that teriflunomide and CDP323 interacted

with four of the DEGs. Docking results showed that CD180 had

binding energies of -9.64 kcal/mol with CDP323 and -5.93 kcal/mol

with teriflunomide (Figures 4A, B). F10 exhibited binding energies

of -6.79 kcal/mol with CDP323 and -6.58 kcal/mol with

teriflunomide (Figures 4C, D). HIST1H2BJ and MBNL3 showed

binding energies of -5.91 kcal/mol and -4.69 kcal/mol, respectively,
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with CDP323 and -6.54 kcal/mol and -5.91 kcal/mol with

teriflunomide (Figures 4E–H). Notably, no significant binding

(binding energy ≥ -5 kcal/mol) was observed between the MS

drugs and the remaining two biomarkers , NGP and

PBLD1.Binding energies below -5 kcal/mol are typically
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considered significant for docking results. Thus, the favorable

binding affinities observed for CD180, F10, HIST1H2BJ, and

MBNL3 with CDP323 and teriflunomide suggest that these

proteins could serve as potential therapeutic targets for

MS treatment.
FIGURE 4

Molecular docking of the proteins encoded by CD180, F10, HIST1H2BJ, and MBNL3 with CDP323 and teriflunomide. Molecular docking and binding
energies for (A) CD180 and CDP323, (B) CD180 and teriflunomide, (C) F10 and CDP323, (D) F10 and teriflunomide, (E) HIST1H2BJ and CDP323, (F)
HIST1H2BJ and teriflunomide, (G) MBNL3 and CDP323, and (H) MBNL3 and teriflunomide.
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Verification of the microglia-associated
markers

Figure 5 shows the expression levels of six biomarkers in 16

tissue samples (8 normal samples and 8 EAE samples) measured by

qRT–PCR. The fold changes in various transcript levels were

determined using the DDCT methodology (Supplementary Table

S13). NGP, HIST1H2BJ, PBLD1, MBNL3 and a DEcircRNA of

interest (mmu-circ-0001569) were significantly upregulated in

EAE microglia (p < 0.001), and F10 and miR-1224-5p were

significantly downregulated (p < 0.001) (Figure 5), indicating that

the results were reproducible and reliable. Western blot analysis of

the relative protein expression levels of NGP, HIST1H2BJ, PBLD1,

MBNL3, CD180, and F10 correlated well with the qRT–PCR results,

demonstrating significant upregulation in all targets except CD180

(Supplementary Figures S9, S10; Supplementary Table S14).
Discussion

Microglia play pivotal roles in EAE and MS progression by

driving immune activation, antigen presentation, and myelin

phagocytosis (6, 7). Emerging evidence highlights that microglia

modulate neuroinflammation not only through direct cell-cell

interactions but also via the secretion of cytokines (e.g., IL-1b,
Frontiers in Immunology 12
TNF-a), chemokines (e.g., CCL2, CXCL10), and ROS (1, 2, 5, 6, 12),

which amplify adaptive immune responses and exacerbate

demyelination. Our focus on post-transcriptional mechanisms

stems from their critical role in fine-tuning these inflammatory

outputs, as non-coding RNAs and RNA-binding proteins regulate

the stability and translation of mRNAs encoding immune

mediators (46, 47).

This study revealed significant changes in microglial gene

expression and leveraged ceRNA and PPI networks to identify

posttranscriptional regulatory mechanisms. ceRNA networks

(lncRNA/circRNA–miRNA–mRNA) modulate microglial

inflammation in EAE by competitively sequestering miRNAs from

target mRNAs via shared miRNA response elements, thereby

derepressing inflammatory transcripts (48–50). The six identified

DEmRNAs integrate into these lncRNA/circRNA–miRNA–mRNA

axes, suggesting their roles as either effectors or modulators of

ceRNA-driven immune dysregulation. Among the identified

circRNAs, mmu-circ-0001569 (circGAS2) showed significant

upregulation in EAE microglia. This circRNA has not been

previously reported in neuroinflammatory models, suggesting its

potential microglia-specific roles warranting further investigation.

The chromosomal distribution patterns of ceRNA network

components in EAE microglia may reflect both structural and

functional genomic organization. The enrichment of DElncRNAs

on chromosomes 8, 9, 11, and 14 aligns with known immune-
FIGURE 5

Verification of NGP, CD180, HIST1H2BJ, PBLD1, MBNL3, F10, mmu-circ-0001569 and miR-1224-5p expression by qRT–PCR. (A) NGP, (C) HIST1H2BJ, (D)
MBNL3, (E) PBLD1, and (G) mmu-circ-0001569 were significantly upregulated in EAE microglia compared with control microglia (p < 0.001). (F) F10 and (H)
miR-1224-5p were significantly downregulated in EAE microglia (p < 0.001). (B) CD180 expression did not significantly differ between EAE microglia and
control microglia. ns: not statistically significant; ***p < 0.001, ****p < 0.0001.
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related genomic hotspots in mice. Chromosome 11 harbors the

innate immunity cluster (51, 52), while chromosome 14 contains

genes correlated with several neurological diseases [e.g., Alzheimer’s

disease (53) and epilepsy (54)]. In contrast, the dispersed

distribution of DEmRNAs and DEcircRNAs across chromosomes

implies system-wide regulatory integration rather than locus-

specific control.

RNA sequencing, including bulk and single-cell approaches, has

been used extensively to study the functions of microglia in MS and

EAE (3, 47). However, discrepancies in gene expression profiles

between studies stem from methodological variations and model-

specific differences (55, 56). Using bioinformatics and ML methods,

we identified six novel biomarkers (NGP, HIST1H2BJ, PBLD1,

MBNL3, CD180, and F10) that were up-regulated in EAE

microglia, none previously linked to EAE. Validation across

datasets confirmed consistent expression patterns and high

diagnostic efficacy. Among these biomarkers, NGP, HIST1H2BJ,

and CD180 contributed most to the differences between EAE and

healthy microglia. Interaction network analyses revealed their

integration in ceRNA networks, with NGP, MBNL3, and CD180

interacting with TFs, underscoring their key regulatory roles in the

EAE immune microenvironment.
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NGP, a cystatin family member, modulates innate and adaptive

immunity by attenuating TLR4 signaling and enhancing

phagocytosis by macrophages and microglia (57). Given that

TLR4 promotes the activity of proinflammatory cytokines such as

TNF-a and IL-1b, which exacerbate MS inflammation, our finding

that NGP is upregulated suggests that it may be involved in TLR4-

associated pathways (57). Similarly, CD180, another TLR family

member, modulates immune responses in B cells and dendritic cells

through NF-kB and MAPK signaling (58, 59). Dysregulation of

CD180 expression is linked to MS pathogenesis (60, 61), but no

significant change in CD180 expression were observed in our qRT-

PCR and Western blot experiments. The observed discrepancy may

arise from the higher sensitivity of sequencing in detecting subtle

transcriptional changes, combined with technical variability in

qRT-PCR (e.g., primer efficiency) and Western blot (e.g.,

antibody specificity), or biological factors such as post-

transcriptional regulation uncoupling mRNA and protein

expression levels. Further investigation using single-cell RNA

sequencing and spatial transcriptomics is necessary to explore

CD180 expression in microglial subtypes, along with functional

studies to clarify the roles of NGP and CD180 in TLR-mediated

immune regulation in MS.
FIGURE 6

Integrated Mechanistic Model of Signature Genes in Microglial Activation and Neuroinflammation (by Figdraw 2.0). This diagram proposes a
synergistic network involving six DEmRNAs (NGP, HIST1H2BJ, PBLD, MBNL3, CD180, and F10) through multiple mechanism, driving microglial
activation and neuroinflammation. Key elements include: NGP suppresses TLR4 to attenuate neuroinflammation; HIST1H2BJ impairs apoptotic
clearance and phagocytosis, exacerbating autoimmunity; PBLD antagonizes NF-kB/TNF-a signaling; MBNL3 fine-tunes RNA splicing in
immunometabolism; CD180 modulates B-cell-like responses via NF-kB/MAPK, cytoplasmic ceRNA crosstalk (e.g., lncRNAs XR_001778501.1/
TCONS_00045621 sponging miR-1224-5p), and TF-mediated regulation of MBNL3. Molecular docking highlights interactions between signature
proteins and MS drugs (teriflunomide, CDP323), suggesting therapeutic targets.
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HIST1H2BJ, a histone gene involved in nucleosome structure

and immune defense, shows elevated expression in autoimmune

disorders such as rheumatoid arthritis (62, 63). In this study,

increased HIST1H2BJ expression in EAE microglia suggests

impaired phagocytosis and prolonged exposure of apoptotic cells

to the immune system (61), likely contributing to immune

dysregulation in MS.

PBLD1, a tumor suppressor gene that is upregulated in

EAE microglia, attenuates TNF-a-induced inflammation by

suppressing NF-kB activity (64, 65), indicating the activation

of anti-inflammatory pathways. This upregulation likely

represents a compensatory response to counterbalance excessive

neuroinflammation in acute EAE. MBNL3, an RNA-binding

protein involved in RNA metabolism and splicing, has been

linked to diseases such as autism and amyotrophic lateral

sclerosis (66, 67). In the EAE context, MBNL3 may mediate

immune-metabolic crosstalk by fine-tuning post-transcriptional

regulation of inflammatory mediators, though its precise role

in MS remains undefined. While our findings implicate PBLD1

and MBNL3 in EAE-associated immune regulation, their

pathophysiological significance in human MS requires validation

through microglia-specific knockout models and analysis of MS

patient datasets.

The six biomarkers participate in key pathways (e.g., LPS

response, TLR/IL-17 signaling) through multilayered regulatory

networks. PPI analysis revealed their interactions with TFs, RBPs,

and small-molecule drugs: (1) CD180 and MBNL3 associate with

TFs (JUN, ETS1, IRF4, etc.), forming a pro-inflammatory

feedforward loop via the CD180/IL23a axis (68–74); (2) F10 and

CD180 bind RBPs (e.g., IL23R, IL12RB1) (75), implicating post-

transcriptional control in cytokine-receptor pathways; while (3)

PBLD1 and NGP interact with therapeutic compounds, suggesting

druggable potential. These TF/RBP networks collectively establish a

synergistic framework for microglial dysregulation in EAE and

MS pathogenesis.

Microglial heterogeneity is well-characterized by canonical

markers: TMEM119 and P2RY12 distinguish resident microglia

from macrophages, while TREM2 marks activated states in EAE

and MS (76, 77). Our newly identified biomarkers (NGP,

HIST1H2BJ, CD180, PBLD1, MBNL3, F10) show no overlap with

these traditional markers, indicating distinct state-dependent

transcriptional programs in CD11b+/CD45int subtype of

microglia of acute EAE. Importantly, none exhibit vascular

endothelial expression in neuroinflammatory contexts (Human

Protein Atlas/GEO/Brain RNA-seq), supporting microglia-specific

roles. These interactions are synthesized in Figure 6 as a

mechanistic framework for MS therapeutic targeting.

Molecular docking revealed interactions between four candidate

proteins (CD180, F10, HIST1H2BJ, MBNL3) and MS therapeutics:

CD180-teriflunomide binding (-5 kcal/mol) implicates TLR4

modulation, while F10-CDP323 interaction suggests coagulation

pathway involvement. HIST1H2BJ and MBNL3 show potential for

epigenetic/splicing-targeted therapies. Although NGP and PBLD1

lacked drug affinity, their established roles in environmental

response (NGP in neurotoxin clearance, PBLD1 in detoxification)
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support their selection as targets for MS’s environmental-

inflammatory axis.

While our models demonstrated robust performance in the

independent validation set, potential overfitting risks may arise

from the moderate sample size and tissue-specific transcriptomic

biases. External validation across diverse populations (e.g.,

progressive MS subtypes) and omics modalities (e.g., proteomics)

for further researches is essential. While molecular docking predicts

interactions between CD180/F10/HIST1H2BJ/MBNL3 and MS

drugs (binding energy < -5 kcal/mol), experimental validation

through cryogenic electron microscopy and functional assays

remains essential for confirmation.

To bridge our findings to clinical translation, future studies will

prioritize validation of NGP, HIST1H2BJ, CD180, PBLD1, MBNL3,

and F10 in longitudinal EAE models and human MS lesion to assess

their temporal dynamics during disease progression and remission.

For functional validation, gene-edited mice could be used to test the

causal roles of microglial drug targets in neurovascular dysfunction

and clarify the therapeutic relevance of these biomarkers and

accelerate their translation into precision immunomodulatory

strategies for MS.
Conclusions

In this study, NGP, HIST1H2BJ, PBLD1, MBNL3, CD180, and

F10 were identified as novel microglial biomarkers for EAE, verified

in GEO datasets, and shown to interact with MS-related molecules

and medications. These findings provide a reference for MS

diagnosis and treatment, highlighting these six genes as potential

targets for immunoregulatory interventions.
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