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using single-cell sequencing
and WGCNA based on a
disulfidptosis relative
gene signature
Panpan Li1†, Han Zhang2†, Limin Sun3 and Xiaojuan Wu1*

1Department of Pathology, School of Basic Medical Sciences and QiLu Hospital, Shandong University,
Jinan, Shandong, China, 2Tianjin Chest Hospital, Tianjin University, Tianjin, China, 3Department of
orthopedics, Shandong provincial third hospital, Jinan, Shandong, China
Background: Disulfidptosis, a recently identified mechanism of cell death

characterized by intracellular sulfide accumulation, leading to cellular

exhaustion. Our objective is to create a prognostic model using a cohort of

disulfidptosis-related genes (DRGs) to assess their prognostic value in lung

adenocarcinoma (LUAD). This research not only deepens our understanding of

the molecular mechanisms underpinning LUAD but also offers promising

avenues for new clinical treatment biomarkers and therapeutic targets.

Methods: We employed various methodologies to assess DRGs in LUAD. Gene

expression in single cell RNA sequencing (scRNA-seq) data was assessed using the

AUcell algorithm. In the TCGA [LUAD] dataset, disulfidptosis-related enrichment

scoreswere calculated using ssGSEA, and core gene setswere identified through the

Weighted Gene Co-expression Network Analysis (WGCNA) algorithm. Differential

gene analysis was conducted using the limma package and intersected with core

gene sets. Univariate Cox regression analysis revealed genes with significant effects

on LUAD prognosis. A prognostic model was developed using LASSO and Cox

regression, utilizing median model scores for stratifying patient risk. Kaplan-Meier

curves assessed prognostic differences between risk groups. Comprehensive

analyses were performed on the tumor microenvironment (TME) and mutational

landscape across different risk groups. Immune response characteristics and

functional enrichment patterns were further evaluated in these cohorts.

Results: Our study delved into disulfidptosis in LUAD through a series of analyses:

scRNA-seq data processing, WGCNA analysis, construction of a prognostic model,

evaluation of clinical features and risk, enrichment analysis, mutation landscape

assessment, and examination of the tumor microenvironment. We identified core

genes related to disulfidptosis and established a prognostic model to classify

patients based on risk scores. Notable differences in TME characteristics, immune

cell infiltration, mutation landscape, and biological pathway activities were

observed between risk groups, shedding new light on LUAD clinical treatment

and biomarker discovery. Cell experiments highlighted the significance of KCNK1

in LUAD cells, suggesting its potential as a therapeutic target.
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Conclusion: A prognostic model centered on DRGs was effectively developed

to predict prognosis of LUAD and immunotherapy response. Our initial

investigations unveiled KCNK1’s oncogenic role in LUAD, identifying it as a

potential therapeutic target.
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1 Introduction

With advancements in modern medical technologies, the

incidence of lung cancer in males has demonstrated an annual

decline of 2.5% since 2006, while the female incidence rate has

decreased by 1% per annum. Nevertheless, lung cancer remains a

predominant global health concern, with LUAD being the most

prevalent subtype (1, 2). In 2024, an estimated 234,580 new lung

cancer cases are projected (116,310 males; 118,270 females),

accompanied by approximately 125,070 deaths (65,790 males;

59,280 females). The 3-year survival rate for small cell lung

cancer (SCLC) has shown only marginal improvement from 9%

to 13%, whereas the relative 3-year survival rate for non-small cell

lung cancer (NSCLC) increased from 26% in 2004 to 40% in 2017.

Recent studies underscore its significant impact on public health,

shaped by factors like smoking, environmental exposures, and

genetic predispositions (3). Smoking-associated lung cancer

accounts for 81% (101,300 cases) of projected lung cancer

mortality in 2024, while non-smoking-related etiologies

contribute approximately 20,300 fatalities, encompassing

environmentally induced subtypes and genetically driven variants

such as EGFR-mutant adenocarcinomas (4). The latest

epidemiological insights from 2023 highlight lung cancer as a

leading cause of cancer incidence and mortality worldwide (5).

Despite advancements in treatment and early detection, the survival

rates for lung cancer, especially for LUAD, continue to be relatively

low (6). The variations in incidence, mortality, and survival rates of

lung cancer across diverse regions and populations underscore the

complex interactions of socioeconomic, racial, and environmental

determinants. This evolving landscape underscores the urgency for

targeted interventions and continued research in understanding

and combating this disease.

Programmed cell death (PCD) represents a crucial physiological

process, playing a role in maintaining the homeostasis of the

internal tissue environment and eliminating damaged or

unnecessary cells in the organism. PCD encompasses multiple

forms, such as apoptosis, autophagy, cuproptosis, ferroptosis,

disulfidptosis, etc (7).Notably, the majority of cancer treatments

exert their anti-tumor effects by activating apoptosis (8). Ferroptosis

is a natural anti-tumor mechanism that exhibits its tumor-

suppressive function through interactions with various tumor

suppressor genes (9). Cuproptosis genes are correlated with the
02
infiltration levels of multiple immune cells and the sensitivity of

cancer cells to various drugs (10).

Disulfidptosis is a novel form of cell death characterized by the

abnormal formation of protein disulfide bonds within cells and

typically arises under conditions of heightened oxidative stress (11–

13). Studies have demonstrated that disulfidptosis is mediated

through the actin cytoskeleton’s responsiveness to disulfide bond

stress (13). This stress triggers excessive disulfide bond formation

among cysteine residues, subsequently altering protein structure

and functionality. Central to disulfidptosis is the disruption of

intracellular signaling and metabolic pathways, ultimately leading

to cell dysfunction and demise. This process underscores the

intricate relationship between oxidative stress, protein

homeostasis, and cellular mortality. In the realm of cancer

therapy, metabolic treatments employing GLUT inhibitors have

shown promise. These inhibitors can induce disulfidptosis and have

been observed to hinder tumor growth, representing a novel

approach in cancer management (14). Although prognostic

models based on disulfidptosis have been developed for bladder

cancer, its implications and effectiveness in LUAD are still relatively

uncharted, pointing to an area ripe for further research.

In this study, our initial goal is to identify a collection of DRGs

within the context of LUAD. Our objective is to construct a

prognostic model utilizing these genes to predict outcomes in

LUAD and assess the efficacy of immunotherapy. By stratifying

patients according to this risk model, we methodically examined

variations in prognosis, TME, mutation profiles, and responses to

immunotherapy across different risk categories. Additionally, we

fused clinical characteristics with risk scores to forge an innovative,

comprehensive prognostic tool specifically for LUAD. Through this

research, we aspire to enrich our understanding of disulfidptosis in

LUAD and to open up novel avenues for its treatment.
2 Methods

2.1 Data sources

ScRNA-seq data from 10 primary LUAD patients were acquired

from Code Ocean(https://codeocean.com/capsule/8321305/tree/

v1). For the training set, gene expression, clinical, and mutation

information of TCGA [LUAD] patients were sourced from The
frontiersin.org
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Cancer Genome Atlas (TCGA; https://portal.gdc.cancer.gov/). We

also downloaded four independent GEO cohorts for the training set

f rom the Gene Expre s s ion Omnibus (GEO; h t tp : / /

www.ncbi.nlm.nih.gov/geo/). The bladder cancer immunotherapy

cohort data were obtained from http://research-pub.gene.com/

IMvigor210CoreBiologies/.
2.2 ScRNA-seq data processing

ScRNA-seq data processing utilized the ‘Seurat’ R package (15–

18). We first filtered out low-quality cells, keeping those with

nFeature ranging from 500-10000, nCount from 1000-100000,

mitochondrial gene percentage (pMT) of 0-30%, and hemoglobin

gene percentage (pHB) of 0-5%. The CellCycleScoring function

assessed cell cycle impacts, and SCTransform was used for data

scaling and normalization. RunPCA performed principal

component analysis. Using the t-SNE algorithm (19), we

identified significant clusters with the first 20 principal

components, and 25 cell clusters were classified using the

FindNeighbors and FindClusters functions. Cell annotation was

performed using SingleR and manual methods. After reviewing

literature, 16 DRGs were identified, and their scRNA-seq activity

was evaluated with the ‘AUCell’ package (11). Cells were

categorized into high and low activity based on median scores,

and differential genes were identified using FindAllMarkers. Based

on the CellChat R package, the intercellular communication

patterns between high and low disulfidptosis activity groups

were evaluated.
2.3 Gene co-expression network analysis

The ssGSEA algorithm was applied to compute enrichment

scores for each TCGA [LUAD] patient using differential genes

between high and low disulfidptosis activity groups (20, 21). The

WGCNA algorithm computes a weighted gene co-expression

network (22). We standardized gene expression data from TCGA

[LUAD] tumor samples to ensure consistency. Quality control

utilized the goodSamplesGenes function from the WGCNA

package to eliminate samples and genes with significant missing

data or high expression variability. We then selected an optimal soft

threshold through the pickSoftThreshold function, crucial for

constructing a robust co-expression network. This step involved

calculating the scale-free topology fit index across various

thresholds, aiming to enhance the network’s scale-free properties

while balancing average connectivity. Gene expression data were

transformed into an adjacency matrix and subsequently into a

Topological Overlap Matrix (TOM) to evaluate gene co-

expression strengths. Using hierarchical clustering and dynamic

tree cutting methods (cutreeDynamic), we identified co-expressed

gene modules, indicative of highly correlated genes within the

network and their potential biological functions. For each

module, we calculated the module eigengene (ME) and assessed

gene significance (GS), determining the association of each gene
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with external traits, including disease status or clinical phenotype.

Pearson correlation analysis was used to evaluate the associations

between module eigengenes and clinical traits, identifying gene

modules significantly linked to key clinical features. Lastly, we

visualized these gene modules and conducted additional

bioinformatics analyses to explore their associations further.
2.4 Development of the prognostic model

Initially, differential gene expression between TCGA [LUAD]

tumors and normal samples was identified using criteria: p < 0.05,

logFc > 1. The identified differential genes were then cross-

referenced with disulfidptosis-associated gene modules,

ascertained through WGCNA calculations. Univariate Cox

regression analysis was conducted on the intersected genes to

identify those with significant prognostic relevance for TCGA

[LUAD] patients. Next, LASSO regression((l=0.0258) was

utilized to further refine genes related to prognosis, culminating

in the development of the final prognostic model via integrated

multivariate Cox regression. Kaplan-Meier curves were used to

assess the impact of risk scores on prognosis, while the ‘TimeRoc’

package evaluated their diagnostic capability.
2.5 Development of the nomogram

Primarily, an assessment was conducted on the distribution of

various clinical features across different risk groups. Following the

initial analyses, univariate and multivariate Cox regression analyses

were performed on selected clinical features and risk scores to

identify significant variables for nomogram development. The

construction of the nomogram was carried out using the ‘rms’ R

package (23). The effectiveness of the nomograms was validated

using receiver operating characteristic (ROC) curves, calibration

curves, and Decision Curve Analysis (DCA) (24, 25).
2.6 Enrichment analysis

Gene Set Enrichment Analysis (GSEA) was conducted utilizing

TCGA [LUAD] expression profile data and risk score files (26, 27).

Data were firstly imported from corresponding text files,

undergoing essential preprocessing that included data cleaning

and formatting. Subsequently, data averaging was performed

utilizing the avereps function within the limma package.

Following this, samples were categorized into high-risk and low-

risk groups according to their respective risk scores. Average gene

expression in both risk groups was computed and log-transformed,

yielding the log fold change (logFC). These logFC values facilitated

GSEA in identifying disease-associated biological pathways via

functions available in the clusterProfiler package. Significantly

enriched gene sets, selected based on p-values, were visualized

utilizing the gseaplot2 function from the enrichplot package.

Subsequently, the GSVA algorithm was employed to calculate
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significantly enriched pathway information in the high-risk group

relative to the low-risk group (28). Finally, the ssGSEA algorithm

was utilized to evaluate variations in immune cell proportions and

immune function between high and low-risk groups.
2.7 Mutation analysis

Mutation data for TCGA [LUAD] were obtained using the

‘TCGAbiolinks’ R package and processed with ‘maftools’ after

generating mutation annotation format (MAF) files (29, 30). The

oncoplot function visualized mutation landscapes for high- and

low-risk groups, and the somaticInteractions function clarified gene

co-mutation relationships. Survival disparities among different risk

groups and between high and low tumor mutation burden (TMB)

levels were evaluated using the ‘survival’ and ‘survminer’

packages (31).
2.8 Tumor microenvironment assessment

This study utilized the ‘ESTIMATE’ R package to assess tumor

sample purity and immune cell composition within the cellular

matrix, resulting in the ESTIMATE Score, Immune Score, and

Stromal Score (32). Subsequently, we obtained immune infiltration

data from the Timer2.0 database (http://timer.cistrome.org/) and

employed the ‘pheatmap’ R package to depict the differences in

immune cell infiltration between high-risk and low-risk groups

(33). This analytical approach facilitated our exploration of immune

cell distribution patterns within TME across different risk strata.
2.9 Evaluation and validation of
immunotherapy efficacy

This study requires analyzing the differences in immune

checkpoint and MHC related gene expression between high-risk

and low-risk tumor samples in the TCGA[LUAD] database,

employing the Wilcoxon rank-sum test to ascertain the potential

influence of these gene expression traits on patient stratification. To

investigate the interplay between gene expression levels, risk

scoring, and Hub genes, we computed the Spearman rank

correlation coefficient. The outcomes of these analyses were

visualized through the ggplot2 package in R, enhancing the clarity

and intuitiveness of the assessment of variances and correlations.

Furthermore, we downloaded Immunophenoscores (IPS) from the

Cancer Immunome Atlas (TCIA) (https://tcia.at/home) database,

comparing IPS scores among various risk groups via t-tests to gain

insights into patient responsiveness to immune checkpoint

inhibitor therapies (34). Ultimately, we confirmed the prognostic

capability of our model and the variance in risk scoring among

different immunotherapy responses (CR is an abbreviation for

Complete Response, PR denotes Partial Response, PD signifies

Progressive Disease, and SD represents Stable Disease) in two

distinct immunotherapy cohorts, IMvigor210 and GSE7822.
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2.10 Cell lines and culture

The human LUAD cell lines A549, PC9, and NCI-H1299, along

with the normal bronchial epithelial cell line BEAS-2B, were

procured from the American Type Culture Collection (ATCC).

These cells were routinely cultured in RPMI-1640 medium,

supplemented with 10% fetal bovine serum (FBS), and

maintained in a controlled environment featuring a humidified

atmosphere of 5% CO2 at 37°C. The identity of all cell lines was

verified through short tandem repeat (STR) analysis and cross-

referenced with the ATCC and Cellosaurus databases. The

identification was carried out by Zhou Qiao Xin zhou

Biotechnology Co., Ltd (Shanghai, China). Additionally, all cell

lines were assessed for mycoplasma contamination using the

MycAwayTM Plus-Color One-Step Mycoplasma Detection Kit,

with results indicating no presence of mycoplasma.
2.11 Small-interfering RNA transfection

For siRNA transfection, we utilized sequences specified in

Supplementary Table 1, procured from GenePharma (Shanghai,

China). Cells were plated at a density of 2×105 cells per well in six-

well culture plates. Subsequent to seeding, cells were transfected

with siRNA using Lipofectamine 2000 (Invitrogen, Carlsbad, CA,

USA) following the manufacturer’s instructions.
2.12 RNA isolation and quantitative PCR
analysis

RNA was isolated from the cultured cells utilizing the RNA-

Quick Purification Kit (Yishan, Shanghai, China), ensuring integrity

and purity for subsequent analyses. The conversion of extracted

RNA to cDNA was achieved through the First Strand cDNA

Synthesis Kit (Toyobo, Osaka, Japan), preparing the samples for

amplification. RT-qPCR was performed using the ABI Prism 7000

Sequence Detection System. This process involved the use of SYBR

Premix Ex Taq (Takara, Otsu, Japan) for the detection and

quantification of gene expression. The primer sequences

employed for the target genes are detailed in Supplementary

Table 1. GAPDH was utilized as a reference gene to normalize

the expression data and ensure accurate comparative analysis.
2.13 Western blot analysis

Cells were collected, pelleted, and lysed with CelLyticTM MT

Cell Lysis Reagent (Sigma, St. Louis, USA) to extract total protein,

which was then quantified using a BCA Reagent Kit (Beyotime,

Shanghai, China). The primary antibodies of anti-KCNK1(Abways,

AY2763; 1:800 dilution) and anti-GAPDH (HUABIO, EM1901-57;

1:1000 dilution) were used, with the latter serving as the loading

control. Blots were then incubated with HRP-conjugated goat anti-

rabbit/mouse IgG H&L secondary antibodies (Abways, AB0101/
frontiersin.org
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AB0102; 1:5000 dilution). The detection of protein bands was

achieved using an Enhanced Chemiluminescence Kit (Millipore,

Darmstadt, Germany).
2.14 Cell proliferation assay

The assessment of cell proliferation was conducted utilizing two

distinct approaches: the Cell-Light™ EdU DNA Cell Proliferation

kit (Ribobio, Guangzhou, China) and the Cell-Counting Kit-8

(CCK-8) (Targetmol, Shanghai , China). For the EdU

incorporation assay, cells were plated at a density of 10,000 cells

per well in 96-well plates. Post-EdU incorporation, staining was

performed using 100 µL of the Apollo reaction mixture and 100 µL

Hoechst 33342 for nuclear staining. Fluorescence microscopy

(Olympus, Japan) was employed to visualize the stained cells.

Quantify EdU stained positive cells to estimate cell proliferation

rate. Concurrently, the CCK-8 assay was implemented as an

alternative measure of cellular proliferation. A density of 3000

cells per well was established by seeding cells in a 96-well plate.

The assay procedure followed the guidelines provided by the

manufacturer. This method allowed for an additional quantitative

evaluation of cell proliferation.
2.15 Assessment of colony formation
capability

In the colony formation assay, a count of 2,000 cells was seeded

into each well of a 6-well plate, followed by an incubation period of

15 days. After this duration, the cells were fixed using 4%

paraformaldehyde for 15 minutes. Subsequent to fixation, staining

was carried out using Crystal violet (Solarbio, China) to visualize

the colonies.
2.16 Cell migration and invasion assays

To evaluate the migration and invasion ability of LUAD cells,

Transwell assay was used, using inserts with a pore size of 8.0 µ m in

a 24 well plate format (Corning, NY, U.S.). For invasion assessment

specifically, the Transwell inserts were pre coated with Matrigel (BD

Science, Sparks, MD, U.S.). A total of 25,000 LUAD cells, suspended

in a serum-free medium, were introduced into the upper chambers,

whereas the lower chambers were supplemented with a complete

medium to serve as a chemoattractant. After a 24-hour incubation,

cells that migrated or invaded through the pores were fixed with 4%

paraformaldehyde and stained using Crystal violet (Solarbio,

China) for visualization and counting.
2.17 Apoptosis analysis via flow cytometry

Apoptosis in A549 and PC9 cells was assessed using flow

cytometry following a specific treatment regime. Post 48-hour
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transfection, cells were exposed to 2 µL of 10 µM cisplatin for

therapeutic intervention, while the control group was treated with 2

µL of DMSO for 4 hours. Subsequently, the cells were collected

utilizing a pancreatic enzyme solution devoid of EDTA and were

resuspended in binding buffer at a concentration of 1×106 cells per

mL. The cells were then stained using FITC-Annexin V and

propidium iodide (PI), utilizing the FITC Annexin V Apoptosis

Detection Kit I (BestBio, Shanghai, China). This staining facilitated

the quantification of apoptotic cells via flow cytometry, adhering to

the instructions provided by the reagent kit. Reproducibility was

ensured by conducting all experimental runs in triplicate.
2.18 ROS detection

ROS generation was assessed using a ROS Assay Kit (Beyotime,

China). 48 hours after transfection, cells were stained with 10 µM

DCFH-DA at 37°C for 30 minutes and subsequently analyzed using

a flow cytometer.
2.19 Statistical analysis

Statistical analysis for the bioinformatics part was conducted in

R, while the basic experimental part was analyzed using Graphpad

and Image J. Differences between groups were analyzed using one-

way or two-way ANOVA (Analysis of Variance). Survival analysis

was performed using the Kaplan-Meier method, and differences in

survival between groups were tested using the Logrank test.

Correlations were assessed with the Pearson coefficient,

considering p-values below 0.05 as statistically significant.
3 Results

3.1 Processing of scRNA-seq

In this study, we isolated 15,575 high-quality cells after applying

stringent quality control measures, as described in the methodology

section and shown in Supplementary Figure 1. As demonstrated in

Figure 1A, we conducted dimensionality reduction and clustering on

all cells, categorizing them into 25 distinct cell subgroups.

Subsequently, using a blend of manual annotation and the SingleR

package, we classified the cells into 8 specific cell subgroups

(Figure 1B). Figure 1C illustrates the sample origin of each cell,

revealing a uniform distribution without noticeable batch effects.

Thereafter, we assessed gene expression patterns and performed

enrichment analysis for various cell types, including the high

expression of KLRD1 in NK cells linked to cell killing and the T

cell receptor signaling pathway (Figure 1D). Figure 1E and

Supplementary Figure 1E display the expression of marker genes,

further substantiating the precision of our cell annotation. Following

an extensive literature review, we identified 16 disulfidptosis-related

genes. Utilizing these genes, we applied the AUCell algorithm to

evaluate cellular activity in single-cell data (Figure 1F). Cells were
frontiersin.org
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stratified into high and low disulfidptosis activity groups according to

the median values of cellular activity scores (Figure 1G), followed by

employing the FinAllmarkers function to identify differential genes

between these groups. Our analysis of intercellular communication
Frontiers in Immunology 06
revealed that cells with heightened disulfidptosis activity participate

in more frequent and intense cellular interactions, as evidenced by the

increased number and strength of pathways (Supplementary

Figure 2A). In the low disulfidptosis group, the SPP1 and MHC-I
FIGURE 1

Visualization of scRNA-seq data. (A) t-SNE analysis identifying 25 unique cell subgroups. (B) t-SNE annotated visualization depicting 8 cell subgroups.
(C) t-SNE plots demonstrating the distribution of cells from various sources. (D) Gene expression patterns and enrichment analysis across different
cell types. (E) Display of marker genes. (F) Evaluation of DRGs activity in scRNA-seq using the AUcell algorithm. (G) t-SNE representation of cells with
high and low DRS activity.
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pathways were more active, while the EGF and Periostin pathways

showed increased activity in the high disulfidptosis group

(Supplementary Figure 2B). Moreover, among cells with high

disulfidptosis activity, fibroblasts displayed the most intense

communication, while epithelial cells exhibited the greatest number

of communication pathways (Supplementary Figure 2C).
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3.2 Gene co-expression network analysis

In this study, we employed WGCNA to successfully identify gene

modules that are closely associated with the characteristics of

disulfidptosis in LUAD. To establish a scale-free network, a soft

threshold of b=5 was applied (Figure 2A), ensuring the network
FIGURE 2

WGCNA reveals the relationship between gene expression patterns and Disulfidptosis. (A) Network topology analysis to establish an appropriate soft
threshold, constructing a scale-free network reflecting the intrinsic structure of gene expression data. (B) Dendrogram and module colors illustrating
the natural clustering of gene expression data. (C) Module-trait relationships showcasing the correlation of each module with disulfidptosis traits.
(D–F) Scatter plots for three modules (green, red, purple) displaying the correlation of genes with module eigengenes.
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topology conformed to a scale-free distribution. Following this, a gene

dendrogram (Figure 2B) was employed to cluster genes according to

similarities in their expression patterns, with distinct modules being

differentiated by various colors. Further analysis of module-trait

relationships (Figure 2C) uncovered correlations between individual

modules and disulfidptosis characteristics, with the green module

(MEgreen) exhibiting the strongest negative correlation, while the

blue (MEblue) and brown (MEbrown) modules demonstrated the

most pronounced positive correlations. Expounding upon these

findings, we detailed the correlations between genes in the

aforementioned three modules and disulfide death characteristics

using scatter plots (Figures 2D–F). In these plots, each point

represented a gene, with its position indicating its significance in

the network and its association with disulfidptosis characteristics.

These insights underscore potential biomarkers, offering invaluable

resources for advancing research into the biological attributes of

LUAD and enhancing immunotherapy strategies.
3.3 Construction of prognostic model

In this report, leveraging the TCGA [LUAD] dataset, we initially

pinpointed genes exhibiting significant expression disparities, as

illustrated in the volcano plots (Figure 3A). The selection criteria

were based on |logFC| ≥ 1 and p < 0.05. Subsequently, integrating

insights from the WGCNA analysis, we pinpointed key intersecting

genes (Figure 3B). These genes were subjected to univariate Cox

regression analysis, which demonstrated their significant association

with survival outcomes in TCGA [LUAD] samples (Figure 3C).

Further, employing the LASSO regression method (Figure 3D), we

narrowed down to 20 crucial genes under a penalty strength of

l=0.0258. Utilizing this refined gene set, we constructed a prognostic

scoring model for disulfidptosis related attributes, employing a

combined multivariate Cox regression analysis. The risk formula

was established as: ‘0.12KCNK1 + 0.275LGR4 - 0.224CD69 -

0.326CX3CR1 - 0.247LARGE2 + 0.158MT1A + 0.206*CHPF’. The

risk score successfully categorized patients into high-risk and low-risk

groups, as evidenced by the distribution diagram of the risk scores

(Figure 3E). Concurrently, the survival status distribution diagram

(Figure 3F) vividly depicted the survival outcomes in both risk

categories. Complementary to this, expression heat maps of these

HUB genes across different samples (Figure 3G) reinforced the

rationale behind the stratification based on the median value.

Kaplan-Meier survival analyses further corroborated that patients

classified within the high-risk group exhibited a significantly poorer

prognosis in comparison to their low-risk counterparts (Figure 3H).

The model’s predictive accuracy for 1-year, 3-year, and 5-year

survival rates was confirmed through ROC curves (Figure 3I).

Additionally, the prognostic and diagnostic value of the model was

further substantiated across four independent GEO cohorts

(Supplementary Figure 3). Collectively, these findings underscore

the efficacy of our scoring model, centered on disulfidptosis related

attributes, as a robust tool for predicting survival outcomes in

LUAD patients.
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3.4 Clinical characteristics and risk
assessment analysis

In our further explorations, we scrutinized the efficacy of the

disulfidptosis feature scoring model across diverse clinical

characteristics, as depicted in Figure 4A. The analysis notably

demonstrated that the low-risk cohort primarily consisted of

younger patients (under 65 years) and a greater proportion of

females, whereas the high-risk cohort was predominantly composed

of patients in advanced pathological stages. A critical finding from

the univariate Cox regression analysis was the identification of

pathological staging and risk scoring as significant prognostic

indicators for patients with LUAD (Figure 4B). This finding was

corroborated by multivariate Cox regression analysis, which

reinforced the independent prognostic significance of both

pathological staging and risk scoring (Figure 4C). To visually

delineate the impact of these variables on patient prognosis, we

constructed a forest plot (Figure 4D). This plot concisely illustrated

the relative influence of pathological staging and risk scoring on

patient outcomes. The calibration curve (Figure 4E) further

illustrated the model’s high predictive accuracy, closely aligning

with the ideal 45-degree line. Decision curve analysis (Figure 4F)

provided additional evidence of the model’s significant clinical

utility across various decision-making thresholds. Moreover, the

accuracy of the model in predicting survival rates at 1, 3, and 5 years

was evaluated through ROC curves (Figure 4G). The area under the

curve (AUC) results underscored the model’s robust predictive

performance at these distinct time points, thereby affirming the

model’s comprehensive efficacy. In summary, our disulfide death

feature scoring model emerges as a potent and reliable tool for risk

stratification and informing clinical decision-making in the context

of LUAD patients.
3.5 Enrichment analysis

In our comprehensive biological characteristic analysis of

patients categorized into high and low-risk groups, significant

disparities were observed. The high-risk group demonstrated a

predominant enrichment in key KEGG pathways such as Cell

Cycle and Drug Metabolism-Other Enzymes (Figure 5A). This

suggests a potential inclination towards more aggressive cancer

progression in this cohort. The low-risk group demonstrated

significant enrichment in immune response pathways, specifically

Allograft Rejection and Hematopoietic Cell Lineage (Figure 5B),

hinting at a more robust immune system engagement. Further

delving into the Gene Ontology (GO) analysis, the high-risk group

revealed significant enrichment in pathways related to Epidermis

Development and External Encapsulating Structure Organization

(Figure 5C). Instead, the low-risk group displayed a marked

enrichment in pathways pivotal for immune activation, including

Activation of Immune Response and Antigen Receptor-Mediated

Signaling Pathway (Figure 5D). This dichotomy underscores the

distinct biological underpinnings between the two risk groups.
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GSVA further elucidated that pathways such as Glycolysis and

Unfolded Protein Response were particularly active in patients

within the high-risk group (Figure 5E), indicating a potential link

with metabolic stress and cancer aggressiveness. In terms of
Frontiers in Immunology 09
immune cell infiltration and function, the low-risk group

exhibited significantly higher levels of various immune cells,

including aDCs, B cells, CD8+ T cells, among others

(Figure 5F).Correspondingly, this group also showed heightened
FIGURE 3

Construction of the prognostic model. (A) Volcano plot highlighting significantly upregulated (red) and downregulated (blue) genes. (B) Venn
diagram of differential genes and WGCNA results, identifying key genes. (C) Univariate Cox regression analysis revealing genes significantly
associated with patient survival. (D) LASSO regression analysis selecting the most survival-relevant genes. (E) Risk score distribution differentiating
patient risk levels. (F) Survival status distribution across risk score groups. (G) Heatmap of HUB gene expression across samples. (H) Kaplan-Meier
survival curves comparing patient survival between risk groups. (I) ROC curve assessing the accuracy of 1-, 3-, and 5-year survival predictions.
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activity in several immune functions like APC co-inhibition, CCR,

and type II interferon response (Figure 5G), suggesting a more

active and potentially effective immune surveillance against tumor

cells. Overall, these findings not only elucidate the importance of
Frontiers in Immunology 10
our risk scoring model in predicting LUAD survival prognosis, but

also reveal profound differences in molecular pathways and

immune microenvironment between high-risk and low-risk

groups. The pronounced immune activity in the low-risk group
FIGURE 4

Clinical feature and risk assessment analysis of the TCGA[LUAD] dataset. (A) Distribution of various clinical features across different risk groups.
(B) Univariate Cox regression analysis results showing the association of clinical features with survival outcomes. (C) Multivariate Cox regression
analysis assessing the independent predictive value of clinical features. (D) A nomogram was developed by integrating clinical characteristics with the
risk score (E) Calibration curve evaluating the calibration of the prediction model. (F) Decision curve analysis of the clinical utility of the prediction
model. (G) ROC curve assessing the accuracy of the prediction model at different time points.
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could be a key factor contributing to a more favorable prognosis.

These insights significantly enhance the application value of our

scoring model, providing critical biomarkers and therapeutic targets

for refining future clinical strategies in LUAD management.
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3.6 Mutation analysis

Our detailed mutation analysis of the TCGA [LUAD] dataset

thoroughly mapped the mutation landscape in LUAD patients. The
FIGURE 5

Enrichment analysis. KEGG enrichment analysis showing significant metabolic pathways in high (A) and low (B) risk groups. GO enrichment analysis
revealing cellular processes, molecular functions, and biological processes in high (C) and low (D) risk groups. (E) GSVA results presenting gene set
variations across different risk score groups. (F) Comparison of immune cell composition between high and low risk groups. (G) Comparison of
immune function states, highlighting functional activity differences between the two risk groups.
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analysis revealed the top 20 genes which were most frequently

mutated and their associated clinical information for both high and

low-risk groups (Figure 6A). Within the mutation profiles of Hub

genes, different colors were used to represent various mutation
Frontiers in Immunology 12
types, with deletions emerging as the predominant mutation type

(Figure 6B). Further delving into the intricate co-mutation patterns,

we examined the relationships between Hub genes and other highly

mutated genes. These interconnections were visually depicted in a
FIGURE 6

Mutation landscape analysis in LUAD. (A) Mutation landscape of high and low risk groups, displaying the top 20 most frequently mutated genes in
the TCGA-LUAD dataset. (B) Mutation frequency of Hub genes. (C) Co-mutation patterns of Hub genes with high-frequency mutated genes.
(D) Comparison of Tumor Mutation Burden (TMB) between different risk groups. (E) Correlation analysis between risk score and TMB. (F) Kaplan-
Meier survival curves based on high and low TMB. (G) Multivariate Kaplan-Meier survival curves combining TMB and risk score.
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matrix plot, where darker squares indicated a higher frequency of

co-mutations (Figure 6C). For example, notable co-mutation

relationships were observed between CX3CR1 and genes such as

MUC16, RYR2, ZFHX4. The violin plot (Figure 6D) succinctly

demonstrated that the TMB was significantly higher in patients

within the high-risk group, suggesting TMB’s potential role as a

crucial biomarker in this subset of LUAD patients. Moreover, a

positive correlation was established between the risk score and TMB

(Figure 6E), indicating a close link between increased mutation load

and the prognostic risk score in LUAD. Kaplan-Meier survival

curves (Figure 6F) traditionally indicated better survival prognosis

in patients with higher TMB. However, a compelling observation

emerged when TMB was considered alongside risk scoring

(Figure 6G): although high TMB is typically viewed as a favorable

prognostic factor, in patients with high-risk scores, low TMB

correlated with poorer survival outcomes. This nuanced finding

underscores the complexity of interpreting TMB in the context of

LUAD and highlights the necessity of integrating TMB with risk

scoring for a holistic assessment of patient prognosis. These insights

are pivotal for LUAD management, particularly in tailoring

treatment strategies for high-risk patients. Our study underscores

the potential of precision medicine in treating LUAD, advocating

for customized treatment plans based on detailed genetic mutation

analysis in tandem with individual clinical characteristics to

enhance patient survival prognosis.
3.7 Tumor microenvironment assessment

In our in-depth study exploring the complex relationship

between TME characteristics and patient risk scores, we

unearthed several significant insights. Notably, the analysis

demonstrated that in the low-risk group, key parameters such as

the ESTIMATE Score, Immune Score, and Stromal Score were

considerably elevated compared to the high-risk group. This finding

indicates a more robust immune and stromal component presence

within the TME of patients classified as low-risk group (Figure 7A).

Conversely, the high-risk group exhibited increased tumor purity,

suggesting a reduced presence of non-tumor components in their

TME (Figure 7B). Additionally, a pronounced negative correlation

was observed between the risk score and scores indicative of

immune and stromal components (ESTIMATE Score, Immune

Score, and Stromal Score). Conversely, a positive correlation

emerged with Tumor Purity, elucidating a trend where the

proportion of immune and stromal components diminishes with

an increasing risk score. To validate these findings, we used the

Timer 2.0 database to compare immune infiltration levels between

high and low-risk groups. The results highlighted that the low-risk

group exhibited a higher level of immune cell infiltration, as shown

in the heatmaps (Figure 7C). In conclusion, our findings reveal that

tumors in the high-risk group exhibit greater purity, whereas those

in the low-risk group are characterized by a more pronounced

infiltration of immune cells.
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3.8 Evaluation and validation of
immunotherapy efficacy

Given the significant progress in immunotherapy for LUAD,

our study conducted a comprehensive assessment of the

responsiveness of different patient risk groups to immunotherapy

using various methodologies. Inspired by previous studies, as cited

in references, which reported that high expression levels of immune

checkpoint related and Major Histocompatibility Complex (MHC)

related genes could predict a better response to immunotherapy, we

explored the levels of these genes in various risk groups of LUAD

patients in our study (35–37). Figures 8A–D show a detailed

analysis of immune checkpoint and MHC gene expression

differences between high and low-risk groups, revealing

significant variations. Additionally, we examined the association

between the expression of model genes, risk stratification, and the

specified gene categories. The analysis found that key

immunotherapy-related genes were expressed at higher levels in

the low-risk group versus the high-risk group. Furthermore, there

was a significant negative correlation between the risk score and the

expression of these gene categories. To further substantiate our

findings, we compared the Immune Phenotype Scores (IPS)

(Figure 8E), revealing that in LUAD patients positive for CTLA4

and negative for PD-L1, as well as those positive for both CTLA4

and PD-L1, patients in the low-risk cohort showed higher

IPS scores.

This suggests a greater likelihood of benefiting from

immunotherapy in these patients.

To enhance the credibility of our analysis, we extended our

validation to two public immunotherapy datasets, IMvigor210 and

GSE78220. The survival analysis of the IMvigor210 dataset reveals a

poor prognosis for high-risk cohorts across the entire patient

population, as well as within both early-stage and late-stage

subgroups (Supplementary Figures 4A–C). Notably, patients with

better therapeutic responses (Complete Response/Partial Response,

CR/PR) exhibited significantly lower risk scores (Supplementary

Figure 4D), and a higher proportion of CR/PR was observed in the

low-risk cohort. Consistent results were obtained from the GSE78220

dataset (Supplementary Figures 4F–H). Collectively, this study

demonstrates that LUAD patients in the low-risk cohort,

characterized by high expression of immune checkpoint and MHC

related genes, are more predisposed to benefit from immunotherapy.
3.9 Basic experiments explore the role of
KCNK1 in LUAD

Review of previous literature indicated that KCNK1 (Potassium

Two Pore Domain Channel Subfamily K Member 1), a crucial

member of the potassium channel family, is highly expressed in

various cancers and significantly related to tumor prognosis and

invasiveness (38). However, its role in LUAD has not been fully

elucidated, guiding us to design tests to explore its function. We
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began by assessing KCNK1 expression in lung epithelial cells

(BEAS-2B) and LUAD cell lines (A549, PC9, H1299) through

western blot, revealing its significant overexpression in LUAD

(Figure 9A). We then developed specific siRNAs targeting

KCNK1 and confirmed their efficiency in reducing KCNK1

expression in A549 and PC9 cells using RT-qPCR and western

blot (Figures 9B, C). Subsequent EdU and CCK-8 assays

demonstrated that KCNK1 siRNA transfection significantly

reduced LUAD cell proliferation (Figures 9D–F), and colony

formation assays showed decreased colony-forming abilities in

these cells (Figure 10A). Transwell assays further indicated that

KCNK1 knockdown markedly reduced cell migration and invasion

(Figure 10B). Investigating the link between KCNK1 and

chemotherapy resistance, particularly to cisplatin, a key LUAD

treatment drug, we found that KCNK1 downregulation and

cisplatin treatment synergistically promoted cell apoptosis
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(Figure 10C), suggesting KCNK1’s association with cisplatin

resistance in LUAD. Lastly, we examined the effect of KCNK1

knockdown on ROS levels, finding increased ROS production in the

knockdown group (Figure 10D), implying that KCNK1 inhibition

might enhance disulfidptosis by elevating ROS production.
4 Discussion

Redox homeostasis is essential for the sustenance of cellular life.

In comparison to normal tissues, cancer cells frequently experience

elevated oxidative stress as a result of genetic mutations and

metabolic reprogramming (39, 40). This pathological state

induces mitochondrial dysfunction through electron transport

chain impairment, resulting in excessive reactive oxygen species

(ROS) production alongside compensatory activation of
FIGURE 7

TME Assessment. (A) Differences in ESTIMATE Score, Immune Score, Stromal Score, and Tumor Purity between high and low-risk groups,
represented via violin plots with boxplots indicating distributions and median values. (B) Scatter plots correlating risk scores with ESTIMATE Score,
Immune Score, Stromal Score, and Tumor Purity, each with correlation coefficients (R²) and P values. (C) Immune infiltration assessment in high and
low-risk groups across seven algorithms, visualized in a heatmap displaying the relative abundance of various immune cell types.
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antioxidant defenses such as glutathione (GSH) and superoxide

dismutase (SOD) to ensure survival. A biphasic ROS response

emerges: Subtoxic levels activate proto-oncogenic signaling

pathways (e.g., NF-kB, AP-1) to drive tumor progression;

Supraphysiological accumulation causes oxidative DNA damage-

induced genomic instability and initiates programmed cell death

pathways, including apoptosis, ferroptosis, and disulfidptosis.

Glutathione (GSH) plays a crucial role in neutralizing excess

ROS, necessitating that cancer cells maintain sufficient GSH levels

to ensure survival and proliferation (41, 42). Disulfidptosis

represents a distinct form of programmed cell death (PCD)

triggered by oxidative stress, characterized by the excessive

formation of disulfide bonds (-S-S-) in cysteine residues under

aberrant oxidative conditions (43). This process leads to protein

misfolding, functional loss, and ultimately, cell death. The induction

of disulfidptosis may require several critical factors, including

increased ROS production, upregulation of SLC7A11 expression,

glucose deprivation, and abnormal disulfide bond formation in

actin filaments (13, 44–46). An increase in ROS directly contributes

to the formation of abnormal protein disulfide bonds. Under
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normal conditions, protein disulfide bonds are primarily formed

in the oxidizing environment of the endoplasmic reticulum (47).

Oxidative stress can facilitate the formation of protein disulfide

bonds within the cytoplasm, which is typically a reducing

environment (48–50). In such conditions, proteins frequently

develop aberrant disulfide bonds. SLC7A11, a critical amino acid

transporter, is upregulated to enhance the cystine/glutamate

exchange process. Upon the transport of cystine into the

cytoplasm by SLC7A11, it is imperative for the cell to rapidly

convert cystine into the more soluble cysteine to facilitate

glutathione synthesis (51, 52). This conversion necessitates

NADPH, which is generated by the oxidative pentose phosphate

pathway, serving as an essential reducing agent. In scenarios of

glucose metabolism dysregulation or glucose deprivation, the

cellular supply of NADPH is compromised, resulting in the

abnormal accumulation of cystine and other disulfide-linked

molecules, thereby inducing disulfide stress. Consequently,

aberrant disulfide bonds form within actin cytoskeletal proteins,

leading to the collapse of the actin network and the phenomenon

known as disulfidptosis (53, 54).
FIGURE 8

Prediction of Immunotherapy Efficacy. (A) Differences in immune checkpoint gene expression between high and low-risk groups. (B) Correlations
between immune checkpoint gene expression, risk scores, and Hub genes. (C) Expression differences of major histocompatibility complex (MHC)
genes between risk groups. (D) Correlations of MHC-related genes and immune checkpoint genes with risk scores and Hub genes. (E) Comparative
Immune Predictive Scores (IPS) between high and low-risk groups.
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FIGURE 9

The Correlation Between KCNK1 Expression and Proliferative Capacity in LUAD Cells. (A) Comparative analysis of KCNK1 protein expression levels
between normal bronchial epithelial cells and LUAD cell lines. (B, C) The efficiency of KCNK1 knockdown was assessed using RT-qPCR and Western
blot. (D, E) EdU assay was employed to evaluate the impact of KCNK1 on the proliferation of LUAD cells, with the proliferation index (PI) calculated
as PI = number of red dots (cells in the proliferative phase)/total number of blue dots (total cells). (F) CCK-8 assay measured cell absorbance at
450nm over 24, 48, and 72 hours, respectively. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
FIGURE 10

The function of KCNK1 in LUAD. (A) Colony formation assays were used to explore the cell colony formation ability of A549 and PC9 cells. (B) The
migration and invasion abilities of A549 and PC9 cells. (C) Flow cytometry was used to detect apoptosis rate of A549 and PC9 cells which were
transfected with siNC or siKCNK1 and received either Cisplatin or DMSO treatment. (D) ROS levels in A549 and PC9 cells transfected with siNC and
siKCNK1 was assessed by flow cytometry. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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Disulfidptosis exerts multifaceted impacts on tumor cell

chemoresistance, senescence, and neurodegenerative pathogenesis.

Li M et al. developed a risk prediction model based on

disulfidptosis-related genes (DRGs) in colon adenocarcinoma

patients, demonstrating that POU4F1 knockdown (a DRG)

markedly attenuated COAD cell proliferation, migration, and

disulfidptosis susceptibility while augmenting cellular senescence

(55, 56).Notably, hepatocellular carcinoma (HCC) patients with

elevated disulfidptosis activity exhibited enhanced therapeutic

responsiveness to PD-1/PD-L1 blockades (55, 56). Furthermore,

Alzheimer’s disease (AD) studies have identified that enriched

pathways of disulfidptosis-associated differentially expressed genes

(DEGs) critically regulate neurological homeostasis, highlighting

their potential involvement in AD-related pathological cascades

(57). Collectively, these findings position disulfidptosis as a

promising therapeutic target spanning oncological and

neurodegenerative disorders.

LUAD, the most common subtype of lung cancer, comprises 40%

of cases. The treatment options for LUAD are diverse, encompassing

surgical intervention primarily for early-stage disease, radiotherapy

for locally advanced cases or as adjuvant therapy post-surgery, and

chemotherapy, particularly for advanced or metastatic LUAD

(43, 58). Platinum-based chemotherapy, with Cisplatin as a key

agent, remains a cornerstone in the therapeutic management of

lung adenocarcinoma. Nevertheless, the prognosis for LUAD

patients remains poor due to rapid tumor progression and the

emergence of resistance to existing therapies, resulting in a five-

year survival rate of merely 15%. Consequently, investigating the

regulatory mechanisms underlying tumor growth and treatment

efficacy has become increasingly critical.

In the realm of LUAD, metabolic reprogramming plays a

pivotal role, not only in facilitating the rapid growth and survival

of tumor cells but also in potentially elevating intracellular reactive

oxygen species (ROS) levels, as noted in (59). This increase in ROS

may trigger disulfide death, significantly impacting LUAD cell

survival. Furthermore, preclinical findings have illustrated that

metabolic intervention, specifically via glucose transporter

(GLUT) inhibitors, can initiate disulfide death, thereby impeding

renal cancer cell proliferation. Delving into disulfide death in LUAD

offers critical insights into how alterations in tumor cell metabolism

influence their behavior. It also lays the groundwork for novel

therapeutic approaches, targeting these metabolic pathways. This

might include strategies focused on ROS regulation and GSH

metabolism, presenting new avenues for LUAD treatment

advancement. Consequently, disulfide death-related genes emerge

as promising biomarkers or therapeutic targets, potentially playing

a transformative role in enhancing LUAD treatment outcomes.

The prognostic model incorporates multiple genes, with

BAIAP2L2 being upregulated in LUAD tissue, where its elevated

expression is positively associated with poor prognosis (60).

Similarly, the upregulation of FAM83H-AS1 is indicative of an

unfavorable prognosis for LUAD patients (61). Increased

expression of INHA in LUAD tissue correlates with reduced OS

and more advanced pathological stages. Furthermore, INHA

expression is linked to immune cell infiltration and immune-
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related markers within the LUAD TME (62). LGR4 is

significantly overexpressed in LUAD, and endogenous RSPO3-

LGR4 signaling not only enhances cell migration and invasion

but also facilitates the epithelial-mesenchymal transition

(EMT) in LUAD cells (63, 64). BARX2 is notably upregulated

in LUAD tissues and is positively correlated with advanced

clinical stages and poor prognosis (65). Additionally, aberrant

expression of KCNK1 is associated with the malignancy of

various cancers.

For example, the expression of this marker in thyroid cancer

correlates with clinical staging and is upregulated in hepatocellular

carcinoma, where it functions as a potential prognostic and

diagnostic biomarker (66, 67). In a similar vein, KCNK1 is

overexpressed in breast cancer due to promoter hypomethylation,

which is linked to poor prognosis and suboptimal treatment

response (68). Survival analysis of the proposed prognostic model

indicated that individuals in the high-risk group had a poorer

prognosis, a finding that was validated across four independent

GEO cohorts.

Moreover, by integrating clinical traits with risk scores, we

developed an innovative nomogram. This nomogram enhances the

accuracy of survival predictions for patients with LUAD, serving as

a valuable tool for risk stratification and supporting clinical

decision-making processes.

The TME, a crucial regulator of tumor growth and metastasis, is

characterized by intricate interactions between tumor cells and

various non-tumor entities, including immune and stromal cells,

vascular endothelial cells, and the extracellular matrix (ECM).

These interactions profoundly influence tumor development,

invasiveness, and treatment responsiveness (69). Immune cells

within the TME exhibit a dual role: while they can suppress

tumor growth, they are also susceptible to manipulation by tumor

cells to facilitate immune escape (70). The hypoxic conditions and

metabolic shifts in the TME critically impact drug sensitivity and

efficacy (71). Recent advances in targeting the TME, notably

immune checkpoint inhibitors, have underscored its significance

in cancer therapy (72, 73). Our study reveals that patients in the

low-risk group exhibit stronger immunogenicity and greater

immune cell infiltration, indicating a more active immune

microenvironment, which might respond more favorably to

immune-enhancing interventions like checkpoint inhibitors.

Conversely, the high-risk group’s tumor purity, reflecting lower

immune infiltration, suggests potential immune evasion by tumor

cells, necessitating strategies to modify the TME and boost immune

response. Lower risk scores were found to be linked to improved

response to immunotherapy in the IMvigor210 and GSE78220

datasets, align with this observation. This underscores the

importance of personalized treatment approaches and distinct

strategies for different risk groups in LUAD. Immunotherapy

using immune checkpoint inhibitors has made significant

progress in the treatment of Gastric cancer (GC). Therapeutic

antibodies targeting the programmed cell death protein-1 (PD-1)/

programmed cell death ligand 1 (PD-L1) pathway have been

effectively used in the clinical treatment of cancer. Our findings

on the differences in immune checkpoint expression among risk
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groups may establish a molecular foundation for the optimization

of PD-1/PD-L1 inhibitor selection in clinical practice (74).

KCNK1, also referred to as TWIK-1 (75), is a member of the

two-pore domain potassium channel (K2P) family. These channels

are characterized by two transmembrane domains, or helices, and

typically function as dimers within the cell membrane to achieve

functional expression. Recently, the pivotal role of K2P channels in

malignancies has garnered increasing attention (76, 77). Notably,

the K2P channel member KCNK3 has been demonstrated to

activate the AMPK-TXNIP pathway, thereby inhibiting the

proliferation and glucose metabolism of LUAD (78). Despite the

involvement of KCNK1 in various cancers, as documented in

previous studies, its role in LUAD has not been reported. In this

study, we have identified KCNK1 as a potential oncogenic

biomarker for LUAD, highlighting its significant role in tumor

progression and chemotherapy resistance. Specifically, KCNK1 was

identified as a key gene within this signature, showing a significant

positive correlation with poor patient prognosis. Elevated

expression of KCNK1 has been linked to enhanced proliferation,

colony formation, and migration/invasion in LUAD cells,

underscoring its oncogenic potential. Additionally, we

investigated the properties of KCNK1 related to cisplatin

resistance and discovered that high KCNK1 expression correlates

with increased resistance to cisplatin in LUAD. Silencing KCNK1

expression augmented apoptosis in LUAD cells and significantly

improved the efficacy of cisplatin treatment. Our observations

revealed that the downregulation of KCNK1 expression markedly

elevates reactive oxygen species (ROS) production. This increase in

ROS can lead to the oxidation of cysteine residues in

proteins, causing a redox imbalance and the formation of

aberrant disulfide bonds within the cytoplasm. Such disruptions

interfere with the folding and function of cytoskeletal proteins,

thereby inducing disulfidptosis. Prior research has demonstrated

that SLC7A11 is overexpressed in LUAD, facilitating increased

cystine uptake and promoting glutathione synthesis to mitigate

oxidative stress (79). Furthermore, abnormal alterations in glucose

metabolism represent a hallmark metabolic characteristic of

numerous cancer cells (80).

Recent studies have indicated that KCNK3 plays a role in the

glucose metabolism of LUAD cells, with its upregulation leading to

the downregulation of GLUT1. This interaction may elucidate a

potential mechanism through which KCNK1 contributes to

cisplatin resistance in LUAD.

While our study highlights KCNK1’s role in cisplatin resistance,

whether KCNK1 influences the generation of NADPH in the

pentose phosphate pathway by regulating the expression of

SLC7A11 and thereby participates in the regulation of

disulfidptosis to control LAUD resistance remains to be fully

clarified. Recent advances in functional genomics, such as

CRISPR-based screening combined with drug sensitivity profiling,

have proven powerful in uncovering novel resistance genes. For

instance, a study by Liu H et al. demonstrated how CRISPR

screening identified key genes driving resistance to trametinib, a

MEK inhibitor, providing a methodological blueprint for future

investigations into disulfidptosis-associated resistance (81). The
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PDX model holds the advantage of preserving the genetic and

histological traits of the original tumor, thereby offering a more

precise portrayal of human cancer biology. Kang Z et al. employed

the PDX model to investigate the metabolic alterations in colorectal

cancer (82). In the future, we will also undertake research involving

patient-derived xenograft (PDX) models to validate the clinical

relevance of this study.

In conclusion, this study has established a comprehensive

prognostic model for LUAD utilizing DRGs, which demonstrates

efficacy in predicting patient outcomes and the effectiveness of

immunotherapy. The gene KCNK1 is identified as a pivotal

oncogene in LUAD, exerting a substantial influence on tumor

progression and resistance to cisplatin. Increased expression of

KCNK1 is associated with unfavorable prognoses and

disulfidptosis, indicating that therapeutic targeting of KCNK1

may improve the efficacy of cisplatin treatment.
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SUPPLEMENTARY FIGURE 1

Quality control and normalization of scRNA-seq data. (A) Pre-quality control

data presentation. (B) Post-quality control data. (C) Patient distribution before

batch effect correction. (D) Post-correction patient distribution. (E)
Expression of marker genes at the single-cell level.

SUPPLEMENTARY FIGURE 2

Analysis of Intercellular Communication. (A) Variations in the frequency and
intensity of intercellular communication between cells exhibiting high versus

low disulfidptosis activity. (B) Comprehensive data on differentially expressed

pathways in cell communication between the two groups. (C) Assessment of
the activity levels of each cell type in intercellular communication across the

different groups.

SUPPLEMENTARY FIGURE 3

Prognostic and diagnostic performance of the model across multiple

datasets. Kaplan-Meier survival and ROC curves demonstrating the model’s

performance in datasets GSE3141, GSE31210, GSE5081, and GSE68465.

SUPPLEMENTARY FIGURE 4

Validation of the prediction model in two independent immunotherapy

cohorts (IMvigor210 and GSE78220). (A–C) Survival differences between
risk groups in the IMvigor210 cohort. (D) Risk score distributions across

different immunotherapy responses. (E) Proportional bar graphs of

immunotherapy responses in risk groups. (F) Survival differences in the
GSE78220 cohort. (G) Risk score differences in immunotherapy outcomes.

(H) Proportional bar graphs of immunotherapy efficacy in risk groups.
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